一种基于扩散张量成像的脑部特征提取方法技术领域
本发明涉及计算机图形学下的医学成像、神经解剖学领域,尤其一种基于扩
散张量成像的脑部特征提取方法。
背景技术
随着时代的发展,医学影像技术的进步,扩散张量成像技术在神经科学的研
究中占越来越大的影响力,拥有先进的神经影像技术是这个时代不可或缺的;扩
散张量成像作为新兴的一种描述大脑结构的方法,同时也是唯一一种活体检测人
脑结构的方法,在神经医学领域主要是对脑组织结构特征的研究;目前,扩散张
量成像技术正被广泛的应用于精神科疾病和诊断的辅助手段,甚至可以用于术前
手术方案的制定,可以说其在医学领域的贡献有着无可替代的优势;所以对基于
扩散张量的算法研究对于脑科学有着重大的意义。
在扩散张量成像中的每个体素都对应于一个二阶张量,所以张量数据的表示
和有用信息的提取是扩散张量成像技术的关键因素;到目前为止,研究者提出了
越来越多中不同的关于扩散张量成像技术下的脑部特征提取算法,而对扩散张量
数据的处理,以及脑部特征结构的可视化表达,是扩散张量数据研究的热点。
发明内容
为了实现更好的脑部特征结构的可视化,本发明结合扩散张量成像技术,提
出了一种更清晰、更有效、更能体现脑部特征结构的基于扩散张量成像的脑部特
征提取方法。
为了解决上述技术问题提供的技术方案为:
一种基于扩散张量成像的脑部特征提取方法,所述方法包括以下步骤:
1),采用基于三维谐振子的重构与估计模型:
该模型采用多壳q空间中水分子扩散方向数据的映射的方法,简称SHORE
模型;首先q空间磁共振衰减信号在三维量子力学谐振子问题中扩展为正交基,
也就是通过三维扩展方案来表示一维的q空间数据;而衰减信号的傅里叶反变换
得到能够提供连接信息的平均传播算子;
2),计算两个基于SHORE模型的标量映射:
计算基于SHORE模型下的均方位移和零位移概率,均方位移简称MSD,
指的是表示在t时刻水分子距离初始位置的距离,即水分子随机运动在空间范围
内的度量,零位移概率简称rtop,所述标量映射是通过水分子在一定时间内最低
限度扩散的概率密度;
3),数据的可视化显示:
通过调用Matplotlib二维图像数据显示工具来呈现SHORE模型通过映射后
的图像;所述Matplotlib是一个二维绘图库并且能够应用于python脚本。
进一步,所述步骤3)中,调用Matplotlib中对应功能的类。
再进一步,所述步骤1)中,建立基于SHORE模型包括以下步骤:
首先读取数据,建立模型:
E(q)=S(q)/S0(1)
E(q)为q空间磁共振衰减信号,S(q)为扩散信号强度,而S0未加扩散梯度
的脉冲,q为时一个实验控制参数:
q=(2π)-1γδG(2)
γ为磁旋比,δ为扩散梯度脉冲的持续时间,G代表扩散梯度向量;q空间
磁共振衰减信号正交基基础下在三维量子力学谐振子问题中扩展:
E ( q ) = Σ n = 0 N max Σ l = 0 L Σ m = - l l c n l m Φ n l m ( u , q ) - - - ( 3 ) ]]>
其中,cnlm为变换系数,Φnlm(u,q)为基函数,n为Φnlm(u,q)的径向阶,l球面
谐波函数的阶次,L为l的最大值,N为n的最大值:
Φ n l m ( u , q ) = [ 2 ( n - l ) ! ζ 3 / 2 Γ ( n + 3 / 2 ) ] 1 / 2 ( q 2 ζ ) l / 2 × exp ( - q 2 2 ζ ) L n - l l + 1 / 2 ( q 2 ζ ) Y l m ( u ) - - - ( 4 ) ]]>
u表示每个体素常数的估计数据,ζ是一个比例系数,Γ为Gamma函数,
是广义拉盖尔多项式,是球面谐波函数,m为角度。
所述步骤2)中,计算基于SHORE的标量映射,包括以下步骤:
2.1计算系踪传播算子,衰减信号的傅里叶反变换能够得到系踪传播算子:
E ( q ) = ∫ R ∈ R 3 P ( R ) exp ( - 2 π i q · R ) d R - - - ( 5 ) ]]>
R代表净位移向量,是傅里叶共轭,P(R)为系踪传播算子;
2.2计算基于SHORE模型下的均方位移:
首先计算水分子的平均扩散位移矢量,它与体素中平均扩散系数相关,并通
过爱因斯坦扩散方程计算:
< R → 2 > = 6 Δ · M D - - - ( 6 ) ]]>
其中是扩散位移矢量,Δ表示扩散时间,MD是平均扩散系数,均方位移可以
通过概率密度函数的加权平方位移求得:
M S D = ∫ ∫ ∫ P ( R → , Δ ) · R → 2 d 3 R → - - - ( 7 ) ]]>
其中概率密度函数的求法如下:
P ( R → , Δ ) = ( 1 / ( 4 π Δ ) 3 | D | ) exp ( - R → T D - 1 R → / 4 Δ ) - - - ( 8 ) ]]>
其中D为扩散张量;
2.3计算SHORE模型下的零位移概率
零位移概率标量映射是通过水分子在一定时间内最低限度扩散的概率密度;
零位移概率是给定的概率密度函数中水分子零位移的概率,即:
P o = P ( R → = 0 , Δ ) - - - ( 9 ) ]]>
其中Po零位移概率。
所述步骤3)中,将步骤2)中计算得到的数据放入Matplotlib库中进行绘
图,最后通过Matplotlib工具显示出来。
本发明的有益效果为:结合扩散张量成像技术,更清晰、更有效、更能体现
脑部特征结构。
附图说明
图1为本发明中的流程图;
具体实施方式
以下将结合附图对本发明做进一步详细说明:
参照图1,一种基于扩散张量成像的脑部特征提取方法,所述方法包括以下
步骤:
1),采用基于三维谐振子的重构与估计模型:
该模型采用多壳q空间中水分子扩散方向数据的映射的方法,简称SHORE
模型;首先q空间磁共振衰减信号在三维量子力学谐振子问题中扩展为正交基,
也就是通过三维扩展方案来表示一维的q空间数据;而衰减信号的傅里叶反变换
得到能够提供连接信息的平均传播算子;过程如下:
首先读取数据,建立模型:
E(q)=S(q)/S0(1)
E(q)为q空间磁共振衰减信号,S(q)为扩散信号强度,而S0未加扩散梯度
的脉冲,q为时一个实验控制参数:
q=(2π)-1γδG(2)
γ为磁旋比,δ为扩散梯度脉冲的持续时间,G代表扩散梯度向量;q空间
磁共振衰减信号正交基基础下在三维量子力学谐振子问题中扩展:
E ( q ) = Σ n = 0 N max Σ l = 0 L Σ m = - l l c n l m Φ n l m ( u , q ) - - - ( 3 ) ]]>
其中,cnlm为变换系数,Φnlm(u,q)为基函数,n为Φnlm(u,q)的径向阶,l球面
谐波函数的阶次,m为角度,L为l的最大值,N为n的最大值:
Φ n l m ( u , q ) = [ 2 ( n - l ) ! ζ 3 / 2 Γ ( n + 3 / 2 ) ] 1 / 2 ( q 2 ζ ) l / 2 × exp ( - q 2 2 ζ ) L n - l l + 1 / 2 ( q 2 ζ ) Y l m ( u ) - - - ( 4 ) ]]>
u表示每个体素常数的估计数据,ζ是一个比例系数,Γ为Gamma函数,
是广义拉盖尔多项式,是球面谐波函数;
2),计算两个基于SHORE模型的标量映射:
计算基于SHORE模型下的均方位移和零位移概率,均方位移简称MSD,
指的是表示在t时刻水分子距离初始位置的距离,即水分子随机运动在空间范围
内的度量,零位移概率简称rtop,所述标量映射是通过水分子在一定时间内最低
限度扩散的概率密度;过程如下:
2.1计算系踪传播算子,衰减信号的傅里叶反变换能够得到系踪传播算子:
E ( q ) = ∫ R ∈ R 3 P ( R ) exp ( - 2 π i q · R ) d R - - - ( 5 ) ]]>
R代表净位移向量,是傅里叶共轭,P(R)为系踪传播算子;
2.2计算两个基于SHORE模型的标量映射:
计算基于SHORE模型下的均方位移和零位移概率,均方位移首先计算水分
子的平均扩散位移矢量,它与体素中平均扩散系数相关,并通过爱因斯坦扩散方
程计算:
< R → 2 > = 6 Δ · M D - - - ( 6 ) ]]>
其中是扩散位移矢量,Δ表示扩散时间,MD是平均扩散系数,均方位移
MSD可以通过概率密度函数的加权平方位移求得:
M S D = ∫ ∫ ∫ P ( R → , Δ ) · R → 2 d 3 R → - - - ( 7 ) ]]>
其中概率密度函数的求法如下:
P ( R → , Δ ) = ( 1 / ( 4 π Δ ) 3 | D | ) exp ( - R → T D - 1 R → / 4 Δ ) - - - ( 8 ) ]]>
其中D为扩散张量;
2.3计算SHORE模型下的零位移概率
零位移概率这种标量映射是通过水分子在一定时间内最低限度扩散的概率
密度;零位移概率是给定的概率密度函数中水分子零位移的概率,即:
P o = P ( R → = 0 , Δ ) - - - ( 9 ) ]]>
其中Po为零位移概率;
3),数据的可视化显示:
通过调用Matplotlib二维图像数据显示工具来呈现SHORE模型通过映射后
的图像;Matplotlib是一个二维绘图库并且能够应用于python脚本,这里将步骤
二中计算得到的数据放入Matplotlib库中进行绘图,最后通过Matplotlib工具显
示出来。