磁性记录介质 本发明涉及一种磁性记录介质。更为具体地说,本发明涉及一种有更优记录密度的磁记录介质。
磁带、磁盘、磁鼓、磁卡等形式的磁记录介质已被广泛使用。这些磁记录介质的生产,通常是通过在诸如聚酯薄膜等非磁性载体上涂覆以磁性微粒和粘合剂为主要成份的磁性涂覆液体而完成(下文称这种记录介质为“涂覆型记录介质”),或是通过用蒸镀等镀膜技术在非磁性载体上形成一个金属薄层而完成(下文称这种记录介质为“蒸镀型记录介质”)。近年来,对磁记录介质的要求不仅趋于小型化,而且还要求有高记录密度。为适应这种需求,已提出了各种新建议。
要获得有高记录密度的磁记录介质,必要且重要的是,(1)提高输出特性,和(2)提高C/N特性。
输出,剩余磁通量密度Br,表面平滑度Rz,磁性层厚度δ,及矫顽力Hc之间有如下关系。
输出∝f(Br)-g(Rz)-h(δ/Hc)
因此,要提高输出特性,重要的是:(a)提高剩余磁通密度Br,(b)改善表面平滑度Rz以减少空隙损耗,及(c)减小磁层厚度以提高矫顽力。
另一方面,C/N特性与磁记录有效的磁颗粒数(n)有如下关系。
C/N∝n√n
因此,要提高C/N特性,主要要增加磁记录的有效磁颗粒数(n)。增加磁记录有效磁颗粒数(n)的一种有效方法是采用多层结构的磁性层。
若针对(1)提高输出特性及(2)提高C/N特性这两获得高记录密度所必要的因素,将涂覆型磁记录介质与蒸镀型磁记录介质进行比较的话,蒸镀型磁记录介质在剩余磁通密度Br,表面平滑度Rz,磁层厚度δ,矫顽力Hc,及磁记录有效磁颗粒数n所有参数方面均优于涂覆型磁记录介质。即:蒸镀型磁记录介质更适于用来制作高记录密度的磁记录介质。
尤其是,蒸镀型记录介质有一个由柱形结构构成的磁性层,它们比涂覆型磁记录介质更适合采用环形磁头进行记录。
蒸镀型磁记录介质的磁性层中的柱形结构公开在IEEETransactions on Magmetics,Vol,Mag-18,No.6,1077-1079(1982)K.Nakamura,等人的文章中。但此份参考文献中没有关于磁性层有一个不大于特定值的柱形弯曲程度的描述。
另一方面,随着记录密度的提高,磁记录介质不仅在纵向上而且在垂直方向上都需要有满意地磁特性。但是,由于纵向磁特性与垂直方向的磁特性互相影响,因此难以在两个方向上都获得满意磁特性。于是,需要磁记录介质在纵向磁特性与垂直方向磁特性之间有一种平衡。
从上述现有技术出发,本发明的目的是提供一种能进行高密度记录,输出特性和C/N特性极好,且纵向磁特性与垂直方向磁特性之间达到平衡的磁记录介质。
本发明人所做的创造性研究之成果表明,在具有两层或更多层叠置蒸镀膜构成的磁性层的蒸镀型磁记录介质中,柱弯曲程度及各个蒸镀膜层厚度与输出特性和C/N特性关系密切。
基于上述发现,本发明已取得成功。上述目的通过提供一种包含载体,和形成于其上的多层结构的磁性层的磁记录介质而实现。这个多层结构包含至少两层由柱状物构成的蒸镀金属膜,且每层蒸镀金属膜都有20%或更低的柱形弯曲度,所述蒸镀金属膜中较靠近载体的膜层,其柱形物弯曲度比更靠近表面膜层的要大。
根据本发明,上述目的也通过提供这样一种包含载体和形成于其上的多层结构的磁性层的磁记录介质而实现,其中该多层结构包括至少两层由柱状物构成的蒸镀金属膜且每层蒸镀金属膜都有20%或更低的柱形弯曲度,所述蒸镀金属膜中较靠近载体的膜层比靠近表面的膜层要厚。
在磁记录过程中,穿过磁记录介质的磁通量很重要。在本发明磁记录介质中,构成磁性层的蒸镀金属膜中其柱状物的有规形状,便于磁通量的透过,特别是在用环形磁头进行记录时,从而输出特性和C/N特征得到提高。
附图简要说明
图1是表示根据本发明的磁记录介质,构成其磁性层的蒸镀金属膜中柱状物的形态的视图。
图2是图1所示一部分柱状物的放大视图。
图3是表示用于制作本发明磁记录介质之优选装置的视图。
图4是表示磁鼓测试方法的视图。符号说明:
1.柱状物
2.载体
3.,4.蒸镀金属膜
5.磁性层
6.保护层
7.润滑剂
8.背涂层
下文将详细说明本发明的磁记录介质。
尽管本发明的磁记录介质可采取带、盘、鼓或卡的形式或其他形式,但磁带是最佳的形式。且本发明的磁记录介质尤其适于用作一种环形磁头记录/再现的磁带。
本发明的磁记录介质包括一载体和形成于其上的磁性层,其该磁性层包含至少两层蒸镀金属膜。已知的磁性或非磁性载体可以在此用作载体,并没有特殊的限制。适用的载体材料可以包括:已知的树脂诸如聚乙烯基对苯二甲酸酯,聚乙烯基环烷酯,聚乙烯硫化物,聚碳酸酯,聚酰胺,聚酰亚胺,聚酰胺亚胺,聚砜,aramides及芳族聚酰胺;金属诸如铝和铜;还有纸。载体可以为任意的形状,比如:薄膜、带、卡、盘或鼓。在形成磁性层之前,可以在空气中或真空中对载体表面做电晕放电处理、等离子体处理,易于附着的处理,热处理,除尘处理,辐照处理等等。载体的厚度适宜范围是1至300μm。
下面参考图1解释作为本发明特征的磁性层,该层有一个至少含两层蒸镀金属膜的多层结构。图1是表示根据本发明的磁记录介质,构成其磁性层的蒸镀金属膜中柱状物之形态的视图。图2是图1所示的一些柱状物的放大视图。
在图1中,数字2表示上述的载体,5表示形成在载体2上的磁性层。磁性层5由两层蒸镀金属膜3和4组成,且每个蒸镀金属膜层由柱状物1构成。数字6、7和8分别表示保护层,润滑剂层,和背涂层,它们分别地形成在本发明的磁记录介质中,如下文所述。
尽管图1所示磁性层5由两层蒸镀金属膜3和4组成,但本发明不仅限于这种实施方案。磁性层对其分层的数量没有限制,只要有含至少两层蒸镀金属膜的多层结构即可。如果磁性层仅有一层蒸镀金属膜,则会由于磁记录的有效磁颗粒数少而不能取得高的C/N特性。
磁性层最好有一层含两或三层蒸镀金属膜的多层结构。有四或更多分层的磁性层不适合,它不仅会影响生产效率,而且各分层厚度要降低,以得到与两个三个分层的磁性层一致的总厚度,这样还会导致饱合磁通密度Bs的降低。
蒸镀金属膜的材料实例包括诸如铁,钴,和镍,以及合金钴-镍,钴-铂,钴-镍-铂,铁-钴,铁-镍,铁-钴-镍,铁-钴-硼,钴-镍-铁-硼,及钴-铬。也可以用铁-氮,铁-氮-氧,铁-碳,铁-碳-氧等等材料。在形成蒸镀金属膜的过程中适宜送入氧化性的气体,以便在蒸镀金属膜的表面形成一层氧化膜作为保护膜。氧化性气体可以是空气和氧气,以后者为好。
各蒸镀金属膜层也可以由相同材料或不同的材料制成,但最好是同种材料。
在本发明中,蒸镀金属膜适宜用物理蒸镀工艺(PVD工艺)形成,比如真空镀或溅射镀方法。这些用于形成蒸镀金属膜的工艺将在下文给出。
每个蒸镀金属膜都有一个20%或更小的柱形弯曲度。如果蒸镀金属膜的柱形弯曲度超过20%,则磁通穿透率将变得不足,因而不能获得输出特性和C/N特性优异的磁记录介质。柱形弯曲度越小越好。具体说来,柱形弯曲度在15%或更小较为理想,最好是10%或更小。如图2所示,柱形弯曲度是长度(B)和长度(A)经下述等式计算所得的值,长度(B)是柱形物两端之间直线的长度,而长度(A)是垂直于上述直线并构成该上述直线与柱形物之间最大间距的直线a-b。
弯曲度(%)=(A/B)×100
在图1中示出了一种有两层蒸镀金属膜的磁性层例子。从该图中可看出柱形物的形态,是带纵向上的蒸镀金属膜垂直截面的横向电磁场图。
靠近载体的蒸镀金属膜之柱形弯曲度大于靠近表面的蒸镀金属膜的柱形弯曲度。即,各蒸镀金属膜按这样的方式形成:在所有蒸镀金属膜中,最靠近载体的蒸镀金属膜柱形弯曲度最大,最靠近表面的蒸镀金属膜其柱形弯曲度最小,柱形弯曲度从载体至表面是递减的。由于这一结构,短波信号,即高频信号可记录在靠近表面的蒸镀金属膜中;而长波信号,即低频信号可记录在靠近载体的蒸镀金属膜中。因此,频率特性可进一步得到改善。
在上述磁性层中,靠近载体蒸镀金属膜的厚度比靠近表面(在图1中是靠近润滑剂)的蒸镀金属膜要厚。即:各蒸镀金属膜按这样的方式形成:在全部蒸镀金属膜中,最靠近载体的蒸镀金属膜最厚,而靠近表面的蒸镀金属膜较薄,此厚度从载体至表面递减。由于蒸镀金属膜的这种梯度,在从低频到高频的整个范围内可得到均衡的特性。在本发明中,当用透过式电子显微镜(TEM)检查蒸镀金属膜的垂直纵剖面,并发现两相邻蒸镀金属膜有10%或更大的厚度差时,则这些蒸镀金属膜被认为是“有厚度差”。尽管蒸镀金属膜需要有小的厚度,以使磁记录介质有较高的高频输出特性,但它们也需要有一定的厚度,以获得满意的低频输出特性。从均衡高频输出与低频输出的观点来说,每层蒸镀金属膜厚度需在500至2,500,最好从600至1,500。
磁性层的总厚度需在1000至5000,最好在1200至3000之间。若该总厚度小于,1000,则磁性层会有寿命不够长的问题。若该总厚度超过5000,则会有自去磁作用增大的缺点。
在本发明优选实施例的磁记录介质中,每层蒸镀金属膜有20%或更低的柱形弯曲度,且靠近载体的膜层比靠近表面的膜层有更高的柱形弯曲度和更大的厚度。正是由于这种结构,高频信号可记录在靠近表面的蒸镀金属膜中,而低频信号可记录在靠近载体的膜层中。从而使频率特性得以进一步地改善。
在本发明磁记录介质的另一优选实施例中,靠近载体的蒸镀金属膜柱形弯曲度(下层的)至少是靠近表面膜层(上层)柱形弯曲度的两倍。在蒸镀金属膜由两个叠层构成时,下层需有20%或更低(最好从8到15%)的柱形弯曲度,而上层需有10%或更低(最好5到10%)的柱形弯曲度,因为这可以更进一步地改善频率特性。与蒸镀金属膜由三层或更多层叠加构成时,两相邻的蒸镀金属膜需满足上述对柱形弯曲度的要求,即:靠近载体的膜层柱形弯曲度至少是另一膜层柱形弯曲度的两倍。
在本发明磁性记录介质的另一优选实施例中,每个蒸镀金属膜都由柱形物构成,在其中,柱形物两端连线与基面所成三角(柱形物倾角,θ)为20至80°,如图2所示。选择上述取值范围的理由如下。如果柱形物倾角小于20°,高频输出会较低,尽管低频输出较好。如果柱形物倾角大于80°,则尽管高频输出较好,但低频输出会较低。最好是靠近载体的蒸镀金属膜具有比靠近表面的蒸镀金属膜小的柱形物倾角。即:各蒸镀金属膜按这样的方式形成,在全部蒸镀金属膜中,最靠近载体的膜层柱形物倾角最小,而越靠近表面的膜层柱形物倾角越大,即从载体至表面柱形物倾角递增。在如图1所示两个蒸镀金属膜叠层构成了磁性层的情况下,靠近载体的蒸镀金属膜柱形物倾角(下层的)最好是35至60°,而靠近表面的蒸镀金属膜(上层的)柱形物倾角最好是30至55°。
这样优选制出的磁性层除了上述特性之外,有一个1000至2500Oe(奥斯特)的纵向矫顽力,和1500至3000Oe的垂直方向矫顽力。如上所述,在纵向和垂直方向同时获得满意的磁化特性是困难的。但在本发明中,由于蒸镀金属膜经过调整,使柱形物有20%或更低的弯曲度,磁性层在纵向垂直方向之间可以有均衡的磁化特性,以便于进行高密度的记录。尽管上述矫顽力的值随柱形物弯曲度、磁头的导磁性、磁记录介质厚度等因素而变,但纵向和垂直方向矫顽力的上述具体范围是优选的,因为这些矫顽力取值在高频范围尤其能提高输出。纵向矫顽力低于1000Oe,能导致饱合磁通密度下降或使反复记录的适用性变劣。磁性层纵向矫顽力的最佳取值范围是从1,300至2,000Oe,而垂直方向矫顽力的最佳取值范围是1,700至2,900Oe。
在形成磁性层之前,为了改善磁性层的附着性,可先在载体表面上形成一个底层。此底层可以由含SiO2颗粒或其他物质的涂覆膜构成,并有0.05至0.5μm的厚度。这个底层用于在载体上产生中等的表面粗糙度,这不仅可改善磁性层附着性(比如通过斜面蒸镀形成的),而且可调整该磁性层,以使其有一个中等表面粗糙度。从而可改善工作特性。
如上所述,本发明的磁记录介值包括载体,和形成于其上的具有含至两层蒸镀金属膜的多层结构的磁性层。即:在本发明的磁性记录介质中,磁性层可直接形成在载体上,或者在载体与磁性层之间可以有一个所需的层(如上述的底层)。而且,如图1所示,本发明的磁性记录介质在磁性层5上面可以有保护磁性层的保护层6,且在保护层上可以有润滑剂层7以延长寿命。下文将解释这些保护层和润滑剂层。
通过真空镀一层碳、碳化物或氮化物膜于磁性层上来形成保护层,具体材料是类金钢石结构碳,金刚石,碳化硼,碳化硅,氮化硼,氮化硅,氧化硅,氧化铝等等。也可以用化学蒸镀工艺(CVD工艺)和PVD形成保护层。尤为有效的CVD工艺是使用微波的ECR法(电子回旋共振)和使用射频(RF)波的方法。在用CVD工艺形成保护层的情况下,所用的原料可以是气态,液态和固态中的任意一种。
保护层适宜用类金刚石碳构成。在使用气体原料形成类金刚石碳原保护层时,气体原料适宜用甲烷/氩气的混合气体,乙烷/氢的混合气体,或甲烷/氢气的混合气体。在使用液体原料形成类金刚石碳的保护层时,液体原料适宜为乙醇,或饱和烃。在使用固体原料形成类金刚石碳的保护层时,固体原料适宜为萘或更高的链烷烃。在此情况下,该固体原料可以被加热或受超声波照射。
PVD工艺的例子包括热蒸发法,溅射法,和离子镀层法。可以使用这些中的任何一种,但溅射效果尤佳。在用溅射法形成类金刚石碳保护层的情况下,溅射适宜在甲烷/氩气混合气或甲烷/氢气混合气中用石墨靶进行。在用溅射法形成氮化硅保护层时,溅射适宜在氩气/氮气混合气,氩气/氨气混合气体,氮气,氨气,或氨/单硅烷(SiH4)混合气中用硅靶进行。当用溅射法形成氧化铝保护层的情况下,最好在氩气/氧气混合气中用铝靶进行溅射。
形成保护层时所用的真空度,在CVD工艺中需大约10-1至10-5乇(Torr),而在PVD工艺中大约是10-4至10-7乇(Torr)。尽管保护层的厚度没有特殊的限制,但它需要10至300,最好从30至150。
接着,解释润滑剂层。
润滑剂层适宜用装有超声波发生器的喷涂器,在磁性层(或在它形成于磁性层之上的保护层)上喷涂润滑剂而形成(下文称此种类型的喷涂器为超声波喷涂器)。具体说来,此超声波喷涂器包括一个润滑剂的供料机构,一个雾化机构(超声波发生器)以对来自供料机构的润滑剂施加超声波使其雾化,以及一个喷出喷出雾化润滑剂的喷头。也有可以采用一种称为单流体喷头的喷头型喷射装置。
用超声波喷涂装置涂覆润滑剂有一个优点:氟化物润滑剂,如高氟聚醚,由于其高温(200℃以上)阻力小和低蒸气压,使它在空气中涂覆即可得到润滑剂层,它还能够在真空中喷涂,因为这种润滑剂能雾化成微滴。此润滑剂还可以在空气中用现有技术中的照相凹板涂覆法,反转辊涂覆法,或模涂法涂布。
多氟聚醚的优选例包括那些分子量为2,000至5,000的。比如可采用市售的商品名为“FOMBLIN Z DIAC”(羟基改性的;Aodimont公司制造)和“FOMBLIN Z DOL”(醇基改性的;Aodimont公司制造)的多氟聚醚。这些多氟聚醚因其末端有羟基或羟基团,可用于加强磁性层与润滑剂之间的附着性。
其他可用的润滑剂包括:含苯环、双键、支链等等的氟化物润滑剂,以及脂肪酸润滑剂。这些当中,氟化物润滑剂优于脂肪酸润滑剂,因为在前的润滑剂抗蚀性和寿命均要好一些。
在喷涂润滑剂过程中,润滑剂适合溶于相应的溶剂中,且润滑剂含量大约以0.001到10wt%,0.02至2.0wt%更宜。溶剂的实例包括不活泼的氟化物溶剂(如多氟代烃,可选日本Sumitomo 3M公司生产的“Fluorinate”;和多氟聚醚,可选自Aodimont公司生产的“Garden”),芳香烃熔剂,如甲苯、乙醇溶剂,和甲酮溶剂。在用多氟聚醚作润滑剂的情况下,用多氟烃作其溶剂,用量是使润滑剂含量大约为0.001到1.0wt%,最好在0.05至0.2wt%。喷涂量要根据磁记录介质用途、润滑剂种类等情况相适而定。但最好将润滑剂喷涂量调整到使润滑剂层厚度约5至200的程度。
背涂层可以形成在本发明磁记录介质载体上与磁性层相反的一面上。此背涂层可以通过涂覆涂层液人体而形成,该涂层液面碳黑和其他成份分散于相应溶剂中而制得。此外,背涂层可以通过用PVD工艺蒸镀金属或半金属而形成,具体工艺可以是热蒸镀法或溅射法。
当通过涂覆形成背涂层时,可将颗粒直径10至100nm的碳黑分散于粘合剂,如氯乙烯或尿烷树脂或硝化纤维素中,并用照相凹版涂覆法,反转辊涂法,模涂等方法将所得涂层液体涂成干燥厚度在0.4到1.0μm的涂层为宜。
在用蒸镀法形成背涂层的情况下,适宜用铝或硅作为金属或半金属。在此情况下,背涂层厚度适宜为0.05到1.0μm。
为改进操作特性,提高寿命等特性的目的,可以在背涂层上形成一个上涂层。
下文解释本发明磁记录介质的制作方法的优选实施例。
为制作本发明磁记录介质,已知的方法均可采用而没有特殊限制。在一种优选的方法中,可以采用图3所示的连续真空蒸发器,它有一个斜面蒸镀机构。图3所示装置有两个薄膜形成部分,可一次形成两个蒸镀金属膜(上层和下层)。
在该装置中,蒸镀金属膜是如下方式被形成的。都以金属为蒸镀金属膜材料的蒸发源12和13,分别放在内部压力为1×10-4至1×10-8Torr的高真空腔10中的可移动坩锅14和15中。蒸发源12和13由分别产生于电子枪16和17的电子束18和19加热。通过移动坩锅14和15的位置,使柱形弯曲度改变。如上文所述,分别用作蒸发源12和13的金属可以是同种的或不同种的。在载体2从退绕辊20向冷却鼓运动的过程中,从蒸发源12和13热蒸发出来的金属沉积在载体2上。在该装置中,蒸发源12所用金属对应于下层蒸镀金属膜,而蒸发源13所用金属对应于上层蒸镀金属膜。两层蒸镀金属膜的载体2被绕在缠绕辊24上。数字28,29和30分别表示一个遮板,以在需要的位置进行蒸发金属的沉积。在蒸镀过程中,氧化性气体,如氧气通过每个氧气引入管26和27引入,以调整每个蒸镀金属膜在高离作用和微化作用之后形成分离的柱形构造,从而改善矫顽力和C/N特性。
为了使每个蒸镀金属膜在上述操作中有20%或更小的柱形弯曲度,可以按这样的方法去做,在图3所示装置中,镀膜期间让载体沿直线保持倾斜,或用一大直径的桶放大倾角。
如果需要和有必要,在磁性层形成之后,可用前述方法在磁性层上形成保护层和/或润滑剂层,也可用前述的方法在载体与磁性层相反的一面上形成背涂层。
下文将参考实例更详细地解释本发明的磁性记录介质,但这些实例不应该构成对本发明范围的任何形式的限制。
实例1
用图3所示连续真空蒸发器(坩锅12和13是可移动的),如下生产磁记录介质。在内压1×10-5Torr的真空腔10中,厚为9.8μm的聚乙烯对苯二甲酸酯(下文称“PET”)片从退绕辊20上退绕,并以1米/分的速度向冷却鼓22运动。
电子枪16和17分别产生电子束18和19,以加热并蒸发两蒸发源12和13的钴。蒸发出来的金属沉积在PET片上。在此蒸镀过程中,纯度为99.998%的氧气从每个管中以35SCCM速率通过氧化气体引入管26和27被引入。因此,由两叠层蒸镀钴膜构成的磁性层被形成PET片上。下层蒸镀钴膜的柱弯曲度为8.5%,柱倾角为49°,厚为1,500。上层蒸镀钴膜的柱弯曲度为5.5%,柱倾角为55°,厚度为1,000。如此获得的磁性层有1.6nm的中线表面粗糙度Ra。
磁性层接着用多氟聚醚(“FOMBLIN”(商品名)Aodimont公司制造)涂覆,以形成厚度为12A的润滑剂层。而且,已知的背涂层混合物以干燥厚度0.5μm的量涂在PET片的背面,并干燥形成背涂层。
接下来PET片被裁成8毫米的宽度,以得到8毫米宽的磁带。
所得磁带用图4所示鼓测试对比方法进行检验,在其中有5MHz,10MHz和20MHz频率的三种信号分别被记录于该磁带上,并重放记录的信号,以便用下文所述比较例1所得磁带为基准带(0dB)确定其输出(dB)和C/N(dB)。此外,用VSM(振动样品磁强计)确定磁带的纵向矫顽力和垂直方向矫顽力。所得结果列于表1中。
上述鼓测试对比法中所用的磁头和频谱分析仪是如下类型的。磁头
Hi8VCR/EP磁头
轨迹宽度:15μm
磁头L值:0.7μH(10MHz)
有效间隙长度:0.23μm
频谱分析仪RBW:17KHz
(采用数字滤波器,对应于现有的30-KHz模拟滤波器)
实例2
用实例1相同的方法而得的双叠层蒸镀钴膜构成磁带的磁性层,但图3中坩锅12和13是移动的,且分别以60SCCM和30SCCM的流速从氧化气体引入管26和27引入氧气。下层蒸镀钴膜,柱弯曲度为19.0%,柱倾角53°,厚度700。上层蒸镀钴膜柱弯曲度3.2%,柱倾角58°,厚度500。这样获得的磁性层有1.8nm的中线表面粗造度Ra。
用与实例1相同的方法评价所得的磁带。其结果示于表1中。
实例3
用与实例1相同的方法制得的双叠层蒸镀钴膜,构成磁带的磁性层,但图3中坩锅12和13是移动的,且分别以30SCCM和25SCCM的流速通过氧化气体引入管26和27引入氧气。下层蒸镀钴膜柱弯曲度为12.0%,柱倾角为52°,厚度为1.600。上层蒸镀钴膜柱弯曲度7.0%,柱倾角为55°,厚度为1,400。所得磁性层有1.7nm的中心线表面粗糙度Ra。
用与实施1相同的方法评价所得的磁带。其结果示于表1中。
实例4至9
用与实例1相同的方法所得双叠层蒸镀钴膜构成磁带的磁性层,但实例1中所用的条件如表1所示做了改动。表1中示出了每个所得磁带中各蒸镀膜的柱弯曲度,厚度和柱倾角,及磁性层的矫顽力和中线表面粗糙度Rs。用与实例1相同的方法评价这些磁带。其结果示于表1中。
实例10
用与实例1相同的方法制得的三层蒸镀钴膜构成磁带的磁性层,但实例1中的两个蒸发源换成了三个蒸发源,并采用表1所示条件。在表1中表示了所得磁带各蒸镀膜的柱弯曲度,厚度和柱倾角,磁性层的矫顽力和中线表面粗糙度Ra。用与实例1相同的方法评价这种磁带。其结果示于表1中。
比较例1
用与实例1相同的方法制得的一层蒸镀钴膜构成磁带的磁性层,但使用图3右侧膜形成部分(包含蒸发源12,坩锅14和电子枪16),而不用左侧的膜形成部分,且以52SCCM流速从氧化气体引入管26引入氧气。该蒸镀钴膜有15%的柱弯曲度,1.6nm的中线表面粗糙度Ra,和2,000的厚度。
用与实例1相同的方法评价所得磁带,其结果示于表1中。
比较例2
用与实例1相同的方法得到的双叠层蒸镀钴膜构成磁带的磁性层,但图3中坩锅12和13的位置是移动的,且分别以35SCCM和100SCCM的流速从氧化气体引入管26和27引入气化。下层蒸镀钴膜的柱弯曲度为25%,厚度为1,000。上层蒸镀钴膜的柱弯曲度为20%,厚度为3,000。所得磁性层有1.5nm的中线表面粗糙度。
用与实例1相同的方法评价所得磁带。所得结果示于表1中。
比较例3和4
用与实例1相同的方法得到的双叠层蒸镀钴膜构成磁带的磁性层,但实例1所用条件如表1所示进行变动。在表1中表示了每个所得磁带中各蒸镀膜的柱弯曲度,厚度和柱倾角,以及磁性层的矫顽力和中线表面粗糙度Ra。用与实例1相同的方法评价这些磁带。其结果示于表1中。
表1 柱形弯曲度(%) 厚度() 柱形倾角(度) 输出(dB) C/N(dB) 氧气量(SCCM) Ra (nn) Hc (Oe) ∥ Hc (Oe) 上层 中层 下层 上层 中层 下层 上层 中层 下层 5 MHz 10 MHz 20 MHz 5 MHz 10 MHz 20 MHz 上层 中层 下层实例 1 2 3 4 5 6 7 8 9 10 5.5 3.2 7 15 5 6 10 5.5 10 5 10 8.5 19 12 20 10 15 20 8.5 15 20 1000 500 1400 500 1000 800 2000 700 400 500 1000 1500 700 1600 2000 1500 1200 3000 1000 600 2000 55 58 55 52 60 60 57 60 55 57 55 49 53 52 46 55 55 51 53 52 54 1.4 0.1 2.1 1.0 1.9 2.2 2.0 0.7 0.3 1.1 1.7 0.6 1.8 1.4 2.1 3.2 3.2 1.3 1.5 1.9 3.3 4.5 1.4 2.5 4.8 5.1 3.4 3.6 3.1 2.6 1.7 0.4 1.8 1.2 2.1 2.2 2.0 0.9 0.4 1.3 2.1 0.9 1.3 1.4 2.3 3.4 2.7 2.4 1.2 2.1 4 4.9 1.3 2.9 4.8 5.3 3.1 3.7 2.9 2.5 35 30 25 25 45 60 40 30 25 35 45 35 60 30 40 50 75 45 35 30 50 1.6 1.8 1.7 1.6 1.2 1.3 1.6 1.5 1.5 1.6 1590 1990 1510 1630 1720 1910 1530 1620 1560 1570 1980 2860 1720 189O 2360 2470 1910 1930 1890 1890比较例 1 15 2000 55 0 0 0 0 0 0 52 1.6 1600 2000 2 20 25 3000 1000 50 50 -0.9 -1.4 -1.8 -1.2 -1.3 -1.9 100 35 1.5 1210 1590 3 13 13 950 950 55 51 0.2 0.3 0.4 0.1 0.2 0.3 80 30 1.7 1570 1860 4 20 15 1000 2000 45 50 -0.3 -0.4 -1.0 -0.5 -0.7 -1.2 35 30 1.6 1530 1900
从表1所示结果可知,实例1至10所得磁带在宽的频率范围内均比仅有一层蒸镀金属膜的比较例1所得磁带有更高的输出和更高C/N特性。
结果还显示,蒸镀金属膜柱弯曲度超过20%的相比于例2所得磁带,其输出特性和C/N特性随频率增高而减小。
表1结果进一步显示,对于上层蒸镀金属膜柱弯曲度与下层相同的磁带(比较例3),及上层蒸镀金属膜柱弯曲度大于下层的柱弯曲度的磁带(比较例4),随着频率增高输出特性和C/N特性向下降。
如上所述,本发明的磁记录介质有一个改善的输出特性及C/N特性,并由于其含至少两层蒸镀金属膜且每层都经调整,而有一特定柱弯曲度和特定厚度的磁性层,因此能够进行高密度记录。
虽然参考实施例已对本发明做了详细的描述,但应该清楚,本领域普通技术人员能做出的任何改变和更动都没有超出本发明的构思与范围。