选择性催化还原催化剂系统.pdf

上传人:奻奴 文档编号:5765780 上传时间:2019-03-17 格式:PDF 页数:14 大小:945.86KB
返回 下载 相关 举报
摘要
申请专利号:

CN201480013677.7

申请日:

2014.03.13

公开号:

CN105188925A

公开日:

2015.12.23

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):B01J 29/70申请日:20140313|||公开

IPC分类号:

B01J29/70; B01J29/72; B01D53/94; B01J21/06; B01J23/22; B01J23/30; B01J29/072; B01J29/76; B01J29/06

主分类号:

B01J29/70

申请人:

巴斯夫公司

发明人:

M·瓦尔坎普; E·V·许內克斯; A·库尔曼; S·卡哈

地址:

美国新泽西州

优先权:

2013.03.14 US 61/781,760

专利代理机构:

北京市中咨律师事务所 11247

代理人:

林柏楠;刘金辉

PDF下载: PDF下载
内容摘要

本发明描述SCR催化剂的方法和系统,所述系统包括布置于所述系统中的第一SCR催化剂组合物和第二SCR催化剂组合物,当暴露于氨时,所述第一SCR催化剂组合物具有比所述第二催化剂组合物更快的DeNOx响应时间,并且所述第二SCR催化剂组合物具有比所述第一催化剂组合物更高的稳态DeNOx性能。所述SCR催化剂系统可用于在还原剂的存在下催化还原氮氧化物的方法和系统。

权利要求书

权利要求书
1.  一种用于从发动机排气中去除NOx的选择性催化还原(SCR)催化剂混合系统,所述系统包括布置于所述系统中的第一SCR催化剂组合物和第二SCR催化剂组合物,当暴露于氨时,所述第一SCR催化剂组合物具有比所述第二催化剂组合物更快的DeNOx响应时间,并且所述第二SCR催化剂组合物具有比所述第一催化剂组合物更高的稳态DeNOx性能。

2.  如权利要求1所述的系统,其中所述第一SCR催化剂组合物提供目标DeNOx百分比的氨储存水平比所述第二SCR催化剂组合物提供相同的DeNOx百分比的氨储存水平低,并且其中所述系统提供比只有所述第一催化剂组合物的系统更高的DeNOx稳态性能。

3.  如权利要求1或2所述的系统,其中在发生排气温度的突然增加的加速条件下,由于所述温度升高而从所述混合系统解吸的氨少于从只有所述第二催化剂组合物的系统解吸的氨。

4.  如权利要求1至3中任一项所述的系统,其中所述第一催化剂组合物包含用钨稳定的氧化钒/二氧化钛。

5.  如权利要求1至4中任一项所述的系统,其中所述第二催化剂组合物包含金属交换沸石。

6.  如权利要求5所述的催化剂系统,其中所述金属包括Cu。

7.  如权利要求1至6中任一项所述的催化剂系统,其中相比所述第二SCR催化剂组合物,所述第一SCR催化剂组合物促进更高的N2形成和更低的N2O形成,并且对于200℃至600℃的温度范围,所述第二SCR催化剂组合物促进更低的N2形成和更高的N2O形成。

说明书

说明书选择性催化还原催化剂系统
技术领域
本发明涉及选择性催化还原催化剂的领域。更具体地,本发明的实施方案涉及包括第一SCR催化剂组合物和第二SCR催化剂组合物的选择性催化还原催化剂系统、贫燃发动机排气系统,和在各种过程(例如,减少排气中的污染物)中使用这些催化剂系统的方法。
背景
贫燃发动机(例如,柴油发动机和贫燃汽油发动机)的操作向用户提供了出色的燃料经济性,并且由于它们在贫燃条件下,在高的空气/燃料比率下的操作而具有非常低的气态碳氢化合物和一氧化碳的排放。特别是,就它们的耐久性和它们在低速下生成高扭矩的能力来说,柴油发动机还提供超过汽油发动机的明显优势。
然而,从排放的角度来看,柴油发动机存在的问题比它们的火花点火对应物更严峻。排放问题涉及微粒物(PM)、氮氧化物(NOx)、未燃烧的碳氢化合物(HC)和一氧化碳(CO)。NOx是用于描述各种化学种类的氮氧化物的术语,所述氮氧化物包括一氧化氮(NO)和二氧化氮(NO2),以及其他。NO是值得关注的,因为据信在被称为光化学烟雾形成的过程中,在阳光和碳氢化合物的存在下通过一系列的反应,并且NO是酸雨的重要因素。另一方面,NO2具有作为氧化剂的高潜能并且有强烈的肺部刺激性。微粒物(PM)还与呼吸问题相关。当进行发动机操作上的改进以减少柴油发动机中的微粒物和未燃烧的碳氢化合物时,NO和NO2的排放趋于增加。
因为高NOx转化率通常需要富含还原剂的条件,所以难以获得贫燃发动机的NOx有效减少。对于在贫燃条件下的运行,将排气流的NOx组分转化为无害组分通常需要专门的NOx减少策略。
据信使用氨或氨前体作为还原剂的选择性催化还原(SCR)是用于去除柴油汽车排气中氮氧化物的最可行技术。在典型的排气中,氮氧化物主要由NO(>90%)组成,所以SCR催化剂有利于将NO和NH3转化为氮气和水。开发用于氨SCR过程的汽车应用的催化剂的两大挑战在于:为SCR活性提供宽的操作窗口,包括从200℃和更高的低温,以及对于超过500℃温度的催化剂的水热稳定性的改进。如本文所用,水热稳定性是指保留材料催化NOx的SCR的能力,其中优选保留水热老化前材料NOx转化能力的至少85%。
用于使用氨来选择性催化还原氮氧化物的金属促进沸石催化剂是已知的,尤其包括铁促进和铜促进沸石催化剂,其中例如通过离子交换引入金属。铁促进沸石β是用于使用氨来选择性催化还原氮氧化物的有效催化剂。遗憾地是,已经发现在恶劣的水热条件下,例如在超过500℃的温度下还原排气中的NOx,许多金属促进沸石(例如,ZSM-5和β的Cu和Fe型式)的活性开始下降。据信,这种活性的下降是由于沸石的不稳定,例如通过沸石内的脱铝作用和随之发生的含金属催化位点的损失。
为了保持NOx还原的整体活性,必须提供提高水平的铁促进沸石催化剂的洗涂层装载量。当提高沸石催化剂的水平来提供足够的NOx去除时,由于催化剂成本的上升,用于NOx去除过程的成本效率明显降低。
在一些SCR系统中,特别是重型柴油机(HDD),控制从SCR系统中排出的二次污染物N2O变得更加重要。另外,某些现有的催化剂,例如铜促进沸石,倾向于产生不能接受的高N2O排放。因为N2O是温室气体并且排放法规变得越来越严格,所以存在对减少从SCR系统中排出的N2O量的需要。
概述
本发明的一个方面涉及选择性催化还原(SCR)催化剂系统。在第一个实施方案中,提供用于从发动机排气中去除NOx的选择性催化还原(SCR)催化剂混合系统,所述系统包括布置于系统中的第一SCR催化剂组合物和第二SCR催化剂组合物,当暴露于氨时,第一SCR催化剂组合物具有比 第二催化剂组合物更快的DeNOx响应时间,并且第二SCR催化剂组合物具有比第一催化剂组合物更高稳态的DeNOx性能。在第二个实施方案中,改进第一实施方案,使得第一SCR催化剂组合物提供目标DeNOx百分比的氨储存水平比第二SCR催化剂组合物提供相同的DeNOx百分比的氨储存水平低,并且其中所述系统提供比只有第一催化剂组合物的系统更高的DeNOx稳态性能。
在第三个实施方案中,改进第一和第二个实施方案,其中在发生排气温度的突然增加的加速条件下,由于温度升高而从混合系统解吸的氨少于从只有第二催化剂组合物的系统解吸的氨。
在第四个实施方案中,改进第一至第三个实施方案,其中第一催化剂组合物包含用钨稳定的氧化钒/二氧化钛。
在第五个实施方案中,改进第一至第四个实施方案,其中第二催化剂组合物包含金属交换沸石。
在第六个实施方案中,改进第一至第五个实施方案,其中所述金属包括铜。在第七个实施方案中,改进第一至第六个实施方案,其中相比第二SCR催化剂组合物,第一SCR催化剂组合物促进更高的N2形成和更低的N2O形成,并且对于200℃至600℃的温度范围,第二SCR催化剂组合物促进更低的N2形成和更高的N2O形成。
附图简述
图1示出根据一个或多个实施方案的SCR催化剂系统的局部截面图;
图2示出根据一个或多个实施方案的SCR催化剂系统的局部截面图;
图3是通过计算机模型生成的图,示出在225℃和10%NO2的条件下,DeNOx对时间的响应曲线的分析;以及
图4是通过计算机模型生成的图,示出在225℃和10%NO2的条件下,DeNOx对吸附NH3总量的响应曲线的分析。
详述
在描述本发明的若干示例性实施方案之前,应了解,本发明不限于以下描述中所阐述的构建步骤或处理步骤的细节。本发明能够具有其他实施方案且能够以各种方式实施或进行。
政府法规要求对于轻型和重型贫燃发动机汽车使用NOx还原技术。使用尿素选择性催化还原(SCR)NOx是用于NOx控制的有效且主要的排放控制技术。为了满足未来的政府法规,提供与当前系统相比具有改进性能的SCR催化剂系统。本发明的实施方案涉及SCR催化剂系统,与单独SCR催化剂和其他双SCR催化剂系统相比,所述SCR催化剂系统在低NH3储存水平下具有更低的N2O排放和NOx转化效率的改善。不受理论的约束,据认为根据一个或多个实施方案的SCR催化剂系统的动态响应由提高的NH3储存容量提供。本文所述本发明的特点应该在整个目标SCR温度范围内(即200℃至600℃)提供。
根据一个或多个实施方案,第一SCR催化剂组合物和第二SCR催化剂组合物不包括铂族金属,例如Pt、Pd和Rh。
本发明的实施方案涉及SCR催化剂系统、它们的制备方法、排气净化系统以及使用所述SCR催化剂系统减少排气中氮氧化物的方法。
实施方案涉及SCR催化剂系统的使用,所述催化剂系统针对贫燃发动机提供改进的NOx性能。虽然SCR催化剂系统可以用于任何贫燃发动机,但在具体实施方案中,所述催化剂系统用于重型柴油机应用。重型柴油机应用包括以下柴油发动机驱动汽车:联邦超过8,500磅并且在加利福尼亚州超过14,000磅的车辆总重额定值(GVWR)(1995年及更晚的年型)。根据实施方案的SCR催化剂系统也可用于其他发动机,包括但不限于,非道路交通用柴油发动机、机车、船用发动机和固定式柴油发动机。本发明也可适用于其他贫燃发动机类型,例如轻型柴油发动机、压缩天然气发动机和贫燃汽油直接喷射发动机。
关于本公开中使用的术语,提供以下定义。
如本文所用,术语“催化剂”或“催化剂组合物”是指促进反应的材料。如本文所用,短语“催化剂系统”是指两种或多种催化剂的组合,例如第一 SCR催化剂和第二SCR催化剂的组合。催化剂系统可呈两种SCR催化剂混合在一起的洗涂层形。
如本文所用,术语“上游”和“下游”是指根据从发动机朝向排气管的发动机排气流的流动相对方向,其中发动机在上游位置并且排气管和任何污染减少制品(例如,过滤器和催化剂)在发动机的下游。
如本文所用,术语“流”广义上指可含有固体或液体微粒物的流动气流的任何组合。术语“气态流”或“排气流”意指气态成分的流,例如贫燃发动机的排气,其可含有夹带的非气态组分,例如液滴、固体微粒等。贫燃发动机的排气流通常还包含燃烧产物、不完全燃烧产物、氮氧化物、可燃和/或碳质微粒物(烟灰),以及未反应的氧气和氮气。
如本文所用,术语“基材”是指催化剂组合物置于其上的整体材料,通常呈含有在其上具有催化组合物的多个颗粒的洗涂层形式。洗涂层通过以下方式形成:在液体媒介物中制备含有指定固体含量(例如,以重量计30-90%)颗粒的浆液,然后将浆液涂布于基材上并干燥以提供洗涂层。
如本文所用,术语“洗涂层”具有其在本领域中的通常含义,即施涂至基材材料的催化材料或其他材料的薄的粘着涂层,所述基材材料例如为蜂窝型载体构件,其足够多孔以允许处理的气流通过。
“催化制品”是指用于促进所需反应的元件。例如,催化制品可以包括在基材上含有催化剂组合物的洗涂层。
在一个或多个实施方案中,基材是具有蜂窝状结构的陶瓷或金属。可采用任何合适的基材,如以下类型的整体基材:具有精细的平行气流通道,所述通道从基材的进口面或出口面延伸穿过其中,以使通道对穿过其的流体流开放。从通道的流体进口至通道的流体出口基本上是直线轨迹的通道,由其上涂布催化材料作为洗涂层的壁限定以使流过通道的气体接触催化材料。整体基材的流动通道为薄壁通道,所述通道可以为任何合适的横截面形状和尺寸,例如梯形的、矩形的、正方形的、正弦的、六边形的、椭圆形的、圆形的等。这样的形状可以含有每平方英寸的横截面约60至约900或更多的气体入口开口(即,孔)。
陶瓷基材可以由任何合适的耐火材料制成,例如,堇青石、堇青石-α-氧化铝、氮化硅、锆莫来石、锂辉石、氧化铝-二氧化硅-氧化镁、硅酸锆、硅线石、硅酸镁、锆石、透锂长石、α-氧化铝、铝硅酸盐等。
适用于本发明的实施方案的催化剂组合物的基材在性质上也可为金属性的并且由一种或多种金属或金属合金组成。金属基材可使用各种形状如丸状、波纹片或整体形式。金属基材的具体实例包括耐热的贱金属合金,特别是其中铁是基本或主要组分的那些。这样的合金可以含有镍、铬和铝的一种或多种,并且这些金属的总量可以有利地包含至少约15重量%的合金,例如,约10至25重量%的铬、约1至8重量%的铝以及约0重量%至20重量%的镍。
根据本发明的第一个方面,选择性催化还原(SCR)催化剂系统包括布置于系统中的第一SCR催化剂组合物和第二SCR催化剂组合物。在一个或多个实施方案中,第二SCR催化剂组合物具有与第一SCR催化剂组合物不同的组成。相比第二SCR催化剂组合物,第一SCR催化剂组合物促进更高的N2形成和更低的N2O形成,而相比第一SCR催化剂组合物,第二催化剂组合物促进更低的N2形成和更高的N2O形成。在一个或多个实施方案中,为了减少NH3排放,第一SCR催化剂应具有比第二SCR催化剂组合物更低的NH3吸附容量/解吸温度。
在一个或多个实施方案中,第一SCR催化剂组合物和第二SCR催化剂组合物在相同或共同的基材上。在其他实施方案中,第一SCR催化剂组合物和第二SCR催化剂组合物在分开的基材上。
在一个实施方案中,第一SCR催化剂和第二SCR催化剂以横向分区构型布置,其中第一催化剂在第二催化剂的上游。上游和下游催化剂可以布置于相同基材或彼此分开的不同基材上。这些实施方案中的每一个都将在下文更详细地进行描述。
在具体实施方案中,第一SCR催化剂组合物和第二SCR催化剂组合物中的每一个均用作模制催化剂,仍更具体地作为其中SCR催化剂组合物沉积于合适的耐火基材上的模制催化剂,仍更具体地在“蜂窝状”基材上的 模制催化剂,用于氮氧化物NOx的选择性还原,即,用于氮氧化物的选择性催化还原。根据本发明的实施方案,SCR催化剂组合物可呈自负载催化剂颗粒的形式或呈由SCR催化剂组合物形成的蜂窝状整料的形式。
根据一个或多个实施方案,第一SCR催化剂组合物包含混合氧化物。如本文所用,术语“混合氧化物”是指含有多于一种化学元素的阳离子或处于几种氧化状态的单个元素的阳离子的氧化物。在一个或多个实施方案中,混合氧化物选自:Fe/二氧化钛(例如FeTiO3)、Fe/氧化铝(例如FeAl2O3)、Mg/二氧化钛(例如MgTiO3)、Mg/氧化铝(例如MgAl2O3)、Mn/氧化铝、Mn/二氧化钛(例如MnOx/TiO2)(例如MnOx/Al2O3)、铜/二氧化钛(例如CuTiO3)、Ce/Zr(例如CeZrO2)、Ti/Zr(例如TiZrO2)、氧化钒/二氧化钛(例如V2O5/TiO2),及其混合物。在具体实施方案中,混合氧化物包含氧化钒/二氧化钛。可以用钨(例如WO3)活化或稳定氧化钒/二氧化钛氧化物以提供V2O5/TiO2/WO3。
根据一个或多个实施方案,尤其是在富含NO2的条件下,包含氧化钒/二氧化钛的第一SCR催化剂组合物生成比沸石SCR催化剂明显更少的N2O。在一个或多个实施方案中,第一SCR催化剂组合物包含氧化钒分散在其上的二氧化钛。氧化钒可以1至10重量%范围内的浓度分散,包括1重量%、2重量%、3重量%、4重量%、5重量%、6重量%、7重量%、8重量%、9重量%、10重量%。在具体实施方案中,用钨(WO3)活化或稳定氧化钒。钨可以0.5至10重量%范围内的浓度分散,包括1重量%、2重量%、3重量%、3.4重量%、5重量%、6重量%、7重量%、8重量%、9重量%和10重量%。全部百分比均是基于氧化物而言。
根据一个或多个实施方案,第二SCR催化剂组合物包括金属交换分子筛。所述金属选自Cu、Fe、Co、Ni、Ce和Pt。在具体实施方案中,金属为Cu。
如本文所用,术语“分子筛”是指基于含有大体四面体型位点的氧离子的广泛三维网络并具有孔隙分布的材料。分子筛(例如,沸石)已经广泛用于催化精炼和石油化学反应以及催化、吸附、分离和层析中的许多化学反 应。例如,关于沸石而言,合成和天然的沸石以及它们促进某些反应的用途,包括将甲醇转化为烯烃(MTO反应)以及在氧的存在下使用还原剂(例如,氨、尿素或碳氢化合物)来选择性催化还原(SCR)氮氧化物,是本领域熟知的。沸石是具有均匀孔隙大小的晶体材料,所述孔隙大小取决于沸石的类型和包含于沸石晶格中的阳离子的类型和量,直径在约3至10埃的范围内。
在SCR过程中采用的催化剂组合物理想情况下应能够在使用的宽温度条件范围内(例如200℃至600℃或更高)、在水热条件下保持良好的催化活性,。水热条件在实践中经常遇到,例如在烟灰过滤器再生期间;所述烟灰过滤器是用于去除颗粒的排气处理系统的一个部件。
在更具体的实施方案中,对铝硅酸盐沸石结构类型的参考将材料限制为在骨架中不包括取代的磷或其他金属的分子筛。当然,铝硅酸盐沸石可以随后与一种或多种促进剂金属(例如,铁、铜、钴、镍、铈或铂族金属)进行离子交换。然而,应当清楚的是,如本文所用,“铝硅酸盐沸石”不包括铝磷酸盐材料,例如SAPO、AlPO和MeAPO材料,并且更广泛的术语“沸石”旨在包括铝硅酸盐和铝磷酸盐。在一个或多个实施方案中,分子筛可以包括全部铝硅酸盐、硼硅酸盐、镓硅酸盐、MeAPSO以及MeAPO组分。
促进剂金属的重量%:
计算为金属氧化物的金属交换分子筛的促进剂金属(例如,Cu)含量在具体实施方案中为至少约2重量%,甚至更具体地至少约2.5重量%,并且在仍更具体的实施方案中至少约3重量%,在无挥发物的基础上记录。在仍更具体的实施方案中,计算为金属氧化物的金属交换分子筛的金属(例如,Cu)含量在高达约8重量%的范围内,基于煅烧分子筛的总重量计,在无挥发性的基础上记录,。因此,在具体实施方案中,计算为金属氧化物的由选自Cu、Fe、Co、Ce,和Ni的金属促进的8分子筛的范围为约2重量%至约8重量%,更具体地约2重量%至约5重量%,并且仍更具体地约2.5重量%至约3.5重量%,在每种情况下基于氧化物记录。
在一个或多个实施方案中,第一SCR催化剂和第二SCR催化剂以横向分区构型布置,其中第一催化剂在第二催化剂的上游。如本文所用,术语“横向分区”是指两种SCR催化剂相对于彼此的位置。横向意指并排式,使得第一SCR催化剂组合物和第二SCR催化剂组合物互相并列地定位,其中第一SCR催化剂组合物在第二SCR催化剂组合物的上游。根据一个或多个实施方案,横向分区的第一SCR催化剂和第二SCR催化剂可以布置于相同的或共同的基材或彼此分开的不同基材上。
商业上、特别是在移动应用中使用的组合物包含WO3和V2O5分别以5重量%至20重量%和0.5重量%至6重量%的浓度分散在其上的TiO2。这些催化剂可以含有其他无机材料,例如作为粘合剂和促进剂的SiO2和ZrO2。
参照图1,示出了横向间隔系统的示例性实施方案。SCR催化剂系统10以横向分区布置示出,其中在共同的基材12上,第一SCR催化剂组合物18位于第二SCR催化剂组合物20的上游。基材12具有限定轴向长度L的入口端22和出口端24。在一个或多个实施方案中,基材12通常包括蜂窝状基材的多个通道14,其中为清楚起见,仅在横截面中示出一个通道。第一SCR催化剂组合物18从基材12的入口端22延伸穿过小于基材12的整个轴向长度L。图1中第一SCR催化剂组合物18的长度表示为第一区18a。在具体实施方案中,第一SCR催化剂组合物18可以包含氧化钒/二氧化钛。在具体实施方案中,第二SCR催化剂组合物20可以包含金属交换分子筛。第二SCR催化剂组合物20从基材12的出口端24延伸穿过小于基材12的整个轴向长度L。图1中第二催化剂组合物的长度表示为第二区20b。SCR催化剂系统10有效用于选择性催化还原NOx。
应理解,第一区和第二区的长度可以改变。在一个或多个实施方案中,第一区和第二区可以具有相等的长度。在其他实施方案中,第一区可以为基材长度L的20%、25%、35%或40%、60%、65%、75%或80%,而第二区相应地覆盖基材长度L的剩余部分。
参照图2,示出了横向分区SCR催化剂系统110的另一个实施方案。 所示的SCR催化剂系统110为横向分区布置,其中在分开的基材112和基材113上,第一SCR催化剂组合物118位于第二SCR催化剂组合物120的上游。第一SCR催化剂组合物118设置于基材112上,并且第二SCR催化剂组合物设置于单独的基材113上。基材112和基材113可以由相同材料或不同材料构成。基材112具有限定轴向长度L1的入口端122a和出口端124a。基材113具有限定轴向长度L2的入口端122b和出口端124b。在一个或多个实施方案中,基材112和基材113通常包括蜂窝状基材的多个通道114,其中为清楚起见,仅在横截面中示出一个通道。第一SCR催化剂组合物118从基材112的入口端122a延伸穿过基材112的整个轴向长度L1至出口端124a。图2中第一SCR催化剂组合物118的长度表示为第一区118a。在具体实施方案中,第一SCR催化剂组合物118可以包含氧化钒/二氧化钛。在具体实施方案中,第二SCR催化剂组合物120可以包含金属交换分子筛。第二SCR催化剂组合物120从基材113的出口端124b延伸穿过基材113的整个轴向长度L2至入口端122b。第二催化剂组合物120限定第二区120a。SCR催化剂系统110有效用于选择性催化还原NOx。如关于图1所述,区118a和120a的长度可以改变。
排气处理系统:
在本发明的一个方面中,排气处理系统包括贫燃发动机和与贫燃发动机流体连通的排气管道,以及选择性催化还原催化剂系统,所述选择性催化还原催化剂系统包括根据一个或多个实施方案布置于系统中的第一SCR催化剂组合物和第二SCR催化剂组合物。在具体实施方案中,贫燃发动机为重型柴油发动机。
在一个或多个实施方案中,排气处理系统包括含还原剂的排气流所述还原剂例如为氨、尿素和/或碳氢化合物,并且在具体实施方案中为氨和/或尿素。在具体实施方案中,排气处理系统还包括第二排气处理部件,例如,烟灰过滤器或柴油氧化催化剂。
催化型或非催化型烟灰过滤器可以在根据一个或多个实施方案的SCR催化剂系统的上游或下游。在具体实施方案中,柴油氧化催化剂位于 根据一个或多个实施方案的SCR催化剂系统的上游。在具体实施方案中,柴油氧化催化剂和催化型烟灰过滤器在SCR催化剂系统的上游。
在具体实施方案中,将排气从贫燃发动机输送至排气系统的下游位置,在更具体的实施方案中含有NOx,在所述下游位置添加还原剂并且将含添加的还原剂的排气流输送至根据一个或多个实施方案的SCR催化剂系统。
在具体实施方案中,烟灰过滤器包括壁流式过滤基材,其中通道是交替封闭的,允许气态流从一个方向(入口方向)进入通道,以流经通道壁并且从另一个方向(出口方向)离开通道。
可在SCR催化剂系统的下游提供氨氧化催化剂,以从系统中去除任何滑移的氨。在具体实施方案中,AMOX催化剂可以包括铂族金属,例如铂、钯、銠或其组合。在更具体的实施方案中,AMOX催化剂可以包括含SCR催化剂系统的洗涂层,所述SCR催化剂系统包括设置于基材上的第一SCR催化剂组合物和设置于基材上的第二SCR催化剂组合物。
AMOX和/或SCR催化剂组合物可以涂布在流通式或壁流式过滤器上。如果利用壁流式基材,得到的系统将能够连同气态污染物一起去除微粒物。壁流式过滤器基材可以由本领域众所周知的材料制成,例如,堇青石、钛酸铝或碳化硅。应理解,催化组合物在壁流式基材上的装载量将取决于基材性质如孔隙度和壁厚,并且通常将低于流通式基材上的装载量。
SCR活性:
现参照以下实施例对本发明进行描述。在描述本发明的若干示例性实施方案之前,应了解,本发明不限于以下描述中所阐述的构建步骤或处理步骤的细节。本发明能够具有其他实施方案且能够以各种方式实施或进行。
实施例
动态响应建模
图3和图4示出根据一个或多个实施方案的系统的动态响应行为的改进。使用计算机模型制备图3和图4。描述系统中单个部件的性能的实验室反应器和发动机实验室DeNOx性能测量是所用电脑模型的输入。图3 中的实施例示出在开始模拟/尿素投料之前由不含氨的新鲜系统得到的作为时间函数的DeNOx性能。将Cu-沸石系统和基于氧化钒的SCR系统与氧化钒/Cu-沸石混合系统进行比较。在建模的混合系统内,基于氧化钒的SCR催化剂以50/50的尺寸比置于Cu-沸石催化剂的前面。在225℃排气温度和500001/h空速、500ppmNOx入口浓度、10%的NO2/NOx比下的低温运行用于比较。可以将这些SCR入口条件视为用于在发动机应用中运行的系统的典型条件,在所述发动机应用中,在SCR前面或在仅SCR系统中的氧化系统上具有低的贵金属装载量。选择NSR为1.1,以便较快达到所研究系统的最大DeNOx性能。尽管在投料700秒后Cu-沸石系统达到较高DeNOx性能,但是在投料开始后0秒的DeNOx响应行为具有不同的等级。与Cu-沸石系统相比,在投料开始后,基于氧化钒的SCR系统的响应相对于DeNOx增加是更快速的(例如至多350秒)。基于氧化钒的SCR与Cu-沸石结合的混合系统具有以下优点:接近基于氧化钒的SCR的动态响应行为并且另外如图3所示在例如1000秒后提供更高的稳态DeNOx性能。
图4是通过使用催化剂上的吸附NH3总量(以克计)作为x-轴结果对图3重新作图而生成的。当比较为达到例如70%DeNOx而在催化剂上储存的必需的氨时,可以看到混合系统的实际优势。Cu-沸石系统需要大约4.5gNH3,而基于氧化钒的系统需要大约2.5g,并且所提出的混合系统需要大约3g的储存氨。因此与Cu-沸石SCR系统相比,混合系统将更快地且以更低的NH3储存水平提供DeNOx性能。此外,与基于氧化钒的SCR系统相比,混合系统将提供更高的DeNOx稳态性能。当发动机伴随排气温度的突然增加而加速时,在更低NH3储存水平下达到的更高DeNOx性能具有进一步的优势。在这种情况下,与Cu-沸石系统相比,混合系统由于温度增加从催化剂解吸的氨的量较少,并且因此将导致在后处理系统的SCR部分之后的更低NH3滑移值。甚至当使用氨氧化催化剂控制来自SCR的NH3滑移时,由于与氨的起燃特征结合建立的典型体积,由加速事件导致的极高的氨峰是氨氧化催化剂的常见问题。
在本说明书全篇中提及“一个实施方案”、“某些实施方案”、“一个或多个实施方案”或“一实施方案”意味着结合所述实施方案描述的特定特征、结构、材料或特性包括于本发明的至少一个实施方案中。因此,在本说明书全篇中各个地方出现如“在一个或多个实施方案中”、“在某些实施方案中”、“在一个实施方案中”或“在一实施方案中”的短语未必指本发明的同一实施方案。此外,特定特征、结构、材料或特性可以任何适合方式在一个或多个实施方案中加以组合。
尽管在本文中已参照特定实施方案来描述本发明,但应了解,这些实施方案仅说明本发明的原理和应用。本领域技术人员将显而易知的是,可在不脱离本发明的精神和范围的情况下对本发明的方法和装置做出各种修改和变更。因此,意图本发明包括在随附权利要求和它们的等效物的范围内的修改和变更。

选择性催化还原催化剂系统.pdf_第1页
第1页 / 共14页
选择性催化还原催化剂系统.pdf_第2页
第2页 / 共14页
选择性催化还原催化剂系统.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《选择性催化还原催化剂系统.pdf》由会员分享,可在线阅读,更多相关《选择性催化还原催化剂系统.pdf(14页珍藏版)》请在专利查询网上搜索。

本发明描述SCR催化剂的方法和系统,所述系统包括布置于所述系统中的第一SCR催化剂组合物和第二SCR催化剂组合物,当暴露于氨时,所述第一SCR催化剂组合物具有比所述第二催化剂组合物更快的DeNOx响应时间,并且所述第二SCR催化剂组合物具有比所述第一催化剂组合物更高的稳态DeNOx性能。所述SCR催化剂系统可用于在还原剂的存在下催化还原氮氧化物的方法和系统。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般的物理或化学的方法或装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1