《基于RFID射频技术的无源微创皮下神经介入芯片.pdf》由会员分享,可在线阅读,更多相关《基于RFID射频技术的无源微创皮下神经介入芯片.pdf(7页珍藏版)》请在专利查询网上搜索。
1、(10)申请公布号 CN 104107507 A (43)申请公布日 2014.10.22 CN 104107507 A (21)申请号 201410323604.X (22)申请日 2014.07.09 A61N 1/375(2006.01) (71)申请人 庞德兴 地址 570125 海南省海口市龙昆北路 2 号龙 珠大厦 8 楼 B 座 申请人 龙琼珍 (72)发明人 庞德兴 龙琼珍 (74)专利代理机构 海口翔翔专利事务有限公司 46001 代理人 李勇 (54) 发明名称 基于 RFID 射频技术的无源微创皮下神经介 入芯片 (57) 摘要 本发明涉及一种基于 RFID 射频技术的无。
2、源 微创皮下神经介入芯片。其特征在于 : 该系统由 基带芯片模块 (1) 、 ASIC 芯片模块 (2) 、 天线 (3) 、 PCB(4) 、 其他电路元件 (5) 、 激励基准电极 (6) 、 激 励电极组 (7) 、 生物兼容外壳 (8) 连接组成 ; 本发 明的有益效果是 : 本发明的结构简单, 便于制作 ; 能够有效, 及时, 连续地发射多种具有治疗神经疾 病功能的激励信号, 该信号源可以分布在人体体 内深度在0到5CM内的合适的位置。 本发明所述的 神经芯片通过一组微型激励电极向人体神经组织 发射有效的激励电流。神经介入芯片读写器可通 过指令激活合适的电极点阵达到最佳治疗效果。 (。
3、51)Int.Cl. 权利要求书 1 页 说明书 4 页 附图 1 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书1页 说明书4页 附图1页 (10)申请公布号 CN 104107507 A CN 104107507 A 1/1 页 2 1. 基于 RFID 射频技术的无源微创皮下神经介入芯片, 其特征在于 : 由基带芯片模块 (1) 、 ASIC 芯片模块 (2) 、 天线 (3) 、 PCB(4) 、 其他电路元件 (5) 、 激励基准电极 (6) 、 激励电极 组 (7) 和生物兼容外壳 (8) 连接组成 ; 它们的连接关系是 : 由 ASIC 芯片模块 (2。
4、) 产生的激励 电流通过激励电极组 (7) 施加在特定的神经网络线路, 经过其他电路元件 (5) 中的可调阻 抗模块回到激励基准电极 (6) , 以形成电流回路 ; 由神经介入芯片读卡器发出的控制信号 经过天线 (3) 接收后, 经调制解调 / 时钟模块解调后送至基带芯片模块 (1) , 基带芯片模块 (1) 根据所收到的指令确定激励电流的大小和电压波形以及确定激发最佳的激励电极, 该 信号经过模数转换模块 (9) 、 脉冲电路 (10) 与模拟开关 (11) 送至所确定的激励电极组 (7) ; 所述的其他电路元件 (5) 是可调阻抗电路, 外接天线谐振电容。 2.根据权利要求1所述的基于RF。
5、ID射频技术的无源微创皮下神经介入芯片, 其特征在 于 : 所述的 ASIC 芯片模块 (2) 由数模转换模块 (9) , 脉冲电路 (10) 和模拟开关 (11) 组成 ; 以 上模块与基带芯片模块 (1) , 电流激励电极组 (7) 一起组成该神经介入芯片信号驱动电路。 3.根据权利要求1所述的基于RFID射频技术的无源微创皮下神经介入芯片, 其特征在 于 : 所述激励电极组 (7) 表面镀有钛合金或镀金, 安装在 PCB(4) 上, 裸漏在壳体外面的部 分形成凸起以增加放电强度。 4.根据权利要求1所述的基于RFID射频技术的无源微创皮下神经介入芯片, 其特征在 于 : 所述神经介入芯片。
6、外壳涂有生物兼容性涂层, 对环境中的水分和酸碱组分有良好的阻 抗作用, 所述生物兼容性涂层为 : Parylene 纳米分子镀膜或 Peek 分子镀膜。 5.根据权利要求1所述的基于RFID射频技术的无源微创皮下神经介入芯片, 其特征在 于 : 所述电流激励电极组 (7) 采用多电极结构。 6.根据权利要求1或6所述的基于RFID射频技术的无源微创皮下神经介入芯片, 其特 征在于 : 所述电流激励电极组 (7) 还与激励基准电极 (6) 形成激励电流回路 ; 激励基准电极 (6) 在神经介入芯片的外壳一端形成, 并且与其他电路元件 (5) 中的可调阻抗电路构成串联 回路 ; 该回路的阻抗受模拟。
7、开关控制, 用以输出至神经网络线路的激励电流的强度。 权 利 要 求 书 CN 104107507 A 2 1/4 页 3 基于 RFID 射频技术的无源微创皮下神经介入芯片 0001 技术领域 本发明涉及一种基于 RFID 射频技术的无源微创皮下神经介入芯片。 0002 背景技术 诸多疾病与神经系统的损伤有关。如中枢神经系统 周围神经系统 植 物神经系统的损伤会诱发和导致感觉、 运动、 意识、 植物神经功能障碍等多种疾病。 0003 这些疾病以可对病人产生不同程度的疼痛。目前, 神经系统疾病和疼痛的治疗技 术和手段是一个亟待发展的领域。美国专利 US 6895280 B2 设计了一种脊髓神经。
8、刺激仪 (Spinal cord stimulation) , 简称 (SCS)) 。 该设备植入人体内, 其工作电极与脊髓神经 节点连接, 电极亦可穿过脊髓直达肩部。 该技术对多种神经系统疾病有效, 如反射性神经不 良疾病 (RSD) 。该产品结构复杂, 植入方式难度高, 成本巨大。中国专利 CN201310537668 提 出一种利用癌性疼痛治疗药物对癌症病人进行疼痛治疗。 尽管药物治疗疼痛是目前的主要 方法, 但该方法病理响应时间长, 作用时间短, 一般具有明显的副作用。CN203564311U 提出 一种采用穿刺针治疗疼痛的方法。该技术在一定程度阔展了药物治疗的范围, 对某些疾病 有特。
9、殊疗效。但该技术操作困难, 且治疗面较窄。CN203355134U 设计了一种术后疼痛治疗 仪, 通过作用于人体的皮肤电流达到疼痛治疗的目的。 0004 该方法简单, 使用面较广, 但由于工作电极很难准确定位, 且作用于人体外表皮, 效果较差。中国专利 CN302012071S 发明了一种射频疼痛治疗仪。该技术使用高频电磁场 对患者疼痛出进行辐射治疗。使用效果主要以神经疼痛治疗为主。 0005 中国 CN201220664704.5 提出了一种微创皮下生化参数检测芯片技术, 该产品可 以完全植入人体体内, 芯片被动式地接收来至扫描器的高频电磁能量作为系统的工作电 源, 整个芯片系统的外观尺寸只。
10、有直径为1.5MM, 长10MM大小。 该芯片集成了微型生化传感 器, 模拟信号处理, 电子标签 (RFID) 模块等多种功能。 0006 该芯片体积小, 无内部电源, 植入过程简单 (注射器直接在皮下注射) , 因此如果在 该技术基础上, 在芯片内集成一组微型电极, 即可形成一个微型化的, 可分布式植入人体内 部的智能电流激励电极系统。 该电极系统可产生各种治疗神经疾病的有效激励电流信号并 可最大限度地接近病发神经系统。基于以上设计思想, 本发明提出一个基于 RFID 技术平台 的无源智能电流激励芯片, 可用于多种神经介入治疗场合。 发明内容 0007 本发明为解决其技术问题所采用的技术方案。
11、是 : 基于 RFID 射频技术的无源微创 皮下神经介入芯片, 其特征在于 : 由基带芯片模块、 ASIC 芯片模块、 天线、 PCB、 其他电路元 件、 激励基准电极、 激励电极组和生物兼容外壳连接组成 ; 它们的连接关系是 : 由 ASIC 芯 片模块产生的激励电流通过激励电极组施加在特定的神经网络线路, 经过其他电路元件中 的可调阻抗模块回到激励基准电极 , 以形成电流回路 ; 由神经介入芯片读卡器发出的控制 信号经过天线接收后, 经调制解调 / 时钟模块解调后送至基带芯片模块, 基带芯片模块根 据所收到的指令确定激励电流的大小和电压波形以及确定激发最佳的激励电极, 该信号经 过模数转换。
12、模块与模拟开关送至所确定的激励电极组 ; 所述的其他电路元件是可调阻抗电 路, 外接天线谐振电容。 说 明 书 CN 104107507 A 3 2/4 页 4 0008 所述的 ASIC 芯片模块由数模转换模块, 脉冲电路和模拟开关组成 ; 以上模块与基 带芯片模块, 电流激励电极组一起组成该神经介入芯片信号驱动电路。所述激励电极组表 面镀有钛合金或镀金, 安装在 PCB 上, 裸漏在壳体外面的部分形成凸起以增加放电强度。 0009 所述神经介入芯片外壳涂有生物兼容性涂层, 对环境中的水分和酸碱组分有良好 的阻抗作用, 所述生物兼容性涂层为 : Parylene 纳米分子镀膜或 Peek 分。
13、子镀膜。所述电流 激励电极组采用多电极结构。 0010 所述电流激励电极组还与激励基准电极形成激励电流回路。 激励基准电极在神经 介入芯片的外壳一端形成, 并且与其他电路元件中的可调阻抗电路构成串联回路 ; 该回路 的阻抗受模拟开关控制, 用以输出至神经网络线路的激励电流的强度。 本发明的结构简单, 便于制作 ; 在 ASIC 芯片与 RFID 基带芯片的复合结构框架下所设计的微创皮下神经介入芯 片是一个无内部电源, 全植入式, 分布式的微型系统, 对于治疗由于神经系统损伤所造成的 多种疾病有重要的临床意义, 与目前所用的各种技术和产品相比具有独特的优点。该神经 介入芯片能够通过注射器轻易地植。
14、入在人体体内, 其能量来自与芯片本身非接触的读卡系 统, 该读卡器可在距离植入芯片 0-5CM 的范围内工作。该芯片具有多个电流激励电极, 可通 过读卡器选择位置最佳的电极单独或协同工作。RFID 基带芯片可以通过指令改变激励电 极的工作电压的幅度与波形。 该微型芯片可以采用多组同时植入的方式工作以达到可靠和 高效的治疗效果。本发明所设计的神经芯片采用生物兼容性涂层, 可以长期植入在人体体 内。该芯片基准电极设置在电流激励电极的相反方向以形成稳定, 可靠的电流回路。由于 本发明涉及的神经芯片采用体内植入方式和多个激励电极结构, 与传统的各种体外电刺激 疗法、 针灸疗法、 其他物理疗法如激光、 。
15、红外疗法相比, 具有更有效的治疗效果, 特别是对手 术后疼痛的治疗, 由于其设计原理的独特性, 具有更好的效果。 本发明所涉及的创新技术使 该芯片具有多种应用前景。在人体伤害性刺激损伤的外周区域, 经常使用非甾体类抗炎药 和激素类药物来进行疼痛治疗, 也可采用经皮电刺激或神经阻断方式。本发明所设计的神 经介入芯片可以直接植入在后根神经、 交感神经附近, 该芯片的激励电流可直接作用于有 髓神经纤维、 无髓神经纤维、 交感神经纤维、 上行传导束下行传导束等处, 可明显改善治疗 效果。 脊髓丘脑侧束是硬膜外激素和麻醉药的作用部位, 丘脑是阿片类药物的作用靶位, 该 神经芯片可以很容易地植入在这些区域。
16、。 本发明所设计的神经介入芯片还可替代脊髓神经 刺激仪对很多神经系统受损而导致的疾病进行治疗, 如反射性交感神经营养不良 (RSD) 等。 本发明的有益效果是 : 1微创皮下神经介入芯片基于 RFID 射频技术和 ASIC 技术。基于 RFID 射频技术的特 点, 该芯片能够通过与读卡器交换指令实现对系统工作参数的设定和优化。 0011 2微创皮下神经介入芯片无内部电源, 可长期植入人体体内。 0012 3 微创皮下神经介入芯片采用现代微机械技术加工工艺, 从而其微小的体积能够 轻易地通过注射方法全植入在人体体内。 0013 4微创皮下神经介入芯片采用 Parylene 纳米分子镀膜或 Pee。
17、k 分子镀膜, 并结合 先进的表面调质工艺作为外壳的表面涂层材料, 充分地保证了芯片系统的生物兼容性。 0014 5微创皮下神经介入芯片具有多组电流激励电极, 可对电极进行优化和配置。 0015 6该系统基带芯片设计基于低频 RFID 标准, 采用标准的 CMOS 工艺实现所有的系 统功能, 制造工艺成熟简单, 读卡器与标准设备兼容。 说 明 书 CN 104107507 A 4 3/4 页 5 0016 7该植入式微创皮下神经介入芯片通过有髓神经纤维、 无髓神经纤维、 交感神经 纤维、 上行传导束、 下行传导束、 脊脊髓丘脑侧束作用于交感神经节、 后根神经节、 边缘神 经、 丘脑、 大脑皮层。
18、, 从而达到对于相关疾病的治疗目的。 8该植入式微创皮下神经介入芯片对于躯体性疼痛, 内脏性疼痛, 神经源性疼痛的治 疗均可应用。 附图说明 0017 下面结合附图和实施例对本发明进一步说明。 0018 图1为本发明的结构示意图 ; 图2 为ASIC芯片模块结构 ; 图3为本发明基带芯 片模块周围电路。 0019 图中 : 1. 基带芯片模块、 2.ASIC 芯片模块、 3. 天线、 4.PCB、 5. 其他电路元件、 6. 激 励基准电极、 7. 激励电极组、 8. 生物兼容外壳、 9. 数模转换模块、 10. 脉冲电路、 11. 模拟开 关、 12. RF 电磁耦合电路、 13. 整流电路。
19、、 14. 电源管理模块、 15. 温度传感器、 16. 储存单 元、 17. 信号调制解调单元。 0020 具体实施方式 基于 RFID 射频技术的无源微创皮下神经介入芯片, 其特征在于 : 由基带芯片模块 1、 ASIC 芯片模块 2、 天线 3、 PCB4、 其他电路元件 5、 激励基准电极 6、 激励电 极组 7 和生物兼容外壳 8 连接组成 ; 它们的连接关系是 : 由 ASIC 芯片模块 2 产生的激励电 流通过激励电极组 7 施加在特定的神经网络线路, 经过其他电路元件 5 中的可调阻抗模块 回到激励基准电极 6, 以形成电流回路 ; 由神经介入芯片读卡器 21 发出的控制信号经。
20、过天 线 3 接收后, 经调制解调 / 时钟模块解调后送至基带芯片模块 1, 基带芯片模块 1 根据所收 到的指令确定激励电流的大小和电压波形以及确定激发最佳的激励电极, 该信号经过模数 转换模块 (9) 与模拟开关 11 送至所确定的激励电极组 7 ; 所述的其他电路元件 5 是可调阻 抗电路, 外接天线谐振电容。 0021 所述的 ASIC 芯片模块 2 由数模转换模块 9, 脉冲电路 10 和模拟开关 11 组成 ; 以 上模块与基带芯片模块 1, 电流激励电极组 7 一起组成该神经介入芯片信号驱动电路。 0022 所述激励电极组 7 表面镀有钛合金或镀金, 安装在 PCB4 上, 裸漏。
21、在壳体外面的部 分形成凸起以增加放电强度。 0023 所述神经介入芯片外壳涂有生物兼容性涂层, 对环境中的水分和酸碱组分有良好 的阻抗作用, 所述生物兼容性涂层为 : Parylene 纳米分子镀膜或 Peek 分子镀膜。所述电流 激励电极组 7 采用多电极结构。 0024 所述电流激励电极组 7 还与激励基准电极 6 形成激励电流回路。激励基准电极 6 在神经介入芯片的外壳一端形成, 并且与其他电路元件 5 中的可调阻抗电路构成串联回 路 ; 该回路的阻抗受模拟开关控制, 用以输出至神经网络线路的激励电流的强度。使用时, 该芯片植入后, 在神经介入芯片读卡器的激励下, 其内置天线感应来自读卡。
22、器的射频电磁 场而产生感应电压, 由此驱动基带芯片 1、 ASIC 芯片 2 以及其他电路 5、 脉冲电路 10 工作。 因而通过模拟开关 11 选择驱动电流激励电极组图 7 向周围区域发射特定的电压脉冲。该 脉冲以特定的方式激励周围的神经组织而达到预期的治疗目的。 本发明的神经介入芯片是 在ASIC芯片与RFID基带芯片的复合结构框架下所设计的。 如图3所示, 天线3接收到来自 周围神经芯片读卡器发射的射频信号和电磁能量, 经过 RF 电磁耦合电路 12, 整流电路 13, 说 明 书 CN 104107507 A 5 4/4 页 6 电源管理模块 14 后, 产生合适的具有一定功率的电压信。
23、号从而启动神经介入芯片工作。存 储单元 14 保存由读卡器所下达的指令中所设置的系统工作参数, 如 : 激励电压幅度、 波形、 脉冲长度、 激励电极代号。激励电极代号的选取由模拟开关 11 触发。基带芯片按照预定的 工作流程和来至读卡器的指令, 通过 ADC 模块 9 对温度传感器 15 进行采样, 该参数可用来 对整个芯片的工作状态进行评估和检测。如果芯片处于正常工作状态, 开始通过 DAC 模块 9 启动脉冲电路单元 10 和模拟开关 11 进而激活特定的激励电极 7。根据病人对激励电流 的效果的反馈信息, 操作人员对读卡器的指令进行调整和选择来确定最佳的激励方式。读 卡器与神经介入芯片之。
24、间的信息交换是通过信号调制 / 解调单元 12 实现的。本发明的结 构简单, 可用医用注射器直接植入人体体内。 根据发病的类型和位置, 该芯片可长期或短期 植入在距离人体皮肤表面 0-5CM 的范围内。该芯片的植入角度需根据患者的实际情况确 定。 对于大部分所涉及的疾病, 医生 可根据医学知识和临床经验来确定神经介入芯片在人 体体内的植入部位。该过程带来的植入误差可通过激励信号的强度和波形来消除。一般而 言, 该芯片的激励电极不需与神经未梢直接接触。激励电极与神经未梢之间的距离在一定 程度上决定激励信号的强度。该距离越远, 所需要的激励强度越大。在某些场合, 如果是对 应的较为敏感的植入区域, 如丘脑附近, 该芯片植入定位时可借助 X-RAY 机来完成。当患者 不再需要神经介入芯片的治疗时, 如果植入深度在 2CM 以下, 可以采用特殊设计得的剥离 注射器直接将芯片取出。在植入深度较大时, 可以采用微型手术将芯片取出。 说 明 书 CN 104107507 A 6 1/1 页 7 图 1 图 2 图 3 说 明 书 附 图 CN 104107507 A 7 。