制备纤维蛋白原受体拮抗剂的方法.pdf

上传人:1520****312 文档编号:549527 上传时间:2018-02-21 格式:PDF 页数:21 大小:662.32KB
返回 下载 相关 举报
摘要
申请专利号:

CN93102136.7

申请日:

1993.02.27

公开号:

CN1076441A

公开日:

1993.09.22

当前法律状态:

终止

有效性:

无权

法律详情:

未缴年费专利权终止IPC(主分类):C07D 211/22申请日:19930227授权公告日:20000329终止日期:20120227|||专利权人的姓名或者名称、地址的变更变更事项:专利权人变更前:麦克公司 地址: 美国新泽西州变更后:默克公司 地址: 美国新泽西州|||授权||||||公开

IPC分类号:

C07D211/22

主分类号:

C07D211/22

申请人:

麦克公司;

发明人:

J·Y·L·钟; D·L·休斯; D·赵

地址:

美国新泽西州

优先权:

1992.02.28 US 843,658

专利代理机构:

中国专利代理(香港)有限公司

代理人:

姜建成;卢新华

PDF下载: PDF下载
内容摘要

本发明是一种制备下式化合物的高效合成法,其中:R1为含有1或2个杂原子的饱和或不饱和六元杂环,其中的杂原子为N;或NR6,其中R6为H或C1-10烷基;m为2—6的整数;R4为芳基、C1-10烷基或C4-10芳烷基。

权利要求书

1: 一种制备下式化合物的方法: 其中: R 1 为含有1或2个杂原子的饱和或不饱和六元杂环,其中的杂原子为N;或NR 6 ,其中R 6 为H或C 1-10 烷基; m为2-6的整数; R 4 为芳基、C 1-10 烷基或C 4-10 芳烷基; 该方法包括如下步骤: 用R 4 SO 2 Cl使酪氨酸或酪氨酸衍生物(1-1)进行由二(三甲基甲硅烷基)三氟乙酰胺(BSTFA)介导的磺酰化,得到相应的磺酰胺(1-2); 使甲基化的R 1 与正丁基锂反应,然后用一端带Br、另一端带Cl的直链烷基淬灭,得到R 1 (CH 2 ) m Cl; 将(1-2)加到(1-4)中,在高极性非质子性溶剂中,在碱性氢氧化物水溶液中进行苯酚的O-烷基化反应。
2: 权利要求1的方法,其中,R 1 为吡啶,用Pd/C在乙酸中使下式化合物选择性氢化,
3: 权利要求2的方法,其中,磺酰化步骤(a)在乙腈中进行。
4: 权利要求2的方法,其中,苯酚的O-烷基化步骤(c)在约65℃下,在3N  KOH和一种高极性非质子溶剂中进行,所述溶剂选自1,3-二甲基-3,4,5,6-四氢-2(1H)-嘧啶酮或二甲亚砜。

说明书


1991年8月30日提交的美国申请750,647描述了纤维蛋白原受体拮抗剂及制备按本发明方法所制备的纤维蛋白原受体拮抗剂的方法。具体地说,下式化合物是按一种11步法制备的:

    这一方法涉及有潜在危害的NaH/DMF的生成,以便生成醚,该方法需要一个色谱纯化步骤。

    Singerman等(J.Heterocyclo  Chem.3:74,1966)描述了一种制备4-(4-吡啶基)丁基氯的方法,该方法需6步。而本发明方法只需一步便可制得这种化合物。

    Solar等(J.Org.Chem.31:1996,1966)描述了酪氨酸的O-烷基化。但本发明所述的N-磺酰化酪氨酸的选择性O-烷基化还没有先例。

    本发明是制备下式化合物的一种高效合成法:

    其中:

    R1为含有1或2个杂原子的饱和或不饱和六元杂环,其中杂原子为N;或NR6,其中R6为H或C1-10烷基;

    m为2-6的整数;

    R4为芳基、C1-10烷基或C4-10芳烷基。

    本发明是一种制备下式的纤维蛋白原受体拮抗剂的方法

    其中:

    R1为含有1或2个杂原子的饱和或不饱和六元杂环,其中杂原子为N;或NR6,其中R6为H或C1-10烷基;

    m为2-6的整数;

    R4为芳基、C1-10烷基或C4-10芳烷基;

    该方法包括如下步骤:

    在乙腈中,用R4SO2Cl使酪氨酸或酪氨酸衍生物(1-1)进行由二(三甲基甲硅烷基)三氟乙酰胺(BSTFA)介导的磺酰化,得到相应的磺酰胺(1-2);

    使甲基化的R1(1-3)与正丁基锂反应,然后用一端带Br、另一端带Cl的直链烷基淬灭,得到R1(CH2)mCl(1-4);

    将(1-2)加到(1-4)中,优选在约65℃,在非质子性极性溶剂中,在碱性氢氧化物(优选3N  KOH)中进行苯酚的O-烷基化反应,所述非质子性极性溶剂的例子有:1,3-二甲基-3,4,5,6-四氢-2(1H)-嘧啶酮(DMPU)、二甲亚砜(DMSO)、N-甲基吡咯烷酮(N-MP)、1,3-二甲基-2-咪唑烷酮(DMEU)、四甲基脲(TMU)或N,N-二甲基乙酰胺(DMA),优选高度非质子性的溶剂,如DMPU或DMSO,更优选地是DMSO。

    R1为吡啶时,用Pd/C在乙酸中实现选择性氢化。

    最好是,本发明是制备式Ⅰ化合物的一种高效合成法:

    该合成法采用三甲基甲硅烷基作临时保护,从而能够用L-酪氨酸本身以一釜合成法进行选择性磺酰化。

    该合成法优选采用以下条件:

    1)用4-甲基吡啶作为哌啶的潜伏形式(这样便不需要保护基),并借助4-甲基吡啶基锂用3-溴-1-氯丙烷进行三碳同系物化反应;

    2)用BSTFA进行(L)-酪氨酸的临时双-O,O′-甲硅烷基化,从而用n-BuSO2Cl进行选择性N-磺酰化,以高收率一步得到磺酰胺并避免了外消旋作用;

    3)利用简单试剂即碱水溶液(NaOH或KOH,优选3N  KOH),在DMPU(1,3-二甲基-3,4,5,6-四氢-2(1H)-嘧啶酮)或DMSO中以高收率选择性地形成苯基醚;

    4)在酪氨酸环存在下,用Pd/C在乙酸中进行吡啶环的选择性氢化。

    本发明的合成法使用廉价的原料和试剂,避免了先有技术使用有潜在危害的NaH/DMF混合物诱导醚生成的加工步骤。先有技术需要一个色谱纯化步骤,而本发明的合成法无需这种色谱纯化。

    步骤1:N-n-BuSO2-(L)-酪氨酸(2)

    取配有机械搅拌器、冷凝器、氮气入口、HCl捕集器、加热装置和温度计探头的50升四颈圆底烧瓶,用氮气吹扫过夜,然后装入L-酪氨酸(1040g,5.74摩尔)(1)、CH3CN(20.8升)、N,O-二(三甲基甲硅烷基)三氟甲基乙酰胺(3103g,12.054摩尔)。将该悬浮液于85℃加热至轻微回流2小时。所得的澄清溶液经1H NMR鉴定主要是O,O′-二(三甲基甲硅烷基)-(L)-酪氨酸,将其冷却到40℃,在30分钟内缓慢加入吡啶(544.84g,6.888摩尔)和n-BuSO2Cl(989.0g,6314摩尔)。然后使反应混合物在70℃下熟化3小时,再于室温下熟化14小时。在分批浓缩器中除去几乎所有的溶剂,所得的油状残余物用15%KHSO4(20.8升)处理,并剧烈搅拌1小时。混合物用乙酸异丙酯(3×6.2升)萃取。有机层合并后用EcosorbTMS-402(3.12kg)处理,并在室温下搅拌过夜。过滤除去EcosorbTM,滤饼用乙酸异丙酯(4.2升)洗涤。将滤液蒸发至干,将所得的黄色油状物溶解在热乙酸乙酯(45-50℃,1.25升)中。搅拌下向溶液中缓慢加入己烷(3.74升),所得浆液在室温下搅拌过夜。过滤收集固体物,滤饼用乙酸乙酯/己烷(0.2升/1.89升)洗涤。真空干燥后,得到1457g(84%)白色固体状的(2)。

    HPLC测定:99.6%(面积);保留时间=7.55分;Zorbax RX-C8柱,内部尺寸为4.6mm×25cm;220nm;1.5ml/分;10分钟内线性梯度10-90%A,A=CH3CN,B=0.1%H3PO4水溶液;mp=125-126.5℃;

    [α]25D=-25.2°(c 0.80,MeOH);MS(EI)m/z 301(M+).

    1H NMR(CD3OD)δ0.81(t,J=7.2Hz,3H),1.24(m,2H),1.45(m,2H),2.61(t,J=7.9Hz,2H),2.73(A of ABX,JAB=13.8Hz,JAX=9.8Hz,1H),3.07(B of ABX,JBA=13.8Hz,JBX=4.7Hz,1H),4.07(X of ABX,JXA=9.8Hz,JXB=4.7Hz,1H),6.72(d,J=8.4Hz,2H),7.10(d,J=8.4Hz,2H).

    13C NMR(CD3OD)δ13.9,22.5,26.5,39.1,54.1,59.5,116.3,129.2,131.6,157.5,175.3.

    元素分析 计算值 C13H19O5SN:C,51.81;H,6.35;N,4.65;S,10.64.实测值:C,51.73;H,6.28;N,4.60;S,10.82.

    步骤2:4-(4-吡啶基)丁基氯盐酸盐(4)

    制备4-(4-吡啶基)丁基氯时,必须将4-甲基吡啶和正丁基锂在40℃下加热2小时,以使正丁基锂完全消耗。如果不加热,部分未反应的正丁基锂会与3-溴-1-氯丙烷发生金属转移反应,生成正丁基溴,后者则与4-甲基吡啶基锂反应生成4-戊基吡啶。将4-甲基吡啶基锂在≤-65℃下反向加入到3-溴-1-氯丙烷中,对于避免双烷基化产物1,5-二(4-吡啶基)戊烷的生成是很关键的。完全清除THF和水对顺利生成盐酸盐是很重要的,因为THF能与HCl反应生成4-氯丁醇,从而使盐酸盐的溶解度增加而降低其回收率;而有水存在时则由于水合物的胶状性质而使盐酸盐很难过滤。采取这些预防措施后,4-(4-吡啶基)丁基氯盐酸盐(4)的制备收率为92%,纯度为98%。

    取配有机械搅拌器、冷凝器、带侧臂加料漏斗和温度计探头的22升四颈圆底烧瓶,用氮气吹扫过夜。加入THF(4.1升)和4-甲基吡啶(838.2g,9.0摩尔),并将该批物料冷却到≤-70℃。缓慢加入正丁基锂的己烷溶液(1.41M,7.02升),同时保持内部温度≤-50℃。

    加料过程耗时约1小时,得到带有一些沉淀物的橙色溶液。反应在0℃下进行时,观察到收率明显下降,而杂质的生成量则增加。

    撤下干冰浴,使该批物料温热至室温,然后在40-45℃下加热2小时。

    在40-45℃下加热是使4-甲基吡啶完全锂化而不发生分解的最佳温度。如果没有这一加热操作,未反应的正丁基锂则与3-溴-1-氯丙烷发生金属转移反应而生成正丁基溴,后者又与4-甲基吡啶基锂反应生成难以与所需产物分离的4-戊基吡啶。在更高的温度下加热造成明显的分解。

    加入THF(4.1升)以溶解4-甲基吡啶基锂浆液,得到深橙色溶液。将该批物料冷却到0℃,然后利用气动泵,通过聚丙烯管将其小心加入到3-溴-1-氯丙烷的-75℃  THF溶液(1.5升)中,同时保持内部温度≤-65℃,所述溶液装在配有机械搅拌器、氮气入口/出口和温度计探头的50升干燥三颈圆底烧瓶中。

    4-甲基吡啶基锂与3-溴-1-氯丙烷的反应是放热反应。极为关键的是要保持内部温度低于-65℃,以避免所需产物与4-甲基吡啶基锂反应生成1,5-二(4-吡啶基)戊烷。加料过程持续约2小时。

    使该批物料逐渐温热到0℃过夜,然后进行后处理,加入9升水,搅拌10分钟,分开各层,用乙酸异丙酯(5升)萃取水层。有机层合并后,用在接收器和外部真空管之间配有两个附加捕集器的分批浓缩器,于40℃下真空浓缩至原体积的三分之一,然后加入乙酸异丙酯(6升),并再次浓缩至原体积的三分之一。

    用乙酸异丙酯共沸法完全除去THF和水对于盐酸盐的顺利生成具有关键作用。THF能与HCl反应生成4-氯丁醇,从而提高了盐酸盐的溶解度而降低了其回收率。有水存在时得到胶状固体,使盐酸盐很难过滤。

    将该批物料冷却到-10℃,然后用9.0摩尔HCl在3升乙酸异丙酯中的溶液处理。

    HCl的乙酸异丙酯溶液是在前一天配制的,配制方法是,在-10℃下将HCl气体通入乙酸异丙酯中,直到累积了9.1摩尔的HCl(按重量计算),并在室温下贮存。HCl的损失约为1%。在该批物料中加入HCl的过程是放热的。温度升至+35℃。

    搅拌1小时后,利用气动泵将所得浆液经聚丙烯管移入置于真空下并充满氮气的密闭粗滤漏斗中。将固体用THF(总体积为4.5升)洗涤若干次,并用氮气流减压干燥,得到1710.4g(92%)白色固体状的(4)。

    HPLC测定:98%(面积);保留时间=2.40分;Zorbax RX柱,内部尺寸4.6mm×25cm;220nm;1.5ml/分;恒溶剂50%/50% A/B,A=CH3CN,B=0.01M癸磺酸钠盐在0.1% H3PO4水溶液中的溶液。4-甲基吡啶的保留时间=1.7分。

    mp 119-120.5℃;MS(CI)m/z 169(M+-HCl).

    1H NMR(CD3OD)δ1.79-2.00(m,4H),3.01(t,J=7.3Hz,2H),3.36(t,J=6.1Hz,2H),8.00(d,J=6.7Hz,2H),8.75(d,J=6.7Hz,2H);

    13C NMR(CD3OD)δ28.1,33.0,36.1,45.3,128.6,142.2,166.1;

    元素分析 计算值 C9H13NCl2:C,52.45;H,6.36;N,6.80;Cl,34.40,实测值:C,52.22;H,6.40;N,6.51;Cl,34.11.

    步骤3:苯基醚(5)的生成

    在KOH介导的偶联反应中,脲-碱溶剂(DMPU、DMEU、TMU)和DMSO给出最佳的测定收率,即85-96%。DMA和N-MP给出的测定收率为80-85%。据发现,DMPU对减少双烷基化产物的生成来说是最佳溶剂(1%),而DMSO给出的双烷基化产物产量最高(2%)。

    建立了一种偶联产物直接分离法,该方法避免了大量使用二氯甲烷进行萃取。

    用Ecosorb处理稀水溶液性质的反应混合物,过滤后将pH调至其等电点(pH 4.8),以80%的收率得到粗产物,纯度为93-95%(面积)。接着再调节pH(pH5.5),用10%乙酸/水洗涤两次,除去未反应的n-BuSO2-Tyr和双烷基化杂质,以77%的孤立收率得到纯度为99+%(面积)的米色固体。如果双烷基化杂质的量仍然不合格(>0.1%(面积)),则应再进行一次10%乙酸/水洗涤。另外,也可以在进行Ecosorb处理和过滤后把pH调到5.5而非4.8,使产物的沉淀和n-BuSO2-Tyr的去除合并为一步。这将省去一次分离。

    醚的生成及纯化

    步骤3a:

    在配有机械搅拌器、冷凝器、氮气入口和温度计探头的50升四颈圆底烧瓶中,装入N-正丁烷磺酰基-(L)-酪氨酸(1386.3g,4.60摩尔)、4-(4-吡啶基)丁基氯盐酸盐(1137.8g,5.52摩尔)和DMSO(16.56升)。在剧烈搅拌下,用15分钟加入3N  KOH水溶液(5.52升,16.56摩尔)。

    3N  KOH水溶液与其余物料的混合过程中略有放热。用冷却水将该操作的温度保持在30-40℃范围。

    加入碘化钾(7.64g,46.0毫摩尔),将混合物于65℃下加热24小时,再于60℃下加热12小时(或加热到经HPLC分析判定95%完全为止)。冷却到室温后,混合物用0.25N  NaOH(46升)稀释,用叔丁基甲基醚(23升)萃取一次。水层用Ecosorb  S-402(2.0kg)和Nuchar  SA(150g)处理,所得混合物(~67升)机械搅拌1小时。将混合物用粗孔烧结漏斗过滤,滤饼用69升去离子水洗涤。将合并的滤液(~136升)置于配有pH计探头和机械搅拌器的200升容器中。在剧烈搅拌下加入NaCl(2.5kg),搅拌30分钟,然后加入50%乙酸水溶液(~4升)直到pH4.80,并继续搅拌2-3小时。

    初始pH约为13.3。pH接近4.8时,有些棕色胶状物与米色固体一同形成。为了完全转化为结晶物,需要长时间搅拌。如果pH低于4.8,则应加入稀NaOH。

    所得浆液用粗孔烧结漏斗过滤,滤饼用23升去离子水洗涤。粗产物于外部真空和氮气正压下于40℃干燥20小时,得到1599g(80%)棕色和米色固体的混合物,其重量百分比纯度为95%。

    主要杂质为酪氨酸原料(0.75%(面积))和双烷基化产物(2.75%(面积))。经液相色谱测定,母液和洗涤液的合并液中含有约10%的产物。HPLC测定:产物5,96%(面积);保留时间=6.76分;酪氨酸1,保留时间=7.66分;双烷基化产物,保留时间=6.20分;Zorbax RX-C8柱,内部尺寸4.6mm×25cm;220nm;1.5ml/分;10分钟内线性梯度10-90%(面积),A=CH3CN,B=0.1%H3PO4水溶液。

    步骤3b:

    用下列方法将固体物进一步纯化至纯度为99.4%(面积)。

    在这一阶段关键是要在对物料进行氢化前除去两种杂质,因为氢化后的双烷基化杂质和酪氨酸1极难去除。

    在配有温度计探头和加料漏斗的50升圆底烧瓶中,装入粗产物5(1.50kg,3.45摩尔)和0.25 N NaOH(19.33升,4.83摩尔)。在60-70℃下小心加热几分钟使固体物完全溶解后,加入0.25 N NaHCO3(4.83升,1.21摩尔)。将溶液冷却至室温,缓慢加入1N HCl(~2.65升)将其调至pH7。缓慢加入0.5 N HCl(~5.10升)将溶液进一步调至pH5.5。持续搅拌1小时,然后将浆状液通过铺有一张鲨鱼皮滤纸和一个聚丙烯垫(10μm)的粗孔漏斗过滤,滤饼用去离子水(10升)洗涤。固体物在外部真空及氮气吹扫下干燥,得到1.42kg米色固体。

    这一处理除去了大部分酪氨酸1。这一步的样品应含有≤0.1%(面积)的1。后续的在10%乙酸/水中洗涤则除去了双烷基化杂质。建议不用中孔烧结玻璃漏斗过滤固体浆液,因为其流速极低。也不应使用粗孔烧结玻璃漏斗,因为这样会有一些穿滤。

    将固体悬浮于10%乙酸水溶液中(1g/15ml),用蒸汽加热至80℃保持5分钟,然后使其缓慢冷却至室温过夜。搅拌18小时后,在铺有一张鲨鱼皮滤纸和一个聚丙烯垫(10μm)的粗孔漏斗上收集固体,用去离子水(20升)洗涤,利用外部真空和氮气吹扫部分干燥若干小时。重复上述洗涤操作,用去离子水(20升)、甲醇(3×4升)洗涤固体,在35℃下氮气吹扫真空干燥2天。得到1.16kg(77%;总收率为62%)灰白色固体。

    后续的研究表明,甲醇洗涤并不是必需的。在这一操作中有约5%的物料损失。如果双烷基化杂质的含量超过0.1%,则应再进行一次乙酸/水洗涤。

    HPLC测定:产物5,99.8%(面积);保留时间=6.76分;酪氨酸1,保留时间=7.66分;双烷基化产物,保留时间=6.20分;Zorbax RX-C8柱,内部尺寸4.6mm×25cm;220nm;1.5ml/分;10分钟内线性梯度10-90%A,A=CH3CN,B=0.1% H3PO4水溶液。

    mp 137-138℃;[α]25D=-14.7。(c 0.91,MeOH);MS(CI)

    m/z  435(MH+).

    1H NMR(CD3OD)δ0.86(t,J=7.3Hz,3H),1.33(hex,J=7.3Hz,2H),1.68(m,2H),1.83(m,2H),2.82(m,2H),3.06(A of ABX,JAB=13.9Hz,JAX=6.3Hz,1H),3.16(B of ABX,JBA=13.9Hz,JBX=5.0Hz,1H),3.90(t,J=5.7Hz,2H),4.32(X of ABX,JXA=6.3Hz,JXB=5.0Hz,1H),6.72(d,J=8.6Hz,2H),7.17(d,J=8.6Hz,2H),7.33(d,J=6.3Hz,2H),8.49(d,J=6.3Hz,2H);

    13C NMR(CDCl3)δ13.5,21.5,25.4,26.5,28.6,35.1,38.9,53.0,57.9,67.0,114.3,125.0,128.7,130.8,145.9,155.8,157.7,175.0;

    元素分析 计算值 C22H30O5SN2:C,60.81;H,6.96;N,6.45;S,7.38.实测值:C,60.53;H,6.88;N,6.26;S,7.65.

    步骤4:氢化

    最后,用10% Pd/C在乙酸中的5%(重量)分散液,于60℃下使吡啶环选择性地氢化为哌啶环,得到纯净的目的产物,而苯酚环未发生还原。在接近理论氢吸收量时,利用HPLC和1H NMR小心监测氢化反应。一旦原料完全消耗,则应立即终止氢化。将反应混合物过滤,蒸发乙酸后用6%乙酸/水使产物结晶,得到6的游离碱。在6%乙酸/水中洗涤除去微量的原料。用2.5%(体积)浓HCl(2.1当量)在乙酸异丙酯中的溶液处理上述游离碱,得到5(盐酸盐)的单水合物,为白至灰白色固体,纯度≥99.7%(面积),总收率为94%,两种杂质的含量均为0.1%(面积)。

    步骤4a:

    在40磅/英寸2和60℃下,使苯基醚5(1.051kg,2.42摩尔)和Pd/C(53g,5%(重量))在乙酸(14升)中的10%溶液在5加仑不锈钢容器中氢化。反应接近完全时,每小时从反应液中取样一次,并在观察到原料完全消耗时立即终止反应(需5.5小时)。延长反应时间则生成杂质。

    用Solka-Flock薄垫(用乙酸洗过)过滤1ml样品,用乙酸洗涤并在旋转蒸发器上蒸发至干。所得油状物用几毫升水处理,沉淀出固体,再送回到旋转蒸发器上干燥。所得白色固体用1H NMR(CD3OD)和HPLC进行分析。整个步骤需30分钟完成。在1H NMR(CD3OD)中,7.32和8.40ppm处的吡啶峰完全消失,表明原料已完全消耗。利用HPLC(采用上述线性梯度条件)监测保留时间=~8.0分钟的杂质的量,这一杂质的量在长时间氢化时越来越显著。原料峰和产物峰彼此很接近,其保留时间分别为6.76和6.80。

    用Solka-Flock垫(820g,用5升乙酸洗过)过滤反应混合物,并用乙酸(14升)洗涤。在60℃下,用在接收器和外部真空管之间配有两个附加捕集器的分批浓缩器,将滤液浓缩成含约1kg乙酸的粘稠油状物(需约5小时)。加入去离子水(15升),使浓度达到1g/15ml  6%乙酸/水,所得浆液在室温下搅拌18小时。在铺有一张鲨鱼皮滤纸和一个聚丙烯垫(10μm)的布氏漏斗上收集固体,用去离子水(10升)洗涤,并在氮气吹扫下真空干燥,得到1.03kg(97%)白色固体。

    如果5的量仍比规定值高,则应再进行一次6%乙酸/水(1g/15ml)洗涤(至少6小时)。典型的回收率在92%左右,5的量下降3倍。

    HPLC测定:6的游离碱,99.5%(面积);保留时间=6.94分;5,保留时间=6.72分;1,保留时间=7.39分;Zorbax RX-C8柱,内部尺寸4.6mm×25cm;220nm;1.5ml/分;12分钟内线性梯度20-70%A,A=CH3CN,B=0.1% H3PO4水溶液。

    mp  223-225℃.

    1H NMR(CD3OD)δ0.88(t,J=7.3Hz,3H),1.33(m,6H),1.58(m,5H),1.76(m,2H),1.81(m,2H),2.77(t,J=7.5,2H),2.80(m,1H),2.88(m,2H),3.03(B of ABX,JBA=13.9Hz,JBX=4.6Hz,1H),3.30(m,2H),3.90-4.0(m,3H),6.80(d,J=8.5Hz,2H),7.18(d,J=8.5Hz,2H).

    元素分析 计算值 C22H37O5N2S:C,59.84;H,8.40;N,6.34;S,7.24.实测值:C,59.98;H,8.40;N,6.40;S,7.24.

    步骤4b:

    在配有机械搅拌器、氮气入口和加料漏斗的22升三颈圆底烧瓶中,装入6的游离碱(316.0g,0.717摩尔)和乙酸异丙酯(9.5升)。混合物在室温(19℃)下搅拌10-15分钟,然后滴加浓盐酸(120ml)。滴加过程持续约40分钟,整个滴加过程中温度维持在19℃。然后将混合物在室温(19℃)下再搅拌5小时。在氮气下过滤分离产物。固体产物用乙酸异丙酯(2×1升)洗涤,并在氮气下抽干过夜,得到6盐酸盐单水合物(348g),收率为98%。

    HPLC测定:6,99.8%(面积);保留时间=6.79分;Zorbax RX-C8柱,内部尺寸4.6mm×25cm;220nm;1.5ml/分;10分钟内线性梯度10-90%A,A=CH3CN,B=0.1% H3PO4水溶液;或L-700,462,99.8%(面积),保留时间=6.94分;5,保留时间=6.72分;1,保留时间=7.39分;Zorbax RX-C8柱,内部尺寸4.6mm×25cm;220nm;1.5ml/分;12分钟内线性梯度20-70%A,A=CH3CN,B=0.1%H3PO4水溶液。

    手性HPLC:L异构体,>99.9%;保留时间=10分钟;D异构体,<0.1%;保留时间=8.5分钟;ULTRON-ES-OVM柱,4.6mm×25cm,5m,带防护柱;220nm;0.7ml/分;恒溶剂,90%缓冲液(6g甲酸铵,用甲酸调至pH4.1),10%  MeOH。

    mp1 87-88℃,mp2 131-132℃;[α]25D=-14.4°(c 0.92,MeOH);

    1H NMR(CD3OD)δ0.84(t,J=7.3Hz,3H),1.23(hex,J=7.3Hz,2H),1.30-1.70(m,9H),1.75(m,2H),1.95(m,2H),2.64(t,J=7.4,2H),2.77(A of ABX,JAB=13.9Hz,JAX=9.8Hz,1H),2.95(m,2H),3.11(B of ABX,JBA=13.9Hz,JBX=4.6Hz,1H),3.47(m,2H),3.95(t,J=6.2Hz,2H),,4.09(X of ABX,JXA=9.8Hz,JXB=4.6Hz,1H),6.84(d,J=8.6Hz,2H),7.18(d,J=8.6Hz,2H).

    13C NMR(CD3OD)δ14.0,22.5,24.0,26.5,30.0,30.4,34.8,36.8,39.0,45.3,54.1,59.4,68.7,115.5,130.4,131.7,159.6,175.2.

    IR(液体石蜡,cm-1)3520,3208,3166,2800-2300,1727,1610,1595,1324,1256,1141,1119,829.

    HRMS 计算值 C22H37N2O5S 441.2423,实测值 441.2423(MH+-H2O-Cl)

    元素分析 计算值 C22H39O6ClN2S:C,53.37;H,7.94;N,5.66;Cl,7.16;S,6.48.实测值:C,53.56;H,8.04;N,5.62;Cl,7.36;S,6.53.

制备纤维蛋白原受体拮抗剂的方法.pdf_第1页
第1页 / 共21页
制备纤维蛋白原受体拮抗剂的方法.pdf_第2页
第2页 / 共21页
制备纤维蛋白原受体拮抗剂的方法.pdf_第3页
第3页 / 共21页
点击查看更多>>
资源描述

《制备纤维蛋白原受体拮抗剂的方法.pdf》由会员分享,可在线阅读,更多相关《制备纤维蛋白原受体拮抗剂的方法.pdf(21页珍藏版)》请在专利查询网上搜索。

本发明是一种制备下式化合物的高效合成法,其中:R1为含有1或2个杂原子的饱和或不饱和六元杂环,其中的杂原子为N;或NR6,其中R6为H或C1-10烷基;m为26的整数;R4为芳基、C1-10烷基或C4-10芳烷基。 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 有机化学〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1