纳米复合颗粒及其制备方法.pdf

上传人:b*** 文档编号:5752193 上传时间:2019-03-16 格式:PDF 页数:9 大小:626.59KB
返回 下载 相关 举报
摘要
申请专利号:

CN201510402224.X

申请日:

2007.08.10

公开号:

CN105148887A

公开日:

2015.12.16

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):B01J 21/06申请日:20070810|||公开

IPC分类号:

B01J21/06; B01J32/00; B01J35/10; B01J23/30; B01D53/56; B01D53/86; B01D53/90

主分类号:

B01J21/06

申请人:

水晶美国股份公司

发明人:

傅国义; S·M·奥古斯丁

地址:

美国马里兰

优先权:

11/509,339 2006.08.24 US

专利代理机构:

中国国际贸易促进委员会专利商标事务所11038

代理人:

王刚

PDF下载: PDF下载
内容摘要

公开了一种纳米复合颗粒,其作为催化剂的用途,及其制备方法。该纳米复合颗粒包含二氧化钛纳米颗粒、金属氧化物纳米颗粒和表面稳定剂。在二氧化钛纳米颗粒存在时水热形成金属氧化物纳米颗粒。该纳米复合颗粒是有效的催化剂载体,特别用于DeNOx催化剂用途。

权利要求书

权利要求书
1.  一种纳米复合颗粒,包含:
(a)二氧化钛纳米颗粒;
(b)选自二氧化锆、二氧化铈、氧化铪、氧化锡、氧化铌和氧化钽的金属氧化物纳米颗粒;以及
(c)选自二氧化硅、氧化铝、五氧化二磷、硅酸铝和磷酸铝的表面稳定剂,
其中通过在二氧化钛纳米颗粒存在时水热处理无定形水合金属氧化物形成金属氧化物纳米颗粒。

2.  权利要求1的纳米复合颗粒,其中二氧化钛纳米颗粒主要为锐钛矿。

3.  权利要求1的纳米复合颗粒,其中金属氧化物纳米颗粒是二氧化锆。

4.  权利要求1的纳米复合颗粒,包含50-95重量%二氧化钛纳米颗粒,2-48重量%金属氧化物纳米颗粒,及2-20重量%表面稳定剂。

5.  权利要求1的纳米复合颗粒,在800℃下煅烧6小时后具有大于60m2/g的表面积。

6.  包含权利要求1的纳米复合颗粒和至少一种金属组分的催化剂,所述至少一种金属组分包含选自铂、金、银、钯、铜、钨、钼、钒、铁、铑、镍、锰、铬、钴和钌的金属。

7.  权利要求6的催化剂,其中金属组分选自三氧化钨和五氧化二钒。

8.  权利要求7的催化剂,包含0.1-10重量%五氧化二钒和4-20重量%三氧化钨。

9.  一种方法,包含使含有氮氧化物的废物流与权利要求7的催化剂接触以降低废物流中的氮氧化物的量。

10.  一种制备纳米复合颗粒的方法,包含:
(a)形成包含二氧化钛纳米颗粒、至少一种可溶金属氧化物前体和溶剂的浆料;
(b)使可溶金属氧化物前体沉淀以形成包含二氧化钛纳米颗粒、无定形水合金属氧化物和溶剂的浆料;
(c)水热处理步骤(b)中的浆料以将无定形水合金属氧化物转化为金属氧化物纳米颗粒;以及
(d)任选地,煅烧纳米复合颗粒,
其中在水热处理之前添加表面稳定剂,或者在水热处理之后立即添加表面稳定剂。

11.  权利要求10的方法,其中在60-250℃稳定下在20-500psig压力下进行水热处理。

12.  权利要求10的方法,其中二氧化钛纳米颗粒主要为锐钛矿。

13.  权利要求10的方法,其中可溶金属氧化物前体选自锆、铈、铝、铪、锡和铌的化合物。

14.  权利要求10的方法,其中表面稳定剂选自无定形二氧化硅、硅和铝的卤化物或醇盐、以及磷酸铝。

15.  权利要求10的方法,其中纳米复合颗粒包含50-95重量%二氧化钛纳米颗粒、2-48重量%金属氧化物纳米颗粒、以及2-20重量%表面稳定剂。

16.  权利要求10的方法,还包括添加至少一种金属组分,所述金属组分包含选自铂、金、银、钯、钨、钒、钼和铜的金属。

17.  权利要求16的方法,其中金属组分选自仲钨酸铵和五氧化二钒。

18.  权利要求17的方法,其中纳米复合颗粒包含0.1-10重量%五氧化二钒和4-20重量%三氧化钨。

19.  权利要求10的方法,其中在800℃下煅烧6小时后,纳米复合颗粒具有大于60m2/g的表面积。

20.  权利要求10的方法,其中溶剂是水。

21.  一种纳米复合颗粒,包含:
(a)二氧化钛纳米颗粒,其中所述二氧化钛纳米颗粒具有低于200nm的平均微晶尺寸并且具有20-300m2/g的比表面积;
(b)选自二氧化锆、二氧化铈、氧化锡、氧化铌及其混合物和组合的金属氧化物纳米颗粒,其中所述金属氧化物纳米颗粒具有1-50nm的平均微晶尺寸;以及
(c)选自二氧化硅、氧化铝、五氧化二磷、硅酸铝和磷酸铝的表面稳定剂,
其中通过在二氧化钛纳米颗粒存在时水热处理无定形水合金属氧化物形成金属氧化物纳米颗粒。

22.  权利要求21的纳米复合颗粒,其中二氧化钛纳米颗粒主要为锐钛矿。

23.  权利要求21的纳米复合颗粒,其中金属氧化物纳米颗粒是二氧化锆。

24.  权利要求21的纳米复合颗粒,包含50-95重量%二氧化钛纳米颗粒,2-48重量%金属氧化物纳米颗粒,及2-20重量%表面稳定剂。

25.  权利要求21的纳米复合颗粒,在800℃下煅烧6小时后具有大于60m2/g的表面积。

26.  包含权利要求21的纳米复合颗粒和至少一种金属组分的催化剂,所述至少一种金属组分包含选自铂、金、银、钯、铜、钨、钼、钒、铁、铑、镍、锰、铬、钴和钌的金属。

27.  权利要求26的催化剂,其中金属组分选自三氧化钨和五氧化二钒。

28.  权利要求27的催化剂,包含0.1-10重量%五氧化二钒和4-20重量%三氧化钨。

说明书

说明书纳米复合颗粒及其制备方法
本申请是基于申请号为200780034495.8、申请日为2007年8月10日、发明名称为“纳米复合颗粒及其制备方法”的中国专利申请的分案申请。
技术领域
本发明涉及纳米复合颗粒及其制备方法。该纳米复合颗粒适合用作催化剂和/或催化剂载体。
发明背景
在很多应用中,包括氧化化学物质、氢化处理、克劳斯(Claus)反应、光催化、挥发性有机化合物的完全氧化和DeNOx反应中,二氧化钛广泛用作催化剂和/或催化剂载体。在例如美国专利No.4929586和5137855中教导了使用二氧化钛作为NOx选择性催化还原的催化剂载体。尽管二氧化钛的任何结晶形式(锐钛矿、金红石和板钛矿)均可用于催化剂用途,然而典型优选锐钛矿,参见例如美国专利No.5330953和6576589。
遗憾的是,当二氧化钛用于高温用途(例如DeNOx)时是热不稳定的。在高温下,二氧化钛纳米颗粒趋于聚结(coalesce),这降低了其表面积和孔隙率。此外,锐钛矿在高温下可能至少部分地转变成较不利的金红石形式。
很多策略用于解决这些问题。一种方法是添加第二金属氧化物。例如,美国专利No.5021392公开了一种二元氧化物载体(二氧化钛-氧化锆),其由钛和锆的盐共沉淀以形成水溶胶并对所述水溶胶进行老化以产生二元氧化物载体而形成。美国专利No.5922294教导了通过共水解钛的醇盐和氧化铝的混合物制备混合氧化物的方法。美国公开 申请No.2003/0103889公开了制备二氧化钛-氧化硅复合物的方法,其通过将二氧化钛与硅溶胶结合而制备。当将第二金属氧化物纳入二氧化钛点阵以形成均匀单一混合氧化物时,二氧化钛的晶体点阵和催化性能通常受到影响。
另一种解决热不稳定问题的方法是将涂层施加到二氧化钛上。例如,美国专利No.5330953公开了在二氧化钛颗粒上形成两种涂层,其包括包含铝、硅、锆和镧的氧化物的第一涂层以及第二磷酸盐涂层。此外,美国专利No.5652192公开了制备涂覆有硫酸盐的二氧化钛纳米颗粒的水热法。该方法采用硫酸盐和二氧化钛前体的混合物的水热处理以制备涂覆有晶体形式硫酸盐的二氧化钛纳米颗粒。该方法的一个问题是涂层会影响二氧化钛的催化性能。
总之,需要新型的二氧化钛纳米复合颗粒及其制备方法。特别有价值的纳米复合颗粒将具有用于催化用途的改善热稳定性。
发明概述
本发明是纳米复合颗粒及其制备方法。纳米复合颗粒包含二氧化钛纳米颗粒、金属氧化物纳米颗粒和表面稳定剂。金属氧化物纳米颗粒是二氧化锆、二氧化铈、氧化铪、氧化锡、氧化铌和/或氧化钽。表面稳定剂是二氧化硅、氧化铝、五氧化二磷、硅酸铝和/或磷酸铝。通过在二氧化钛纳米颗粒存在时水热处理无定形水合金属氧化物来形成金属氧化物纳米颗粒。
通过如下方式制备纳米复合颗粒:首先形成包含二氧化钛纳米颗粒、至少一种可溶金属氧化物前体和溶剂的浆料,然后使可溶金属氧化物前体沉淀以形成包含二氧化钛纳米颗粒、无定形水合金属氧化物和溶剂的浆料。然后将浆料水热处理以将无定形水合金属氧化物转变为金属氧化物纳米颗粒,并产生包含氧化钛纳米颗粒和金属氧化物纳米颗粒的纳米复合颗粒。在水热处理之前添加表面稳定剂,或者在水热处理之后立即添加表面稳定剂。
出人意料地,该纳米复合颗粒显示出增强的热稳定性,并成为用 于DeNOx处理的活性催化剂载体。
发明详述
本发明的纳米复合颗粒包含二氧化钛纳米颗粒,至少一种金属氧化物纳米颗粒和表面稳定剂。
本发明的二氧化钛纳米颗粒具有低于200nm的平均微晶尺寸,优选1-100nm,最优选2-20nm。二氧化钛纳米颗粒可以为板钛矿、锐钛矿或金红石相。然而,优选二氧化钛纳米颗粒主要为通过x射线衍射图确定的锐钛矿。主要为锐钛矿意指纳米颗粒为至少95%锐钛矿,且最优选大于98%锐钛矿。二氧化钛纳米颗粒的比表面积典型为约10到约300m2/g,优选20-200m2/g。
可以从MillenniumChemicals(G1)或KerrMcGee(HydratePaste)购得合适的二氧化钛纳米颗粒。还可以通过现有技术中已知的任何方法制备二氧化钛纳米颗粒。现有技术公知制备二氧化钛纳米颗粒的方法。参见,例如美国专利No.4012338,在此通过引用将其并入本文。
该纳米复合颗粒包含至少一种金属氧化物纳米颗粒。金属氧化物纳米颗粒有助于改善二氧化钛纳米颗粒的热稳定性。合适的金属氧化物纳米颗粒具有高温下的热稳定性、低的热膨胀系数和良好的机械强度。本发明的金属氧化物纳米颗粒包括二氧化锆、二氧化铈、氧化铪、氧化锡、氧化铌、氧化钽及其混合物的纳米颗粒。优选的金属氧化物纳米颗粒是二氧化锆和二氧化铈,而最优选的是二氧化锆纳米颗粒。本发明的金属氧化物纳米颗粒具有低于200nm的平均微晶尺寸,优选1-50nm,且最优选2-10nm。
该纳米复合颗粒还含有表面稳定剂。本发明的表面稳定剂包括二氧化硅、氧化铝、五氧化二磷、硅酸铝和磷酸铝。更优选地,表面稳定剂是二氧化硅或氧化铝。
该纳米复合颗粒优选含有50-95重量%二氧化钛、2-48重量%金属氧化物和2-20重量%表面稳定剂。更优选地,该纳米复合颗粒含有 60-90重量%二氧化钛、4-40重量%金属氧化物和4-15重量%表面稳定剂。
本发明的纳米复合颗粒显示出提高的热稳定性。优选地,该纳米复合颗粒在800℃煅烧6小时后具有大于60m2/g的表面积。
在二氧化钛纳米颗粒存在时,通过水热处理无定形水合金属氧化物形成纳米复合颗粒的金属氧化物纳米颗粒。
制备纳米复合颗粒的方法开始于首先形成包含二氧化钛纳米颗粒、至少一种可溶金属氧化物前体和溶剂的浆料。向浆料中添加每种化合物的顺序并不重要。例如,可以首先向溶剂添加二氧化钛纳米颗粒,然后添加至少一种可溶金属氧化物前体。作为替代,可以向溶剂添加可溶金属氧化物前体,然后添加二氧化钛纳米颗粒;或者可以同时向溶剂中添加金属氧化物前体和二氧化钛纳米颗粒;或者可以将溶剂添加到另外两种组分中。形成的浆料在溶剂中包含溶解的(一种或多种)金属氧化物前体和固体二氧化钛纳米颗粒。优选地,将浆料充分混合以确保浆料是均匀的,且(一种或多种)金属氧化物前体完全溶解。
基于浆料的总重量,浆料优选含有3-30重量%二氧化钛纳米颗粒,更优选5-15重量%。
浆料含有二氧化锆、二氧化铈、氧化铪、氧化锡、氧化铌或氧化钽的至少一种金属氧化物前体。金属氧化物前体是在从溶剂中沉淀时形成金属氧化物的含金属化合物(锆化合物、铈化合物、铝化合物、铪化合物、锡化合物和/或铌化合物)。尽管本发明的方法不受限于特定金属氧化物前体的选择,但本发明中有用的适宜金属化合物包括但不限于锆、铈、铪、锡、铌和钽的金属乙酰丙酮化物、金属卤化物、金属卤氧化物、金属醇盐和金属乙酸盐。例如,可以使用四氯化锆、三氯氧化钽、乙酸铈、乙酰丙酮化铌和四乙氧基锡。
溶剂是能够溶解(一种或多种)金属氧化物前体的任何液体。优选地,溶剂是水。然而,具有高介电常数的非水性质子溶剂也是合适的。优选的非水性质子溶剂是醇。优选的醇包括低级脂肪C1-C4醇,例 如甲醇、乙醇、异丙醇、叔丁醇及其混合物。还可以采用水和一种或多种非水性质子溶剂的共混物。
形成浆料后,使可溶金属氧化物前体从浆料中沉淀形成无定形水合金属氧化物。在本发明方法中,可以使用能够从溶液中沉淀无定形水合金属氧化物的任何适当方法。例如,可以采用形成不可溶盐或氢氧化物的pH位移、溶剂位移、离子交换,浓缩反应和热水解技术。优选地,通过添加能够从浆料中沉淀金属氧化物的酸或碱将浆料的pH调节到7-10的pH值。调节pH的物质优选是在后处理(例如通过煅烧纳米复合颗粒)期间能够分解的碱或酸。合适的碱包括胺类、氨以及具有9.0以上pKa的任何有机碱。最优选氨。还可以采用任何有机或无机酸。优选的酸包括硝酸、硫酸和盐酸;最优选硝酸。
沉淀之后,浆料包含二氧化钛纳米颗粒、无定形水合金属氧化物和溶剂。无定形水合金属氧化物可以沉积于二氧化钛纳米颗粒的表面,自由漂浮于浆料中,或是二者的结合。
沉淀步骤后,水热处理浆料以将无定形水合金属氧化物转化为金属氧化物纳米颗粒,并产生包含氧化钛纳米颗粒和金属氧化物纳米颗粒的纳米复合颗粒。水热处理是将浆料加热到高温,优选在提高的压力下进行。优选地,将浆料加热到60-250℃的温度,且压力为20-500psig。更优选地,将浆料加热到80-130℃的温度,且压力为20-200psig。
优选地,水热处理浆料持续3-24小时,然而时间并不重要。水热处理的温度、压力和时间对于金属氧化物纳米颗粒的成核和生长必须足够。水热方法的一个优势是其在相对温和的反应条件下形成金属氧化物纳米颗粒,所述条件可以最小化对二氧化钛纳米颗粒的表面性能以及晶体结构的任何影响。
在水热处理之前添加表面稳定剂,或者在水热处理之后立即添加表面稳定剂。在一种方法中,可以在水热处理之前的任何时间将表面稳定剂加入浆料中。例如,可以在无定形水合金属氧化物沉淀之前或在无定形水合金属氧化物沉淀之后添加表面稳定剂。然后以上述方式 处理浆料。作为替代,可以在水热处理之后即刻,即在从溶剂分离出纳米复合颗粒产物以及任选的煅烧之前添加表面稳定剂。优选地,将表面稳定剂加入浆料中并充分混合。典型地,在添加表面稳定剂之后将浆料混合一分钟到三小时的时间。用于表面稳定剂的合适化合物包括无定形二氧化硅,包括胶状二氧化硅、硅和铝的卤化物或醇盐、以及磷酸铝。
水热处理之后,优选通过任何手段(例如过滤、倾析、离心等)从溶剂中分离出纳米复合颗粒产物,水洗并干燥。优选地,通过在高温下的烧制来煅烧纳米复合颗粒。可以在氧气(例如来自空气)的存在下或者在基本无氧的惰性气体例如氮气、氩气、氖气、氦气等或其混合物的存在下执行煅烧。任选地,可以在还原性气体例如一氧化碳存在时执行煅烧。优选在至少250℃的温度下执行煅烧。更优选地,煅烧温度至少为300℃但不高于1000℃。典型地,约0.5-24小时的煅烧时间将是足够的。
本发明还包含含有纳米复合颗粒的催化剂。该催化剂包含纳米复合颗粒和至少一种金属组分。金属组分包含一种或多种金属,包括铂、金、银、钯、铜、钨、钼、钒、铁、铑、镍、锰、铬、钴和钌。金属组分可以是金属本身或者含有金属的任何化合物。优选地,金属组分是金属氧化物。
基于催化剂的总重量,催化剂中存在的金属的量典型为0.001-30重量%,优选0.005-20重量%,且特别为0.01-10重量%。
可以通过任何合适的方法制备催化剂。在一种方法中,在制备纳米复合颗粒本身期间添加金属组分。例如,可以在水热处理之前或之后将金属组分加入浆料中,并以上述的同样方式处理。作为替代,可以直接在纳米复合颗粒上沉积金属组分。例如,可以通过浸渍、吸附、沉淀等将金属组分承载在纳米复合颗粒上。
除了金属醇盐例如乙醇钨、金属卤化物例如氯化钨、金属卤氧化物例如氯氧化钨、金属酸例如钨酸、以及金属氧化物例如钨酸氨、五氧化二钒、氧化钼和一氧化铜之外,合适的金属组分还包括金属自身。
优选的催化剂含有三氧化钨和/或五氧化二钒。优选地,催化剂包含0.1-10重量%五氧化二钒和4-20重量%三氧化钨,更优选0.2-7重量%五氧化二钒和4-16重量%三氧化钨,且最优选0.2-5重量%五氧化二钒和5-12重量%三氧化钨。
可以在添加金属组分之前或之后煅烧纳米复合颗粒。煅烧纳米复合颗粒的温度取决于其预期的最终应用。优选地,在400-900℃下执行煅烧,更优选600-800℃,最优选650-750℃。
在DeNOx应用中,该催化剂特别有用。DeNOx应用包含使含有氮氧化物的废物流与催化剂接触以降低废物流中的氮氧化物的量。本领域公知这样的应用。在该过程中,在催化剂存在下,通过氨(或存在于废气流出物中的另一还原剂例如未燃烃)还原氮氧化物,并形成氮气。参见例如美国专利No.3279884、4048112和4085193,通过引用将其教导并入本文。
以下的实施例仅说明本发明。本领域技术人员将认识到落入本发明的精神和权利要求的范围内的很多变体。
实施例1:纳米复合物的制备
纳米复合物1A
二氧化钛纳米颗粒的制备:将TiSO4溶液(2000g,7.6重量%TiO2)装入3L的反应器,并于室温下在恒定搅拌下使用氢铵化铵溶液(29%的NH3水,Aldrich产品)将该溶液的pH调节到约1。然后将尿素(550g)溶于该溶液中,并将温度升至98℃持续3小时。冷却后,通过过滤分离二氧化钛纳米颗粒,并水洗。将过滤的钛纳米颗粒再分散于水中形成2L浆料。
纳米复合物的制备:将2L浆料的二分之一加入2L的烧杯中,并将ZrOCl2·8H2O(50g)溶于浆料中。在强搅拌下,缓慢加入氢氧化铵溶液(29%的NH3水)直到浆料的pH为约10且ZrO2沉淀。然后将气相法SiO2(5g)加入浆料,将浆料装入2L的搅拌的水热反应器中,并在 90℃下水热处理12小时。冷却产物,通过过滤分离并水洗。将清洗的滤饼在烘箱中于100℃下干燥12小时,并在800℃的炉中煅烧6小时以产生纳米复合物1A。
纳米复合物1B-1H:仿效上述纳米复合物1A的纳米复合颗粒的工序,但不同的是使用商购TiO2纳米颗粒(MillenniumG1)。颗粒1B、1C和1D、1E以及1F使用气相法SiO2作为表面稳定剂,颗粒1G使用SiO2溶胶作为表面稳定剂,而颗粒1H使用磷酸铝作为表面稳定剂。改变TiO2、ZrO2和表面稳定剂的量以提供具有改变组成的纳米复合物1B、1C、1D、1E、1F、1G和1H。
对比的纳米复合物1I-1J:仿效上述纳米复合物1B的纳米复合颗粒的工序,但不同的是对纳米复合物1I省略了ZrO2,而对纳米复合物1J省略了SiO2。
分析所获的纳米复合物(在800℃下煅烧后)的组成、表面积、孔容积以及TiO2和ZrO2晶粒尺寸的测量。结果参见表1。
通过x射线衍射测试确认了水热处理后形成金属氧化物纳米颗粒。在水热处理之前,通过x射线衍射仅检测到二氧化钛纳米颗粒。在水热处理之后,检测到对应于金属氧化物纳米颗粒的第二晶体相。
实施例2:DeNOx催化剂的制备
根据同时待审的美国申请NO.10/968706中描述的工序制备该催化剂。在去离子水(175ml)中使纳米复合物(75g)浆料化。并添加浓硫酸直到pH达到0。将仲钨酸铵溶液(通过在50℃下混合9.38gAMT与150ml去离子水形成)加入纳米复合物浆料并混合1小时。过滤粉末,在110℃下干燥过夜,然后在500℃下煅烧6小时。然后将粉末(10g)加入氧化钒溶液(通过将0.185g单乙醇胺和0.092gV2O5在20ml去离子水中于60℃下混合直到溶解)并搅拌10分钟。将溶剂在真空下蒸发并将固体在110℃下干燥过夜,然后在600℃煅烧6小时。该催化 剂包含约10重量%WO3和0.9重量%V2O5。
纳米复合物1A、1B、1C、1D、1E、1F、1G、1H、1I和1J分别用于形成催化剂2A、2B、2C、2D、2E、2F、2G、2H、2I和2J。
实施例3:DeNOx测试
将催化剂装入具有进料的常规活塞流反应器中,所述进料的组成为:300ppmNO、360ppmNH3、3%O2、10%H2O和余量的N2,其空间速度为80000/hr。在270℃和320℃下进行NH3催化还原反应。
结果显示于表2中。将结果记录为NO转化率百分比和活度。活度用k*tau表示,其中k*tau代表活度常数乘以接触时间。通常认为,氨(NH3)选择性催化还原对于NO为一阶,对于NH3为零阶。因此,活度以k*tau=-ln(1-转化率)从转化率计算得出,其中以1的分数表示转化率。
表1纳米复合颗粒中的TiO2、ZrO2和表面稳定剂的量

*对比例
表2:DeNOx结果


*对比例

纳米复合颗粒及其制备方法.pdf_第1页
第1页 / 共9页
纳米复合颗粒及其制备方法.pdf_第2页
第2页 / 共9页
纳米复合颗粒及其制备方法.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《纳米复合颗粒及其制备方法.pdf》由会员分享,可在线阅读,更多相关《纳米复合颗粒及其制备方法.pdf(9页珍藏版)》请在专利查询网上搜索。

公开了一种纳米复合颗粒,其作为催化剂的用途,及其制备方法。该纳米复合颗粒包含二氧化钛纳米颗粒、金属氧化物纳米颗粒和表面稳定剂。在二氧化钛纳米颗粒存在时水热形成金属氧化物纳米颗粒。该纳米复合颗粒是有效的催化剂载体,特别用于DeNOx催化剂用途。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般的物理或化学的方法或装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1