基于局部网格匹配的彩色图像篡改检测方法.pdf

上传人:b*** 文档编号:6066601 上传时间:2019-04-06 格式:PDF 页数:9 大小:732.89KB
返回 下载 相关 举报
摘要
申请专利号:

CN201611200652.5

申请日:

2016.12.22

公开号:

CN106600598A

公开日:

2017.04.26

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):G06T 7/00申请日:20161222|||公开

IPC分类号:

G06T7/00(2017.01)I; G06T7/33(2017.01)I; G06K9/46; G06K9/62

主分类号:

G06T7/00

申请人:

辽宁师范大学

发明人:

王向阳; 焦丽仙; 杨红颖; 牛盼盼

地址:

116029 辽宁省大连市沙河口区黄河路850号

优先权:

专利代理机构:

大连非凡专利事务所 21220

代理人:

闪红霞

PDF下载: PDF下载
内容摘要

本发明公开了一种基于局部网格匹配的彩色图像篡改检测方法,首先对彩色图像进行高斯滤波预处理,利用颜色不变量和SURF算法提取特征点;其次,利用Delaunay方法进行三角网格剖分,构造三角网格的内切圆以及内切圆的外拓正方形,计算出内切圆的四元数指数矩作为三角网格的特征;然后,利用Rg2NN算法和BBF算法进行三角形网格特征的匹配;最后,利用RANSAC方法、ZNCC算法、形态学方法等进行后处理。由于使用了颜色不变量、四元数指数矩、有效的网格匹配以及后处理,具有较强的抗颜色攻击能力、较快的匹配速度和较高的检测精度。

权利要求书

1.一种基于局部网格匹配的彩色图像篡改检测方法,其特征在于按照如下步骤进行:
约定:I指待检测的图像;I1指经过高斯滤波预处理的图像;矩阵Ipts用于存放所有检
测到的特征点的信息;矩阵tri用于存放三角形的三个顶点;Nmax为四元数指数矩的阶数;
矩阵E_feature用于存放11个四元指数矩矩值和相应的三角形位置;Rg2NN指逆序广义2近
邻算法;BBF为优化查找算法;表示三角形网格的匹配阈值;表示像素范围;RANSAC
指参数估计方法;ZNCC指立体匹配算法;
a. 初始设置
读取待检测图像I,对I进行高斯滤波预处理得到I1;
b. 颜色不变量特征点提取
b.1 根据彩色图像的色彩特征与几何结构特征,构造颜色不变量图像;
b.2 对颜色不变量图像进行SURF特征点提取;
b.3 将提取的特征点信息存入矩阵Ipts中,并在I上显示所提取的特征点;
c. 三角网格不变量构造
利用Delaunay方法对提取的特征点构造三角网格,并将构造的每个三角形的顶点放入
矩阵tri中;
d. 内切圆四元数指数矩计算
d.1 利用三角形的顶点求其内切圆的圆心与半径;
d.2 求I1图像上的每个内切圆的外拓正方形,并在正方形的四周“补0”;
d.3 将正方形块的直角坐标转化为极坐标并求出R、G、B分量,设置Nmax为5,利用傅里
叶变换求各分量指数矩的分解、、;
d.4 按照下式计算内切圆的四元数指数矩矩值:




d.5 选取11个较为稳定的矩值作为三角形网格的特征,并标识相应的三角形的位置;
d.6 重复d.3~d.5,将所有三角网格的特征及相应位置存入矩阵E_feature中;
e. Rg2NN快速匹配
e.1 使用BBF算法计算每个三角形的近邻;
e.2 计算每个三角形的特征描述子与其他三角形的特征描述子的欧几里德距离,并按
从小到大的顺序排列,得到;
e.3逆序计算特征描述子欧几里德距离之间的比值,即依次计算,
若且,则说明待检测三角形和其距离的k-2
个特征点均相似,其中取值为0.6;
e.4 在之外计算匹配三角形,设置为20,避免距离较近的三角形由于纹理相似
导致特征相似;
f. 后处理
f.1 利用RANSAC方法来消除错误匹配;
f.2 最后使用ZNCC算法和形态学方法等对匹配的区域进行标记。

说明书

基于局部网格匹配的彩色图像篡改检测方法

技术领域

本发明涉及针对复制粘贴的图像篡改检测方法,特别涉及一种基于局部网格匹配
的彩色图像篡改检测方法,属于数字图像认证技术领域。

背景技术

图像认证技术即为鉴定数字图像完整、真实等属性的方法,篡改检测技术是其中
一种常用的方法。多数图像篡改手段都是从像素层面进行的,这些篡改方法改变了图像内
容和统计特征。针对这种篡改手法,学者们提出了一系列针对性检测方法,例如针对复制粘
贴篡改的检测方法和针对拼接篡改的检测方法等。其中,复制粘贴篡改检测方法大致可以
分为两类:基于块的检测方法和基于特征点的检测方法。基于块的检测方法是提取每块特
征后,将其与其他每一块进行特征匹配,找到具有相似特征的块。块检测方法虽然针对噪
声、压缩时检测效果很好,但针对几何攻击旋转、缩放时缺乏鲁棒性。基于点的检测方法通
常使用SIFT和SURF算法提取特征点,然后使用相应的局部特征描述子进行特征点之间的匹
配。基于点的检测方法虽然针对几何变换时具有鲁棒性,但是如果不均匀的区域被用来隐
藏对象时,则无法从中提取特征点。此外,在进行特征匹配时,大多数现有方法提高匹配速
度时,存在降低检测精度的问题,或者提高检测精度时,粗存在降低匹配速度的问题。

发明内容

本发明是为了解决现有技术所存在的上述技术问题,提供一种基于局部网格匹配
的彩色图像篡改检测方法。

本发明的技术解决方案是: 一种基于局部网格匹配的彩色图像篡改检测方法,其
特征在于按照如下步骤:

约定:I指待检测的图像;I1指经过高斯滤波预处理的图像;矩阵Ipts用于存放所有检
测到的特征点的信息;矩阵tri用于存放三角形的三个顶点;Nmax为四元数指数矩的阶数;
矩阵E_feature用于存放11个四元指数矩矩值和相应的三角形位置;Rg2NN指逆序广义2近
邻算法;BBF为优化查找算法;表示三角形网格的匹配阈值;表示像素范围;RANSAC
指参数估计方法;ZNCC指立体匹配算法。

a. 初始设置

读取待检测图像I,对I进行高斯滤波预处理得到I1;

b. 颜色不变量特征点提取

b.1 根据彩色图像的色彩特征与几何结构特征,构造颜色不变量图像;

b.2 对颜色不变量图像进行SURF特征点提取;

b.3 将提取的特征点信息存入矩阵Ipts中,并在I上显示所提取的特征点;

c. 三角网格不变量构造

利用Delaunay方法对提取的特征点构造三角网格,并将构造的每个三角形的顶点放入
矩阵tri中;

d. 内切圆四元数指数矩计算

d.1 利用三角形的顶点求其内切圆的圆心与半径;

d.2 求I1图像上的每个内切圆的外拓正方形,并在正方形的四周“补0”;

d.3 将正方形块的直角坐标转化为极坐标并求出R、G、B分量,设置Nmax为5,利用傅里
叶变换求各分量指数矩的分解、、;

d.4 按照下式计算内切圆的四元数指数矩矩值:





d.5 选取11个较为稳定的矩值作为三角形网格的特征,并标识相应的三角形的位置;

d.6 重复d.3~d.5,将所有三角网格的特征及相应位置存入矩阵E_feature中;

e. Rg2NN快速匹配

e.1 使用BBF算法计算每个三角形的近邻;

e.2 计算每个三角形的特征描述子与其他三角形的特征描述子的欧几里德距离,并按
从小到大的顺序排列,得到;

e.3 逆序计算特征描述子欧几里德距离之间的比值,即依次计算
,若且,则说明待检测三角形和其距离
的k-2个特征点均相似,其中取值为0.6;

e.4 在之外计算匹配三角形,设置为20,避免距离较近的三角形由于纹理相似
导致特征相似;

f. 后处理

f.1 利用RANSAC方法来消除错误匹配;

f.2 最后使用ZNCC算法和形态学方法等对匹配的区域进行标记。

本发明首先对彩色图像进行高斯滤波预处理,利用颜色不变量和SURF算法提取特
征点;其次,利用Delaunay方法进行三角网格剖分,构造三角网格的内切圆以及内切圆的外
拓正方形,计算出内切圆的四元数指数矩作为三角网格的特征;然后,利用Rg2NN算法和BBF
算法进行三角形网格特征的匹配;最后,利用RANSAC方法、ZNCC算法、形态学方法等进行后
处理。实验结果表明,本发明的方法由于使用了颜色不变量、四元数指数矩、有效的网格匹
配以及后处理,具有较强的抗颜色攻击能力、较快的匹配速度和较高的检测精度。

与现有技术相比,本发明具有以下有益效果:

第一,使用颜色不变量提取特征点,兼顾了彩色图像的色彩特性与几何结构特性,在抵
抗颜色攻击方面更具有鲁棒性;

第二,基于三角网格匹配篡改检测方法与基于块的检测方法的相比,速度更快,更具有
鲁棒性;与基于点的检测方法相比,鲁棒性相当,但精度更高;

第三,使用四元数指数矩矩值作为三角网格特征,保留了图像显著的颜色信息特征;

第四,使用Rg2NN快速匹配的算法,提高了特征匹配速度与篡改检测精度。

附图说明

图1为本发明实施例篡改区域标记图。

图2为本发明实施例提取颜色不变量特征点结果图。

图3为本发明实施例利用Delaunay构造三角网格结果图。

图4为本发明实施例构造三角形内切圆结果图。

图5为本发明实施例利用Rg2NN进行三角网格特征匹配结果图。

图6为本发明实施例匹配区域标记结果图。

图7为本发明实施例的流程图。

具体实施方式

本发明的方法共包括四个阶段:颜色不变量特征点提取、三角网格不变量构造、内
切圆的四元数指数矩计算以及三角网格特征匹配。

约定:I指待检测的图像;I1指经过高斯滤波预处理的图像;矩阵Ipts用于存放所
有检测到的特征点的信息;矩阵tri用于存放三角形的三个顶点;Nmax为四元数指数矩的阶
数;矩阵E_feature用于存放11个四元指数矩矩值和相应的三角形位置;Rg2NN指逆序广义2
近邻算法;BBF为优化查找算法;表示三角形网格的匹配阈值;表示像素范围;
RANSAC指参数估计方法;ZNCC指立体匹配算法。

具体步骤如图7所示:

a. 初始设置

读取待检测图像I,对I进行高斯滤波预处理得到I1;

b. 颜色不变量特征点提取

b.1 根据彩色图像的色彩特征与几何结构特征,构造颜色不变量图像;

b.2 对颜色不变量图像进行SURF特征点提取;

b.3 将提取的特征点信息存入矩阵Ipts中,并在I上显示所提取的特征点;

c. 三角网格不变量构造

利用Delaunay方法对提取的特征点构造三角网格,并将构造的每个三角形的顶点放入
矩阵tri中;

d. 内切圆四元数指数矩计算

d.1 利用三角形的顶点求其内切圆的圆心与半径;

d.2 求I1图像上的每个内切圆的外拓正方形,并在正方形的四周“补0”;

d.3 将正方形块的直角坐标转化为极坐标并求出R、G、B分量,设置Nmax为5,利用傅里
叶变换求各分量指数矩的分解、、;

d.4 按照下式计算内切圆的四元数指数矩矩值:





d.5 选取11个较为稳定的矩值作为三角形网格的特征,并标识相应的三角形的位置;

d.6 重复d.3~d.5,将所有三角网格的特征及相应位置存入矩阵E_feature中;

e. Rg2NN快速匹配

e.1 使用BBF算法计算每个三角形的近邻;

e.2 计算每个三角形的特征描述子与其他三角形的特征描述子的欧几里德距离,并按
从小到大的顺序排列,得到;

e.3 逆序计算特征描述子欧几里德距离之间的比值,即依次计算
,若且,则说明待检测三角形和其距离
的k-2个特征点均相似,其中取值为0.6;

e.4 在之外计算匹配三角形,设置为20,避免距离较近的三角形由于纹理相似
导致特征相似;

f. 后处理

f.1 利用RANSAC方法来消除错误匹配;

f.2 最后使用ZNCC算法和形态学方法等对匹配的区域进行标记。

实验测试和参数设置:

实验是在Windows10×64位环境下,使用MATLAB 7.12.0(R2011a)执行的,实验所涉及
到的均是分辨率为1000×700或者700×1000像素的彩色图像,可从以下站点进行下载:
http://www.dicgim.unipa.it/cvip/ 。为本发明实施例篡改区域标记如图1所示;本发明
实施例提取颜色不变量特征点结果如图2所示;本发明实施例利用Delaunay构造三角网格
结果如图3所示;本发明实施例构造三角形内切圆结果如图4所示;本发明实施例利用Rg2NN
进行三角网格特征匹配结果如图5所示;本发明实施例匹配区域标记结果如图6所示。

基于局部网格匹配的彩色图像篡改检测方法.pdf_第1页
第1页 / 共9页
基于局部网格匹配的彩色图像篡改检测方法.pdf_第2页
第2页 / 共9页
基于局部网格匹配的彩色图像篡改检测方法.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《基于局部网格匹配的彩色图像篡改检测方法.pdf》由会员分享,可在线阅读,更多相关《基于局部网格匹配的彩色图像篡改检测方法.pdf(9页珍藏版)》请在专利查询网上搜索。

本发明公开了一种基于局部网格匹配的彩色图像篡改检测方法,首先对彩色图像进行高斯滤波预处理,利用颜色不变量和SURF算法提取特征点;其次,利用Delaunay方法进行三角网格剖分,构造三角网格的内切圆以及内切圆的外拓正方形,计算出内切圆的四元数指数矩作为三角网格的特征;然后,利用Rg2NN算法和BBF算法进行三角形网格特征的匹配;最后,利用RANSAC方法、ZNCC算法、形态学方法等进行后处理。由于。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1