一种步态识别装置及方法.pdf

上传人:Y0****01 文档编号:6022794 上传时间:2019-04-03 格式:PDF 页数:9 大小:431.57KB
返回 下载 相关 举报
摘要
申请专利号:

CN201611046863.8

申请日:

2016.11.23

公开号:

CN106778509A

公开日:

2017.05.31

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):G06K 9/00申请日:20161123|||公开

IPC分类号:

G06K9/00; G06K9/60; G06K9/62; G06F3/01

主分类号:

G06K9/00

申请人:

清华大学

发明人:

任天令; 江嵩; 庞于; 陶璐琪; 王丹阳; 杨轶

地址:

100084 北京市海淀区清华园北京100084-82信箱

优先权:

专利代理机构:

北京路浩知识产权代理有限公司 11002

代理人:

曹杰

PDF下载: PDF下载
内容摘要

本发明提供一种步态识别装置及方法。所述装置包括步态感知采集装置和后台数据处理装置;所述步态感知采集装置,用于感知使用者步态压力,采集压力数据并发送至后台数据处理装置;所述后台数据处理装置,用于对所述压力数据进行预处理,通过支持向量机分类器进行步态识别。本发明通过石墨烯传感器检测足底压力分布,采用数据科学中的机器学习算法用于检测模型的构建和步态类别的检测,不受环境影响,目标可跟踪范围不受约束,数据处理简单快速且精度高。

权利要求书

1.一种步态识别装置,其特征在于,包括步态感知采集装置和数据处理装置;
所述步态感知采集装置,用于感知使用者步态压力,采集压力数据并发送至数据处理
装置;
所述数据处理装置,用于对所述压力数据进行预处理,通过支持向量机分类器进行步
态识别。
2.如权利要求1所述的装置,其特征在于,所述步态感知采集装置包括探测鞋垫、步态
感知装置和数据采集装置,
所述步态感知装置,用于设置在探测鞋垫上,感知使用者步态压力;
所述数据采集装置,用于按预定的时间间隔采集压力数据,并将所述压力数据发送给
后台数据处理装置。
3.如权利要求1所述的装置,其特征在于,所述数据处理装置包括模型训练模块和步态
识别模块,
所述模型训练模块,用于对训练数据进行傅里叶变换(FFT)和主要成分分析(PCA),提
取训练特征,根据所述特征进行支持向量机模型训练,获得分类器模型;
所述步态识别模块,用于对步态感知采集装置发送的压力数据进行傅里叶变换(FFT)
和主要成分分析(PCA),提取特征,通过支持向量机分类器对所述当前特征进行分类识别,
获得识别结果。
4.如权利要求2所述的装置,其特征在于,所述步态感知装置包括多个石墨烯传感器,
所述石墨烯传感器为压力传感器,具有三维连通结构的石墨烯多孔网状结构。
5.如权利要求4所述的装置,其特征在于,所述步态感知装置包括三个石墨烯传感器,
分布在探测鞋垫上,分别对应于人体脚部第一拓骨处、第四与第五拓骨的中间处及脚后跟
中间处。
6.如权利要求3所述的装置,其特征在于,所述支持向量机模型满足:
<mfenced open = '' close = ''> <mtable> <mtr> <mtd> <mi>min</mi> </mtd> <mtd> <mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>|</mo> <mo>|</mo> <mi>w</mi> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> <msub> <mi>y</mi> <mrow> <malignmark/> <mi>i</mi> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mi>w</mi> <mi>T</mi> </msup> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>+</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>&GreaterEqual;</mo> <mn>1</mn> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3...</mn> <mi>m</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中,xi是压力数据或训练数据经过傅里叶变换(FFT)后,再经过主要成分分析(PCA)后
得到的多维特征数据,b为分类器参数,w表示支持向量间的距离,wT是需要训练的参数,yi是
训练结果。
7.一种步态识别方法,其特征在于,包括:
S1,感知步态,采集压力数据并发送;
S2,接收压力数据,进行预处理并识别步态。
8.如权利要求7所述的方法,其特征在于,所述S2进一步包括:
S2.1,对训练数据进行傅里叶变换(FFT)和主要成分分析(PCA),提取训练特征,根据所
述训练特征进行支持向量机模型训练,获得分类器模型;
S2.2,对压力数据进行傅里叶变换(FFT)和主要成分分析(PCA),提取特征,通过支持向
量机分类器对所述特征进行分类识别,获得识别结果。
9.如权利要求8所述的方法,其特征在于,所述S2.1进一步包括:
S2.1.1,将所述训练数据作为傅里叶变换(FFT)的输入数据,进行傅里叶变换后得到频
域数据;
S2.1.2,利用主要成分分析(PCA)算法对所述频域数据进行处理得到协方差矩阵;对所
述协方差矩阵的特征值和特征向量按特定顺序排列,获取预定维数的矩阵为特征数据;
S2.1.3,基于支持向量机模型,利用所述特征数据来训练支持向量机模型参数,获取分
类结果为步态分类器模型。
10.如权利要求9所述的方法,其特征在于,所述S2.2进一步包括:
S2.2.1,对所述压力数据进行傅里叶变换(FFT)和主要成分分析(PCA)后,获取与所述
压力数据对应的特征数据;
S2.2.2,利用训练好的分类器模型对所述压力数据对应的特征数据进行识别归类,获
取与所述压力数据对应的步态结果。

说明书

一种步态识别装置及方法

技术领域

本发明涉及可穿戴智能电子领域,更具体地,涉及一种步态识别装置及方法。

背景技术

目前,可穿戴智能电子被广泛应用于人体健康领域,尤其在运动人体分析方向有
了一定的发展。运动人体行为分析是指运用某种手段跟踪、捕捉人体的运动,获得人体的运
动参数,并重建人体的姿态,最终达到对人体运动的识别并应用于检测人体健康等医疗场
景。目前针对运动人体行为的跟踪与分析方法,多采用视频监控与图像处理的方式,这种方
式受环境影响较大,目标可跟踪范围受视频设备的约束,且数据量巨大,造成数据处理的复
杂度大、所需时间长。

发明内容

本发明提供一种克服上述问题或者至少部分地解决上述问题的步态识别装置及
方法。

根据本发明的一个方面,提供一种步态识别装置,包括步态感知采集装置和后台
数据处理装置;

所述步态感知采集装置,用于感知使用者步态压力,采集压力数据并发送至数据
处理装置;

所述后台数据处理装置,用于对所述压力数据进行预处理,通过支持向量机分类
器进行步态识别。

根据本发明的另一个方面,提供一种步态识别方法,包括:

S1,感知步态,采集压力数据并发送;

S2,接收压力数据,进行预处理并识别步态

本申请提出步态识别装置及方法,通过石墨烯传感器检测足底压力分布,采用数
据科学中的机器学习算法用于检测模型的构建和步态类别的检测,不受环境影响,目标可
跟踪范围不受约束,数据处理简单快速且精度高。

附图说明

图1为本发明步态识别装置示意图;

图2为本发明第一实施例的示意图;

图3为本发明模型训练模块示意图;

图4为本发明步态识别模块示意图;

图5为本发明第二实施例的示意图;

图6为本发明步态识别方法流程图。

具体实施方式

下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施
例用于说明本发明,但不用来限制本发明的范围。

如图1所示,一种步态识别装置,包括步态感知采集装置和后台数据处理装置。

所述步态感知采集装置,用于感知使用者步态压力,采集压力数据并发送至后台
数据处理装置。

所述后台数据处理装置,用于对所述压力数据进行预处理,通过支持向量机分类
器进行步态识别。

本发明的具体实施包括两端,一端位于使用者端,即步态感知采集装置;另一端是
数据处理,即后台数据处理装置。这两端装置通过无线网络进行数据通信。

位于使用者端的步态感知采集装置包括探测鞋垫、步态感知装置和数据采集装
置。

所述步态感知装置,用于设置在探测鞋垫上,感知使用者步态压力。

所述数据采集装置,用于按预定的时间间隔采集压力数据,并将所述压力数据发
送给后台数据处理装置。

具体实施时,探测鞋垫置于使用者的鞋内,数据采集装置可设置于鞋子上合适的
位置,或者放置于口袋中,或者在离使用者不超过数据采集装置的采集距离之内的地方。

所述步态感知装置包括多个石墨烯传感器,所述石墨烯传感器为压力传感器,具
有三维连通结构的石墨烯多孔网状结构,由石墨烯、PDMS和孔组成;所述石墨烯提供导电性
能,所述PDMS提供弹性聚合功能用于改变石墨烯网状结构的接触状态。

将网状结构石墨烯与超弹的聚合物PDMS(Polydimethylsiloxane,聚二甲基硅氧
烷)进行复合,形成的柔性应变传感器,十分轻便,构建压力传感器,可辨别极其细微的压
强,可以对使用者步态进行精确的感知辨别。

如图2所示,所述步态感知装置包括三个石墨烯传感器,分布在探测鞋垫上,分别
对应于人体脚部第一拓骨处、第四与第五拓骨的中间处及脚后跟中间处。这三处是人行走
时三个着力点,用于检测人步行时足底的压力信息。

所述数据采集装置为数字万用表RIGOL DM3068,以离线文件方式将步态数据发送
至后台数据处理装置。由后台数据处理装置设置采集时间间隔,数据采集装置根据时间间
隔采集出高精准度、可靠度的足底压力数据发送至后台数据采集装置。

作为另一端的后台数据处理装置包括模型训练模块和步态识别模块;所述模型训
练模块,用于对训练数据进行傅里叶变换(FFT)和主要成分分析(PCA),提取特征,根据所述
特征进行支持向量机模型训练,获得分类器模型。

所述步态识别模块,用于对步态感知采集装置发送的步态数据进行傅里叶变换
(FFT)和主要成分分析(PCA),提取当前特征,通过支持向量机分类器对所述当前特征进行
分类识别,获得识别结果。

所述支持向量机模型满足:


其中,xi是压力数据或训练数据经过傅里叶变换(FFT)后,再经过主要成分分析
(PCA)后得到的多维特征数据,b为分类器参数,w表示支持向量间的距离,wT是需要训练的
参数,yi是训练结果。

如图3所示,为本发明后台数据处理装置的模型训练模块示意图,使用历史步态压
力数据为训练数据用于训练支持向量机分类器模型,步态数据经过傅里叶变换(FFT),再经
过主要成分分析(PCA),提取训练特征对支持向量机进行训练后得到支持向量机分类器。

所述支持向量分类器根据训练结果对步态数据进行如下分类:

正常、内八字、外八字、坡脚和后跟足。除正常外,其他四种都为不正常步态,识别
结果可以用于康复医疗和保健医疗。

如图4所示,为本发明后台数据处理装置的步态识别模块示意图,前期的处理与模
型训练模块相同,需要对被测者的步态压力数据进行傅里叶变换(FFT)和主要成分分析
(PCA),不同的是,在这之后利用模型训练模块训练出的支持向量机分类器对处理后的数据
进行分类识别后即得到识别结果。当然,步态识别模块的被测者数据同样也可以作为支持
向量机不断学习的训练数据。

如图5所示,为本发明第二实施例,包括步态感知装置、数据采集装置和后台数据
处理装置,图5中用后台数据处理算法表示。使用者将探测鞋垫置于鞋内,穿上鞋行走,探测
鞋垫上的石墨烯传感器对脚底压力进行感应辨别;数据采集装置根据后台数据处理装置设
置的时间间隔对压力数据进行采集,通过无线网络发送到后台数据处理装置。后台数据处
理装置通过预先对支持向量机模型进行训练得到分类器,所述分类器根据训练数据对步态
进行分类,包括上述的五种步态:正常、内八字、外八字、坡脚和后跟足。

如图6所示,本发明还提供一种步态识别方法,包括:

S1,感知步态,采集压力数据并发送;

S2,接收压力数据,进行预处理并识别步态。

所述S2进一步包括:

S2.1,对训练数据进行傅里叶变换(FFT)和主要成分分析(PCA),提取训练特征,根
据所述训练特征进行支持向量机模型训练,获得分类器模型;

S2.2,对步态数据进行傅里叶变换(FFT)和主要成分分析(PCA),提取特征,通过支
持向量机分类器对所述特征进行分类识别,获得识别结果。

所述S2.1进一步包括:

S2.1.1,将所述训练数据作为傅里叶变换(FFT)的输入数据,进行傅里叶变换后得
到频域数据;

所述傅里叶变换(FFT)为:


其中,x(t)为原始步态数据,X(w)为经过傅里叶变换后得到的频域数据。

S2.1.2,利用主要成分分析(PCA)算法对所述频域数据进行处理得到协方差矩阵;
对所述协方差矩阵的特征值和特征向量按特定顺序排列,获取预定维数的矩阵为特征数
据;

主要成分分析(PCA)算法公式为:


其中,xi是每一组数据,x*是数据的均值,Cx为协方差矩阵。

优选的,所述特定顺序为按特征值和特征向量从大到小依次排列;所述特定维数
为100,按选取的特定维数得到变换矩阵即为特征数据。

S2.1.3,基于支持向量机模型,利用所述特征数据来训练支持向量机模型参数,获
取分类结果为步态分类器模型。

所述支持向量机模型满足:


其中,xi是压力数据或训练数据经过傅里叶变换(FFT)后,再经过主要成分分析
(PCA)后得到的多维特征数据,b为分类器参数,w表示支持向量间的距离,wT是需要训练的
参数,是一个多维向量,yi是训练结果。

所述S2.2进一步包括:

S2.2.1,对所述压力数据进行傅里叶变换(FFT)和主要成分分析(PCA)后,获取与
所述压力数据对应的特征数据;

S2.2.1的处理与S2.1.1和S2.1.2相同,只是输入数据是当前被测者的步态压力数
据。

S2.2.2,利用训练好的分类器模型对所述压力数据对应的特征数据进行识别归
类,获取与所述压力数据对应的步态结果。

本发明所述装置和方法,具有响应速度更快、测量精度更准、感知范围更大、可靠
性高的优点,采用了数据科学的算法,具有广阔的市场应用价值和前景。本发明可以有效检
测人行走时步态健康状况,准确、快速的识别人行走时刻的不正常步态。

最后,本申请的方法仅为较佳的实施方案,并非用于限定本发明的保护范围。凡在
本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护
范围之内。

一种步态识别装置及方法.pdf_第1页
第1页 / 共9页
一种步态识别装置及方法.pdf_第2页
第2页 / 共9页
一种步态识别装置及方法.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《一种步态识别装置及方法.pdf》由会员分享,可在线阅读,更多相关《一种步态识别装置及方法.pdf(9页珍藏版)》请在专利查询网上搜索。

本发明提供一种步态识别装置及方法。所述装置包括步态感知采集装置和后台数据处理装置;所述步态感知采集装置,用于感知使用者步态压力,采集压力数据并发送至后台数据处理装置;所述后台数据处理装置,用于对所述压力数据进行预处理,通过支持向量机分类器进行步态识别。本发明通过石墨烯传感器检测足底压力分布,采用数据科学中的机器学习算法用于检测模型的构建和步态类别的检测,不受环境影响,目标可跟踪范围不受约束,数据处。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1