混合型热屏蔽镀层及其制造方法 【技术领域】
本发明涉及热屏蔽镀层保护的金属制品,如燃气轮机组件,尤其是涉及其热屏蔽镀层含有陶瓷层的金属制品。
背景技术
燃气轮机是发展的很成熟的一种机械装置,该机械装置通过燃料的燃烧,它将化学能转化成热能,再进一步转化成机械能以用于驱动飞机、发电、泵送流体等。这时,用于燃气轮机的金属材料接近或达到其热稳定性的临界状态。在现代气轮发动机的最热部分,金属材料常处于高于其熔点的气态温度中,但金属材料由于被空气冷却而维持正常工作。不过,冷却空气却降低了机组的效率。
因此,空冷燃气轮机上设有的包括热屏蔽在内的镀层得以广泛的发展。通过采用镀层,尤其是使用热屏蔽镀层,所需冷却空气的总量大大减少,相应地提高了机组的效率。
上述镀层总是以陶瓷为基础,多建议使用多铝红柱石、氧化铝等。不过尽管二氧化铪和其它材料均被建议使用,但现在多采用氧化锆。氧化锆被用作稳定剂,该稳定剂足以防止单结晶过程的形成,典型的稳定剂包括氧化钇、氧化钙、二氧化 、氧化镁和氧化钆。
一般地,金属材料的热膨胀率大于陶瓷材料的热膨胀率,其热膨胀率的差异源于陶瓷地应用方法。因此,在研制高效的热屏蔽镀层时,需重视的问题之一是测量在加热过程中,陶瓷材料相对于金属底层的热膨胀率,当底层膨胀时,陶瓷外壳材料不会破裂。氧化锆具有很高的热膨胀率,这是选用它作为金属底层上的热屏蔽镀层的主要原因。镀层的耐久力也很重要。另外,其寿命、稳定性、经济性当然也是考虑因素。
热屏蔽镀层通过以下几种方法形成:包括热喷镀(等离子、火焰和HVOF)、阴极真空喷镀和电子束物理蒸发喷镀(EBPVD)。在上述方法中,电子束物理蒸发喷镀是目前很常用的用于高温场合的喷镀方法,因为它可以产生独特的镀层结构。当按照一定的参数进行加热时,电子束物理蒸发喷镀陶瓷材料具有柱状颗粒结构,该结构由在镀层内部延伸的间隙隔开的小室构成。这些间隙使坚固的底层在膨胀时不会引起镀层的破裂和/或弄碎。可参见美国专利US4321311。根据美国专利US5073433和US5705231,针对大型部件,可以通过等离子喷镀获得相似的结构,尽管一般地认为等离子喷镀材料不太适宜于较高的温度和压力环境,尤其是旋转部件。
TBCs(热屏蔽镀层)的物理蒸发喷镀的柱状微结构比TBCs的等离子喷镀具有更高的抗应变能力。而且,具有很高喷镀速度的PVD(物理蒸发喷镀)过程,诸如EB-PVD(电子束物理蒸发喷镀),可以形成较宽的内部柱形小孔,这样便提高了抗应变能力。但是,内部柱状小孔的结构也同时使其隔热能力比采用热喷镀时要差些。
Teixeira等人的一篇发表于[热喷镀技术期刊,2000年,No.2,vol.9中P191-197]的文章中提出了一种双层陶瓷热屏蔽结构,其目的是提高在高温环境中金属底层的抗氧化和抗腐蚀能力。Teixeira认为TBC失败的一个原因就是常压环境中氧化物的大量产生。TBC包括将较薄(7微米,~千分之0.28英寸)、密度很大的柱状陶瓷层直接喷镀于表面是铬、内部是镍的超级合金上,并将较厚(300微米,~12密耳)的热喷镀陶瓷喷镀于上述较薄的柱状陶瓷层表面。这种很薄的柱状陶瓷层替代了″统的”金属粘接外壳,诸如MCrAlY。这些很薄密度很大的镀层形成一种防止扩散的屏障,以防止超级合金底层的被氧化和被腐蚀。比EB-PVD更慢的喷镀速度使得镀层充分地减小内部柱状小孔的数量,从而使镀层更适宜于作为防止扩散的屏障。但是,这种密度较大的镀层比高速喷镀(如EB-PVD)的镀层的抗应变能力要差。
这就需要一种陶瓷外壳,它可以结合柱状颗粒结构陶瓷镀层的抗应变能力强和热喷镀陶瓷镀层的热传导率低的优点。本发明正是涉及这样的镀层。
尽管现在的镀层多用于燃气轮机,诸如飞机和工业制品,但本发明还可以用于高温、加速腐蚀和/或腐蚀的环境中,如熔炉和内燃机。发明内容
本发明披露一种具有热屏蔽镀层的超级合金制品。该制品包括超级合金底层,底层之上的粘结氧化铝层,以及氧化铝层之上的陶瓷隔热层。陶瓷隔热层包括喷镀于氧化铝层之上的较薄且具有较强抗应变能力的镀层,如柱状颗粒陶瓷层,以及喷镀于柱状颗粒陶瓷镀层上的较厚且具有较强隔热能力的隔热层,如热喷镀陶瓷层。氧化铝层可以采用传统的覆盖或氧化铝粘结的方法形成,或超级合金材料本身具有可形成氧化铝层的能力。附图说明
附图1为本发明的镀层的显微照片。
附图2为本发明的镀层的相对蜕变寿命的示意图。
附图3为本发明的镀层隔热能力提高的示意图。具体实施方式
参看附图1。图中示意了本发明中的热屏蔽镀层。本发明可用于上文中的涡轮桨叶,不过现有技术中常见的燃气轮机的许多其它组件和装配件都可以采用本发明中提出的镀层,包括叶片、燃烧室、壳体、密封件、垫片和相应的支撑部件等,且并不仅限于上述制品,除燃气轮机之外,其它用途的陆上涡轮机及组件均可采用本发明。
由现有技术可知,一个典型的桨叶包括一个螺旋桨部分12,一个平台部分14和一个根部16。很显然,部件的暴露于热蒸气中一些部分,例如平台的螺旋桨部和根部,都被镀上了热屏蔽镀层,但是本发明绝不是仅适用于一些特殊的领域。与附图1相关的,包含有本发明的制品包括底层18,粘结氧化物层20和陶瓷镀层22,它由具有较大抗应变能力的部分24和具有较高隔热能力的部分26组成。
本发明的材料和镀层通常用于保护金属底层。在燃气轮机中,这些底层一般包含有至少一个由超级合金构成的部分。超级合金为金属,一般以铁、或镍、或钴,并包含铬、铝、钛和难熔金属,并在高于1200(650℃)的状态下具有很好的性能。在燃气轮机中,这些金属一般为浇注体,由等轴晶体组成,或使定向凝固的,包含多晶和单晶组分。表I列出了部分底层材料示例。
表I
(wt%--超级合金组分示例) Cr Co W Cb Ti Al B Hf C Ni Ta Mo Zr Re PWA647 23 Bal. 7 - .2 - - - 10 3.5 - .5 - PWA1422 9 10 12 1 2 5 0.01 5 1.6 .14 Bal - - - - PWA1426 6.4 12.6 6.4 - - 5.9 0.01 2 1.5 - Bal 3.0 1.7 .08 .3 PWA1480 10 5 4 - 1.5 5 - - - Bal 12 - - - PWA1483 12 9 3.8 - 4.1 3.6 - - - Bal 5 1.9 - - PWA1484 5 10 5.9 - - 5.6 - 0.1 - Bal 8.4 1.9 - 3.0 PWA1487 5 10 5.9 - - 5.6 - ..35 - Bal 8.4 1.9 - 3.0 IN792 12 9 3.8 - 4.1 3.5 0.01 5 0.5 .12 Bal 3.9 1.9 .12 - DSR′8OH 14 9.5 4 - 4.8 3 - .75 - Bal - 4 - - CM247LC 8.1 9.2 9.5 - 0.7 5.6 - 1.4 Bal 3.2 0.5 - - ReneN5 7 7.5 5 - - 6.2 - .15 Bal 6.5 1.5 - - CMSX4 6.5 9 6 - 1 5.6 - .1 Bal 6.5 0.6 - -
参见美国专利US4209348;US4719080;US5068084;US5599355和US6270318,这些文献中结合在此用于参考。
底层还含有其它金属,包括钢、铜合金和钛合金,它们必须可以承受运行环境的高温。
目前,成功应用于超级合金的陶瓷镀层具有位于粘结层或底层和陶瓷镀层之间的氧化物层,无论氧化物层是形成于应用陶瓷镀层之前、期间或之后。从以往的热屏蔽镀层材料可知,金属粘结层(有时成为覆盖层)诸如MCrAlY镀层对于含有锰、铁、镍、钴和/或这些元素的组合的陶瓷镀层是一种很好的粘结层。铝化物粘结层是众所周知的。
MCrAlY镀层的大致组成成分包括:按重量计,10-25%铬,5-15铝,0.1-1.0钇或其它适宜的元素,均衡选择铁、镍、钴和钴镍混合物。另外,还可以加入(甚至超过)各5%的铪、钽或铼,1%的硅和各3%的锇、铂、钯、铑和/或其它稀有金属。表II列出MCrAlY镀层的组分示例,该镀层可以采用热喷镀、电子束物理蒸发喷镀和电镀等适宜的方法来完成。
表II
(wt%--MCrAlY组分示例) Ni Co Cr Al Y Hf Si NiCrAlY Bal - 19.5 12.5 .45 - - CoCrAlY - Bal 18 11 .45 - - NiCoCrAlY Bal 23 18 12.5 .3 - - NiCoCrAlY Bal 22 17 12.5 .6 .25 .4
参见美国专利US3928026;US4585481;US5277936和Re.32121。
粘结层可选用铝化物,一般通过将铝漫射于底层表面而形成。漫射铝化物是公知的,它可以采用含有诸如铝合金或化合物的铝元素混合粉末,催化剂(一般为卤素化合物,例如氟化钠,不过其它卤化物和其它材料也可以用作催化剂)和惰性材料如氧化铝。需镀层的部件被严密包裹并加热至1500-2000°F,在此过程中,输运气体如氢气流过该包裹。当部件未处于包裹中时,采用交替包裹的方法是已知的,还可以采用其它方法将铝镀于底层表面,然后使铝漫射入底层中。将至少一种稀有金属如铂、铑、钯和锇混入铝化物镀层也是公知的。参见美国专利US5514482,其中描述了铝化物镀层过程。
也可以将铝化物覆盖和镀层结合起来。美国专利US4897315描述了具有内部为MCrAlY覆盖层和外部为铝化物层的系统。美国专利US4005989中介绍了相反的组合,即内部为铝化物镀层和外部为覆盖层。
这些粘结镀层和粘结镀层组合的方法的共同特点是在其外表面形成粘结氧化层,如氧化铝。本发明的热屏蔽镀层对于氧化铝具有相当有限的溶解性,但粘结很坚固。
在某些情况下,超级合金可以形成非常完美的粘结氧化铝层,陶瓷可以粘结其上而不必使用单独的粘结层。参见美国专利US4209348;US4719080;US4895201;US5034284;US5262245;US5538796和US5346563。附图1示出使用了本发明的具有这种底层材料的制品。
隔热陶瓷(见附图1中的标记22)是应用于底层表面的覆盖层或铝化物层之上,还是应用于氧化铝层之上,依赖于采用上述哪中氧化物形成系统。如上文所述,陶瓷镀层在应用时,被分为用于两个(或更多)部分,第一部分含有具有较强抗应变能力的陶瓷层,第二部分含有具有较强隔热性能的陶瓷层。
具有较强抗应变能力的第一陶瓷层和具有较强隔热性能的第二陶瓷层,分别被设定为第一和第二厚度,形成一定的厚度比例。根据本发明,优选的镀层厚度和厚度比是按照制品的用途和其所需的隔热能力而确定的,我们一般将第一陶瓷层的优选厚度设定为大约0.25-10密耳之间或更大,较好的为0.5-5密耳之间,更好的为1-3密耳之间,同时第二陶瓷层的优选厚度设定为大约1-50密耳之间或更大,较好的为3-20密耳之间,更好的为3-10密耳之间。即第一陶瓷层的厚度大约是第二陶瓷层厚度的2-1/80th。常用的第一和第二陶瓷层厚度的比例大约是2∶1-1∶25。
关于具有较强抗应变能力的第一层,我们优选柱状颗粒陶瓷层,如现有技术中的形式,它可以很容易地通过电子束物理蒸发喷镀实现,并具有很好的抗应变能力。其它的柱状结构可以采用等离子喷镀技术,正如Taylor的美国专利US5520516中的提出的实施例和Nissley的美国专利US5705231中的方案。具有较强抗应变能力的镀层应当足够厚,从而使其能有效顺应使用过程中遇到的预定温度范围,例如从环境温度变化到最高的运行温度,但是其厚度不能超过实现上述目的的所需厚度,尤其是有时要求镀层的重量要尽量小,如旋转部件。对于蜗轮桨叶,柱状颗粒镀层的厚度应当至少为0.25密耳,较好为0.5密耳,更好为1.0密耳。
附图1示出包含氧化钇和氧化锆的柱状颗粒陶瓷镀层,其中氧化锆的重量含量为7%。Strangman等人的美国专利US4321311中的实施例中给出了这种合适的材料,可以采用物理蒸发喷镀获得,如EB-PVD。其它材料包括如Maloney的美国专利US6177200中的氧化钆和氧化锆,和Maloney的美国专利US6177560中的具有不同晶体结构的材料,都可以采用。
第二陶瓷层具有较强的隔热能力。我们优选经过诸如空气等离子喷镀和低压等离子喷镀的热喷镀过程形成的材料,其它一些常见的过程也可以采用。当采用热喷镀时,第二陶瓷层形成如条状物相互堆叠的微形结构,并具有比采用EB-PVD形成的柱状颗粒结构的材料更低的热传导率。对于蜗轮桨叶,第二陶瓷层的厚度至少应为1至100密耳左右,较好的为2-50密耳,更好的为3-10密耳,尽管本领域技术人员认为第二陶瓷层所需厚度应依赖于部件的功能。例如,固定部件如燃烧室衬垫、蜗轮叶片等的热屏蔽镀层应当比旋转部件如蜗轮桨叶等的热屏蔽镀层要厚些。总的镀层厚度要根据各部件大致所需的温度变化量来确定。
具有柱状TBC镀层的部件由电子束物理蒸发喷镀而成。具有一般柱状TBC镀层由具有厚度为1密耳和2.5密耳、由被氧化锆稳定的氧化钇和被氧化锆稳定的氧化钆组成的材料喷镀而成。陶瓷氧化物按照以氧化锆为底层的TBCs的参数,并通过电子束真空蒸发喷镀系统被蒸发。
陶瓷顶层的镀层通过空气等离子喷镀(APS)过程来实现。虽然采用其它等离子枪可以具有同样的效果,但这里却采用具有标准枪的等离子技术F-4喷镀火炬实现顶层喷镀。喷镀参数会随着被喷镀部件的类型不同而有所改变。一般地,喷镀时采用的参数为:电流500-600安培,电压55-65伏特,第一气体氩气的流量35-45标准升每分钟(SLPM),第二气体氢气的流量2-10SLPM,粉末供给速度40-55克每分钟,发射枪与工作件的距离6英寸。
按照本发明,披露两个混合TBC系统(见附图2的标记″A″″B″对炉子设备进行检测,从而确定它们的循环蜕变寿命。检测循环包括将部件加热至大约2075°F维持4分钟,然后强制空气冷却2分钟。这两个系统的区别在于抗应变陶瓷层和隔热陶瓷层的厚度比例不同。对于系统A和B,其厚度比例分别为1∶4和1∶1混合TBC系统的循环蜕变寿命以上文提到的Strangman的美国专利US4321311中的TBC系统为基准,后者建议的循环蜕变结果已为本领域技术人员所知。对于所有研究涉及的TBC系统,陶瓷层的总厚度约为5密耳。
我们认为,混合TBC系统的循环蜕变寿命,至少一部分依赖于抗应变陶瓷层和隔热陶瓷层的厚度比。而且,研究涉及的这两个混合TBC系统,其陶瓷层的厚度比分别为1∶4和1∶1,其循环蜕变寿命分别是上文提到的现有技术中的TBC系统的1.4和2.0倍。这一结果有助于提高抗应变陶瓷层和隔热陶瓷层的互联关系,既然EB-PVD镀层顶部的柱状物的宽度趋于增加,同时抗应变镀层的厚度也在增加。虽然1∶1的厚度比实现了较长的循环蜕变寿命,但对于预定的总体厚度,采用1∶4厚度比可以使镀层的隔热能力大于采用1∶1厚度比的镀层。
附图3是对有利于混合TBC系统的热传导率的估算,采用″则”计算EB-PVD陶瓷镀层和等离子喷镀陶瓷镀层的热传导率。在附图3中,被氧化锆稳定的氧化钆的EB-PVD镀层是按照Maloney的美国专利US6177200的记载制成的,等离子喷镀层含有由空气等离子喷镀而成的氧化钇和二氧化铈。为了使热喷镀陶瓷的性能比柱状颗粒陶瓷更优越,混合TBC系统中抗应变陶瓷层与隔热陶瓷层的厚度比设为1∶4。混合TBC系统的热传导率已在相关的现有技术中有记载,抗应变的7YSZ的陶瓷是通过电子束物理蒸发喷镀(EB-PVD)实现的。同时,两个TBC系统的总厚度是相同的。再参见附图3,在与温度相关的燃气轮机的应用中,混合TBC系统的热传导率低至传统的EB-PVD 7YSZ系统的30%,即减小了70%。
在预定镀层厚度的情况下,本发明中热传导率远低于传统的柱状颗粒镀层,比现有技术具有明显优势。
针对燃气轮机应用这一初衷,本发明可以更容易更有效的适应TBC与等离子喷镀陶瓷相结合,包括在旋转部件和高温环境中的应用。
更进一步,对于恒定的TBC系统的厚度和气体温度,部件的温度较低,从而可以延长其寿命。对于恒定的镀层厚度和金属温度,较高的气体温度可以提高系统的效率。对于恒定的气体温度和金属温度,采用较薄的厚度,可以大大减小由旋转桨叶产生的拉伸力,并且可以将镀层用于较小的部件,如较轻的磁片、轴、轴承等,同时还可以延长部件的热寿命。而且,较薄的镀层比较厚的镀层更具耐久力,因为较厚镀层中的热压力会导致TBC系统的破坏。上述情形的变化和组合,如应用某些较薄的TBC系统和在某些较高的温度环境中运行,这些也是需要考虑的。另外,还需要在热喷镀层上采用附加镀层,例如需要产生额外的抗腐蚀性能,或需要产生额外的抗渗透性等等。
虽然上文示出了一些本发明的实施例,但本领域技术人员应当知道,根据本发明的原理和思想,在上述实施例的基础上所做的任何变化,都在本申请的保护范围之内。