冬虫夏草合成十六烷基辅酶A的酶、基因及其应用.pdf

上传人:le****a 文档编号:5271566 上传时间:2018-12-30 格式:PDF 页数:25 大小:10.53MB
返回 下载 相关 举报
摘要
申请专利号:

CN201210426276.7

申请日:

2012.10.30

公开号:

CN103087998A

公开日:

2013.05.08

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):C12N 9/00申请日:20121030|||公开

IPC分类号:

C12N9/00; C12P19/40; C12N15/52; C12N15/70; C12N1/21; C12R1/645(2006.01)N

主分类号:

C12N9/00

申请人:

浙江工业大学; 杭州中美华东制药有限公司

发明人:

郑裕国; 柳志强; 吴晖; 李邦良; 许静; 林善; 许峰; 薛亚平; 袁水金; 王鸿艳

地址:

310014 浙江省杭州市下城区潮王路18号

优先权:

专利代理机构:

杭州天正专利事务所有限公司 33201

代理人:

黄美娟;冷红梅

PDF下载: PDF下载
内容摘要

本发明涉及一个来自“百令”生产菌冬虫夏草中国被毛孢参与棕桐酸出发合成代谢十六烷基-辅酶A的长链-酰基-辅酶A合成酶,编码这个酶的基因及其应用。所述长链-酰基-辅酶A合成酶氨基酸序列与SEQ ID No.1或SEQ ID No.3所示序列具有90%以上同源性。本发明从原理上对棕桐酸合成十六烷基-辅酶A的代谢途径进行了详细研究,包含本发明所提供的核苷酸序列的克隆DNA可以用来通过转导、转化、结合转移的方法转入工程菌中,通过调节十六烷基-辅酶A生物合成基因的表达,赋予宿主长链-酰基-辅酶A合成酶的高表达性,为扩大十六烷基-辅酶A的产量提供了有效途径,具有重大应用前景。

权利要求书

权利要求书一种参与棕桐酸合成代谢十六烷基‑辅酶A的长链‑酰基‑辅酶A合成酶,与SEQ ID No.1或SEQ ID No.3所示序列具有90%以上同源性。
如权利要求1所述的长链‑酰基‑辅酶A合成酶,其特征在于其氨基酸序列如SEQ ID No.1或SEQ IDNo.3所示。
如权利要求1或2所述的长链‑酰基‑辅酶A合成酶,其特征在于该酶来自“百令”生产菌冬虫夏草中国被毛孢。
如权利要求1所述的长链‑酰基‑辅酶A合成酶在生物催化棕桐酸制备十六烷基‑辅酶A中的应用。
编码权利要求1或2所述长链‑酰基‑辅酶A合成酶的基因。
如权利要求5所述的基因,其特征在于所述基因的核苷酸序列如SEQ ID No.2或SEQ ID No.4所示。
如权利要求6所述的基因在构建能够生物催化棕桐酸制备十六烷基‑辅酶A的基因工程菌中的应用。

说明书

说明书冬虫夏草合成十六烷基‑辅酶A的酶、基因及其应用
(一)技术领域
本发明涉及一种来自“百令”生产菌冬虫夏草中国被毛孢的参与棕桐酸出发合成代谢十六烷基‑辅酶A的长链‑酰基‑辅酶A合成酶(long‑chain acyl‑CoA synthetase),编码这个酶的基因及其应用。
(二)背景技术
冬虫夏草(Cordyceps sinensis (Berk.) Sacc.)是冬虫夏草菌寄生在鳞翅目(Lepidoptera)蝙蝠蛾科昆虫(Hepialus armoricanus Oberthur)幼虫上的子座及幼虫尸体上的复合体(包括子座和虫体)。冬虫夏草是一类珍惜的传统真菌药材资源,具有代谢产物和生物活性多样的特点,在生物医药领域展现出巨大的应用和发展前景。冬虫夏草以其多种药用功效广泛、明显而备受关注,在世界范围内备受推崇。中医认为,冬虫夏草入肺肾二经,既能补肺阴,又能补肾阳,主治肾虚,阳痿遗精,腰膝酸痛,病后虚弱,久咳虚弱,劳咳痰血,自汗盗汗等,是唯一的一种能同时平衡、调节阴阳的中药。现代药理学已证实,冬虫夏草具有免疫调节、抗菌、抗肿瘤、抗氧化、抗衰老、降血糖血脂、性激素样作用等广泛的生物活性。
冬虫夏草菌是一种子囊菌,在其生活史中具有分生孢子阶段(无性型)和子囊孢子阶段(有性型)。而在人工培养、液体发酵等实际生产中使用的是无性阶段的冬虫夏草菌,因而冬虫夏草无性型的鉴定非常重要。国内外学者在冬虫夏草资源调查、无性型确证、活性成分分离分析和作用机理、开发应用方面做了大量工作。冬虫夏草中国被毛孢已被证明是冬虫夏草的无性型存在形式,具有与天然冬虫夏草相同的活性成分和药效。
天然虫草具有严格的寄生性以及特殊的生态环境,故其产量很低,价格高昂。野生冬虫夏草由于受生长环境等因素制约,资源匮乏。由于近几年在人工栽培上进展不大,野生冬虫夏草代用品研究多集中在液体发酵上。利用液体深层发酵培养冬虫夏草菌丝体、提取物或发酵液,是解决冬虫夏草药源的一种有效途径。虫草发酵生产虫草替代品,既可有效保护虫草这一珍贵资源,又不受气候、地理环境和虫草寄生条件严格的限制,适合于工业化大规模生产。生产出的替代品如菌丝体其成分和药效也与天然虫草相似,因而国内外一直致力于虫草菌丝体的发酵培养。人工发酵培养冬虫夏草中国被毛孢得到的菌丝,经毒理、药理、植化研究,证明与天然虫草化学组成、药理作用基本一致,可代替天然虫草生产虫草制品,以弥补自然资源的短缺,通过对发酵条件的优化,菌丝体生物量和代谢产物的量均有明显提高。
近年来,随着天然产物化学和现代色谱技术的飞速发展,在对虫草产品研发中已逐步由虫草原料或粗提物的直接利用转向更深层次的功能性代谢产物研究。国内外已对虫草代谢产物做了大量的研究,代谢产物主要包括核苷、多糖、多肽、甾醇等几大类化合物,其中嘌呤类核苷、虫草多糖、甘露醇等具有代表性的功能性代谢产物在生物合成、药理作用等方面的研究初见成效。
不饱和脂肪酸是指分子中含有一个或多个双键的脂肪酸,其熔点较饱和脂肪酸低。不饱和脂肪酸是构成体内脂肪的一种脂肪酸,人体必需的脂肪酸,不饱和脂肪酸根据双键个数的不同,分为单不饱和脂肪酸和多不饱和脂肪酸二种。多不饱和脂肪酸(Polyunsaturated Fatty Acids,PUFAs)相对饱和脂肪酸来说具有更多的功效,它可以降低血中胆固醇和甘油三酯,调节心脏功能,降低血液黏稠度,改善血液微循环,提高脑细胞的活性,增强记忆力和思维能力,增强人体防御系统的功能等,此外它还可以排除人体内多余的“垃圾”,也就是由于摄人了过量的饱和脂肪酸形成的多余脂肪,从而达到减肥的目的。因此,其潜在的医用药用价值受到了世界的广泛关注,引起了食品、医药甚至化妆品等行业的高度重视。
1999年Yung‑Sheng引克隆了高山被孢霉(Mortiere Uaalpina)的△6和△12脂肪酸脱氢酶基因并在酿酒酵母中进行了表达。2004年,Dyer等人将桐树中的△3去饱和酶转入酵母,成功地获得了产亚麻酸的酵母菌。2007年Maali‑Amiri等人将藻青菌(Cyanobacterium)的△12去饱和酶转入马铃薯,成功检测到马铃薯脂肪酸成分发生了明显变化。2008年,Hao等人将卷枝毛霉的△6去饱和酶转人转基因烟草中,成功获得了高产γ‑亚麻酸的菌株。此外,还有许多脂肪酸去饱和酶相关的基因被克隆并转化应用。由于大部分去饱和酶为膜结合蛋白,其分离纯化十分困难,已经分离纯化并鉴定的去饱和酶屈指可数,而绝大多数的研究是围绕去饱和酶基因及其表达调控来进行的。
目前,所应用的不饱和脂肪酸生产菌以枯草芽孢杆菌为主,而作为重要合成代谢不饱和脂肪酸的冬虫夏草菌,还只停留在代谢产物成分分析和功效的研究上,对冬虫夏草菌不饱和脂肪酸合成代谢途径中相关基因和蛋白的研究还很少见。
(三)发明内容
本发明目的在于针对以上存在的不足和需要解决的技术问题,对“百令”生产菌冬虫夏草中国被毛孢合成代谢十六烷基‑辅酶A的长链‑酰基‑辅酶A合成酶及其编码基因进行深入研究,提供了“百令”生产菌冬虫夏草中国被毛孢参与棕桐酸出发合成代谢十六烷基‑辅酶A的长链‑酰基‑辅酶A合成酶、编码基因及其应用。
本发明采用的技术方案是:
一种参与棕桐酸出发合成代谢十六烷基‑辅酶A的长链‑酰基‑辅酶A合成酶,该酶与SEQ ID No.1或SEQ ID No.3所示序列具有90%以上同源性。该酶可催化棕桐酸制备相应的十六烷基‑辅酶A。由于氨基酸序列的特殊性,任何含有SEQ ID NO.1或SEQ ID No.3所示氨基酸序列的肽蛋白的片段或其变体,如其保守性变体、生物活性片段或衍生物,只要该肽蛋白的片段或肽蛋白变体与前述氨基酸序列同源性在90%以上,均属于本发明保护范围之列。具体的所述改变可包括氨基酸序列中氨基酸的缺失、插入或替换;其中,对于变体的保守性改变,所替换的氨基酸具有与原氨基酸相似的结构或化学性质,如用亮氨酸替换异亮氨酸,变体也可具有非保守性改变,如用色氨酸替换甘氨酸。
优选的,所述长链‑酰基‑辅酶A合成酶氨基酸序列如SEQ ID No.1或SEQ ID No.3所示(分别记为unsC1,unsC2蛋白)。
本发明所述的长链‑酰基‑辅酶A合成酶来自“百令”生产菌冬虫夏草中国被毛孢。
由各棕桐酸合成代谢获得对应十六烷基‑辅酶A的路径如下所示:

本发明还涉及所述的长链‑酰基‑辅酶A合成酶在生物催化棕桐酸制备十六烷基‑辅酶A中的应用。
本发明还涉及上述长链‑酰基‑辅酶A合成酶的编码基因,即长链‑酰基‑辅酶A合成酶基因。具体的,该编码基因可为与SEQ ID NO:2或SEQ ID No.4所示多核苷酸具有90%以上同源性的基因序列。由于核苷酸序列的特殊性,任何SEQ ID NO:2或SEQ ID No.4所示多核苷酸的变体,只要其与该多核苷酸具有90%以上同源性,均属于本发明保护范围之列。所述多核苷酸的变体是指一种具有一个或多个核苷酸改变的多核苷酸序列。此多核苷酸的变体可以使生的变位变异体或非生的变异体,包括取代变异体、缺失变异体和插入变异体。如本领域所知的,等位变异体是一个多核苷酸的替换形式,它可能是一个多核苷酸的取代、缺失或插入,但不会从实质上改变其编码的肽蛋白的功能。
优选的,所述基因的核苷酸序列如SEQ ID No.2或SEQ ID No.4所示(记为unsC1,unsC2基因,unsC1基因编码unsC1蛋白,unsC2基因编码unsC2蛋白)。 
所述的基因可用于构建能够生物催化棕桐酸制备十六烷基‑辅酶A的基因工程菌,以扩大十六烷基‑辅酶A或其衍生物的产量。
本发明的要点在于提供了SEQ ID NO:1或3所示的氨基酸序列和SEQ ID NO:2或4所示的核苷酸序列,在已知该氨基酸序列和核苷酸序列的情况下,该氨基酸序列和核苷酸序列的获得,以及相关载体、宿主细胞的获得,对于本领域技术人员来说均是显而易见的。
本发明的有益效果主要体现在:本发明从原理上对棕桐酸合成十六烷基‑辅酶A代谢途径进行了详细研究,包含本发明所提供的核苷酸序列的克隆DNA可以用来通过转导、转化、结合转移的方法转入工程菌中,通过调节十六烷基‑辅酶A生物合成基因的表达,赋予宿主长链‑酰基‑辅酶A合成酶的高表达性,为扩大十六烷基‑辅酶A或其衍生物的产量提供了有效途径,具有重大应用前景。
(四)附图说明
图1为“百令”生产菌冬虫夏草中国被毛孢总RNA的甲醛变性凝胶电泳图;
图2为脂肪酸合成代谢途径注释图;
图3为脂肪酸代谢途径注释图;
图4为不饱和脂肪酸合成代谢途径注释图;
图5为长链‑酰基‑辅酶A合成酶基因PCR扩增产物凝胶电泳图;
图6为克隆载体pMD18‑T Vector与表达载体pET‑28a物理图谱;
图7为重组克隆质粒pMD18‑T / uns C物理图谱;
图8为重组表达质粒pET‑28a / uns C构建过程示意图;
图9为重组表达质粒pET‑28a /uns C物理图谱;
图10为长链‑酰基‑辅酶A合成酶蛋白的SDS‑PAGE图。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1: “百令”生产菌冬虫夏草中国被毛孢的培养
菌株来源:首先从青海采集天然冬虫夏草,并将其带回杭州进行分离筛选,得到了L0106菌株,并经菌种鉴定该菌株为中国被毛孢(Hirsutella Sinensis),该菌种保藏在中国典型培养物保藏中心,保藏编号为CCTCC No:M 2011278,已在先前申请的专利CN102373190A中披露。
将该菌种接种于斜面,培养基配方(此为固化之前的液体配方,按下述比例配制好之后再制成斜面)为葡萄糖2.0%(w/v,1%表示100mL培养基中含有1g,下同)、玉米粉1.0%、土豆汁0.5%、糊精0.5%、酵母粉0.5%、麸皮1.0%、蚕蛹粉2.0%、蛋白胨1.0%、硫酸镁0.05%、磷酸二氢钾0.05%、琼脂粉1.0%,余量为水,在12~16℃培养25天;然后将菌种接种于发酵培养基,培养基配方为葡萄糖1.0%、糖蜜1.0%、蚕蛹粉0.5%、黄豆饼粉1.0%、酵母膏0.5%、硫酸镁0.01%、磷酸二氢钾0.02%,余量为水,置于摇床上,温度12~16℃培养25天,培养结束后在无菌条件下,进行固液分离,并将固体置于无菌器具,备用。
实施例2:“百令”生产菌冬虫夏草中国被毛孢总RNA的提取
用TRIzol试剂提取总RNA,步骤具体为:1)液氮研磨:取1g新鲜菌体放入研钵中,反复加入液氮充分研磨至粉末状,分装到预冷的1.5mL离心管中,加入1mL TRIzol试剂,混匀,冰上静置5min,使核酸蛋白复合物完全分离。2)RNA分离:加入0.2mL氯仿,用力震荡混匀15s,冰上静置2~3min,4℃、12000rpm离心15min,分层,取上层水相,约600μL。3)RNA沉淀:加入500μL异丙醇,在冰上静置10min,4℃、12000rpm离心10min,弃上清。4)RNA洗涤:加入1mL 75%(v/v)乙醇,将沉淀悬起,冰上静置10min,4℃、7500rpm离心15min;重复上面洗涤步骤,再洗一遍。5)溶解RNA:将离心管置于冰上敞开干燥5~10min,加适量DEPC水溶解。
实施例3:“百令”生产菌冬虫夏草中国被毛孢RNA样品测序
提取样品总RNA后,用带有Oligo(dT)的磁珠富集mRNA。加入fragmentation buffer将mRNA打断成短片段(200~700bp),以mRNA为模板,用六碱基随机引物(random hexamers)合成第一条cDNA链,然后合成第二条cDNA链,再经过QiaQuick PCR试剂盒纯化并加EB缓冲液洗脱之后做末端修复、加polyA并连接测序接头,然后用琼脂糖凝胶电泳进行片段大小选择,最后进行PCR扩增,建好的测序文库用Illumina GA IIx进行测序。测序得到的原始图像数据经base calling转化为序列数据,即raw data或raw reads。除去原始测序reads中只含adaptor序列的reads,备以后续分析。
实施例4:“百令”生产菌冬虫夏草中国被毛孢RNA短读序列组装
使用短reads组装软件SOAPdenovo(Li, Zhu et al. De novo assembly of human genomes with massively parallel short read sequencing [J]. Genome Res, 2010, 20: 265‑272.)做转录组从头组装。SOAPdenovo首先将具有一定长度overlap的reads连成更长的不含N的Contig片段。然后将reads比对回Contig,通过paired‑end reads确定来自同一转录本的不同Contig以及这些Contig之间的距离,SOAPdenovo将这些Contig连在一起,中间未知序列用N表示,这样就得到Scaffold。进一步利用paired‑end reads对Scaffold做补洞处理,最后得到含N最少,两端不能再延长的Unigene序列。最后,将Unigene序列与蛋白数据库nr、Swiss‑Prot、KEGG和COG做blastx比对(evalue<0.00001),取比对结果最好的蛋白确定Unigene的序列方向。如果不同库之间的比对结果有矛盾,则按nr、Swiss‑Prot、KEGG和COG的优先级确定Unigene的序列方向,跟以上四个库皆对比不上的Unigene用软件ESTScan(Iseli, Jongeneel et al. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences[J]. In Proceedings of 9th InternationalConference on Intelligent Systems for Molecular Biology. AAAIPress, Menlo Park, CA, pp. 1999, 138‑148.)预测其编码区并确定序列的方向。对于能确定序列方向的Unigene给出其从5'到3'方向的序列,对于无法确定序列方向的Unigene给出组装软件得到的序列。
实施例5:“百令”生产菌冬虫夏草中国被毛孢Unigene功能注释
功能注释信息给出Unigene的蛋白功能注释、Pathway注释、COG功能注释和Gene Ontology(GO)功能注释。首先,通过blastx将Unigene序列比对到蛋白数据库nr、Swiss‑Prot、KEGG和COG(evalue<0.00001),得到跟给定Unigene具有最高序列相似性的蛋白,从而得到该Unigene的蛋白功能注释信息。根据KEGG注释信息能进一步得到Unigene的Pathway注释。将Unigene和COG数据库进行比对,预测Unigene可能的功能并对其做功能分类统计。根据nr注释信息,使用Blast2GO软件(Conesa, Gotz et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research[J]. Bioinformatics, 2005, 21(18): 3674‑3676.)得到Unigene的GO注释信息。得到每个Unigene的GO注释后,用WEGO软件(Ye, Fang et al. WEGO: a web tool for plotting GO annotations[J]. Nucleic Acids Research, 2006, 34: 293‑297.)对所有Unigene做GO功能分类统计,从宏观上认识该物种的基因功能分布特征。
实施例6:“百令”生产菌冬虫夏草中国被毛孢十六烷基‑辅酶A代谢途径分析
图2是KEGG代谢途径注释中的脂肪酸合成代谢(map00061),图3是KEGG代谢途径注释中的脂肪酸代谢(map00071),图4是KEGG代谢途径注释中的不饱和脂肪酸合成代谢(map01040),已注释的酶是已检测到的“百令”生产菌冬虫夏草中国被毛孢十六烷基‑辅酶A代谢途径相关酶类,从图中可以看出,检测到了从棕桐酸出发合成对应十六烷基‑辅酶A的长链‑酰基‑辅酶A合成酶2个Unigene。通过NCBI中的ORF Finder软件在线检测,找出了这个基因的开放阅读框(SEQ ID No.2,SEQ ID No.4)并得到了相应的蛋白质序列(SEQ ID No.1,SEQ ID No.3)。
实施例7:“百令”生产菌冬虫夏草中国被毛孢长链‑酰基‑辅酶A合成酶基因引物设计
运用GENE RUNNER引物设计软件根据预测得到的各基因开放阅读框DNA序列设计引物,用于克隆“百令”生产菌中国被毛孢合成代谢十六烷基‑辅酶A的长链‑酰基‑辅酶A合成酶基因,引物由上海生工生物工程有限公司合成,引物序列如下所列:
unsC1基因:正向引物5’ATAGAATTCATGGACTCCTGGGGTCTGGAC3’
反向引物5’AGAAAGCTTTCACTCAGTGCCAGCATCGTC3’
unsC1基因长度为1239bp。
unsC2基因:正向引物5’AGCGAATTCATGCCCCTCATGACAGGATAC3’
反向引物5’ATAAAGCTTTCACATGCCAGACAGGCCGC3’
unsC2基因长度为411bp。
实施例8:“百令”生产菌冬虫夏草中国被毛孢cDNA第一链的制备
先按照实施例1提供的方法培养出中国被毛孢发酵菌丝体后,再按照实施例2所提供的方法对中国被毛孢进行总RNA的提取,得到总RNA后按下述进行“百令”生产菌冬虫夏草中国被毛孢cDNA第一链的合成,用于后续各基因克隆实验。
采用PrimeScript 1st Strand cDNA Synthesis Kit试剂盒(TaKaRa)从Total RNA中反转录合成cDNA第一链,实验步骤如下:
1)在Microtube管中配制下列混合液。

2)变性、退火操作有利于模板RNA的变性以及反转录引物和模板的特异性退火,可提高反转录反应效率,所以在PCR仪上进行变性、退火反应,条件设置如下:
65℃,5 min
3)退火结束后离心数秒钟使模板RNA/引物等的混合液聚集于Microtube管底部。
4)在上述Microtube管中配制下列反转录反应液。

5)在PCR仪上按下列条件进行反转录反应。
42℃    15~30 min
70℃    15 min
一般情况,在真核生物mRNA 3’末端都有一个PolyA结构,A碱基的数量在十至几百个不等,利用这一结构可以利用Oligo(dT)引物,在反转录酶的作用下,以mRNA为模板合成cDNA第一链,本发明采用由TaKaRa独自开发的dT区域的序列(PrimeScript 1st Strand cDNA Synthesis Kit中提供)为引物,如果获得的mRNA完整性较好,那么通过逆转录过程可以得到物种中所有酶蛋白编码基因的cDNA第一链。
实施例9:“百令”生产菌冬虫夏草中国被毛孢合成代谢十六烷基‑辅酶A功能基因长链‑酰基‑辅酶A合成酶unsC基因的克隆、表达以及蛋白活力的检测
1、长链‑酰基‑辅酶A合成酶unsC基因的PCR扩增
以实施例8中得到的cDNA第一链为模板,用实施例7中合成的unsC1基因引物:5’ATA GAA TTC ATG GAC TCC TGG GGT CTG GAC3’和5’AGA AAG CTT TCA CTC AGT GCC AGC ATC GTC3’,unsC2基因引物:5’AGC GAA TTC ATG CCC CTC ATG ACA GGA TAC3’和5’ATA AAG CTT TCA CAT GCC AGA CAG GCC GC3’进行Pfu DNA聚合酶PCR扩增反应,条件设置如下:
Pfu PCR扩增反应体系:

Pfu DNA Ploymerase PCR扩增条件:

2、长链‑酰基‑辅酶A合成酶unsC基因PCR产物凝胶电泳检测
具体检测方法为:1)将配制好的0.9%的琼脂糖凝胶用微波炉加热使其溶解均匀;2)取15mL凝胶,待凝胶冷却至50℃左右时,加入1μL染色液Gold view,混合均匀后倒入电泳凝胶板上,除去气泡后插入点样梳;3)凝胶凝固后,小心取出点样梳,将胶板放入电泳槽中(点样孔一端靠近电泳槽的负极),在电泳槽中加入TAE电泳缓冲液;4)取5μL样品然后加入6×Loading Buffer 1.5μL和ddH2O 4μL混合后用移液枪上样,上样量为10 μL;5)连接电泳槽与电泳仪之间的电源线,正极为红色,负极为黑色;6)开启电源,开始电泳,最高电压不超过5 V/cm;7)当样品跑过胶板的2/3时可终止电泳;8)切断电源后,将凝胶取出放入凝胶成像仪中观察、拍照。
转录组测序预测长链‑酰基‑辅酶A合成酶unsC1基因的大小为1239bp,unsC2基因的大小为411bp,琼脂糖凝胶电泳结果表明已成功扩增出了长链‑酰基‑辅酶A合成酶unsC1基因的大小约为1200bp,unsC2基因的大小约为400bp,。图5为“百令”生产菌中国被毛孢合成代谢十六烷基‑辅酶A功能基因PCR产物凝胶电泳图。
3、长链‑酰基‑辅酶A合成酶unsC基因PCR产物的加碱基A处理以及纯化
由于Pfu DNA聚合酶PCR产物末端为平端,所以在胶回收后还需进行加碱基A处理、纯化后才可用于T载体连接。胶回收产物加碱基A体系如下:

PCR仪中72℃加A碱基20 min,最后用AxyPrep PCR 清洁试剂盒纯化。
4、长链‑酰基‑辅酶A合成酶unsC基因与克隆载体的连接
克隆载体pMD18‑T Vector购自TaKaRa公司(TaKaRa code D101A),其物理图谱见图6,将长链‑酰基‑辅酶A合成酶unsC1, unsC2基因与克隆载体连接构建重组质粒pMD18‑T/unsC1, pMD18‑T/unsC2,物理图谱见图7,连接体系和连接条件如下。

连接体系:
连接条件:16℃,16h;灭活:65℃,15min。
5、长链‑酰基‑辅酶A合成酶重组质粒pMD18‑T/unsC的转化
将重组质粒pMD18‑T/unsC转入大肠杆菌E. coli JM109中构建携带长链‑酰基‑辅酶A合成酶unsC基因的重组菌E. coli JM109/pMD18‑T/unsC,具体步骤为:1)将10μL反应体系转至感受态细胞E. coli JM109中,冰浴30min;2)热击:42℃,90s;3)冰浴:2‑3min;4)加入800μL液体LB,37℃,250rpm,1h;5)涂布平板(含Amp抗性);6)37℃培养箱培养过夜。
6、长链‑酰基‑辅酶A合成酶E. coli JM109/pMD18‑T/unsC阳性重组菌的筛选
菌落PCR可不必提取基因组DNA,而直接以菌体热解后暴露的DNA为模板进行PCR扩增,该方法操作简便、快捷、可以快速鉴定菌落是否为含有目的质粒的阳性菌落,在转化鉴定中较为常见。实验中,将接种到液体培养基中对应的单菌落进行菌落PCR,以验证是否转入目的基因。首先,用牙签挑取单菌落加入含50μL无菌水的1.5mL离心管中,沸水浴30min,然后离心以上清作为模板,进行PCR扩增,PCR程序设定为Taq酶扩增一般程序。最后采用0.9%的琼脂糖凝胶电泳检测菌落PCR产物。
7、长链‑酰基‑辅酶A合成酶重组质粒pMD18‑T/unsC的测序
对菌落PCR检测出的阳性重组菌液体LB培养基培养过夜后,取4mL菌液提取质粒,方法按AxyPrep质粒DNA小量试剂盒提供的操作说明。测序由上海桑尼生物科技有限公司完成。经测序验证,序列SEQ ID No.2和SEQ ID No.4以已分别重组至pMD18‑T/unsC1和pMD18‑T/unsC2中。
8、长链‑酰基‑辅酶A合成酶重组表达质粒pET‑28a/unsC的构建
实验根据外源基因在大肠杆菌中表达的原则,以及表达载体pET‑28a和长链‑酰基‑辅酶A合成酶unsC基因酶切位点比对情况,确定了unsC1,unsC2为EcoRⅠ和HindⅢ双酶切位点,并对重组大肠杆菌E. coli JM109/pMD18‑T/unsC进行液体LB试管摇床培养、重组质粒提取。
长链‑酰基‑辅酶A合成酶unsC基因的重组质粒pMD18‑T/unsC及表达载体pET‑28a分别用EcoRⅠ/HindⅢ限制性内切酶在37℃分别酶切处理6h,酶切体系如下所示:
EcoRⅠ/HindⅢ双酶切体系:

酶切结束后65℃灭活15min,然后分别用Axygen DNA凝胶回收试剂盒进行回收、纯化。
长链‑酰基‑辅酶A合成酶unsC基因及表达载体pET‑28a经双酶切、纯化后再用T4连接酶16℃连接过夜,构建重组表达质粒pET‑28a/unsC,其构建过程见图8,构建得到的重组表达质粒pET‑28a/unsC1, pET‑28a/unsC2图谱见图9。连接体系组成如下:
连接体系:

9、长链‑酰基‑辅酶A合成酶重组表达质粒pET‑28a/unsC的转化以及阳性单克隆的筛选
将构建好的表达质粒热激转化至E. coli BL21宿主菌中,然后涂布到含有卡那霉素(Kan)抗性的LB琼脂平板上,37℃培养过夜。从平板上随机挑选单菌落,以各功能基因的引物进行PCR扩增,挑选阳性克隆。
10、长链‑酰基‑辅酶A合成酶重组菌E. coli BL21/pET‑28a/unsC的诱导表达
将鉴定为阳性的单克隆接种于5mL含有Kan抗性的LB液体培养基中,37℃、250r/min培养过夜。取1mL培养物,将其转接于50mL含有Kan抗性的LB液体培养基中37℃、250r/min培养至菌体浓度OD600约为0.6~0.8左右。向培养物中分别加入一定浓度的IPTG诱导培养8h。收集菌体供电泳分析以及酶活检测。
11、长链‑酰基‑辅酶A合成酶重组菌E. coli BL21/pET‑28a/unsC表达产物SDS‑PAGE分析
以转入空载体的E. coli BL21菌及未加入诱导剂IPTG的重组菌作为对照。鉴定为阳性的重组菌经IPTG诱导培养一定时间后,取0.5mL诱导培养物,离心收集菌体,重悬于50µL蒸馏水中,加入50µL上样缓冲液,混匀后煮沸10min,进行SDS‑PAGE电泳分析,图10中的“A”泳道即为重组菌E. coli BL21/pET‑28a/unsC1表达的长链‑酰基‑辅酶A合成酶unsC1(经测序验证其氨基酸序列如SEQ ID No.1所示)的SDS‑PAGE图,“B”泳道即为重组菌E. coli BL21/pET‑28a/unsC2表达的长链‑酰基‑辅酶A合成酶unsC2(经测序验证其氨基酸序列如SEQ ID No.3所示)的SDS‑PAGE图。
12、长链‑酰基‑辅酶A合成酶重组菌E. coli BL21/pET‑28a/unsC的蛋白活性检测
(1)长链‑酰基‑辅酶A合成酶unsC1蛋白活性检测:
酶液制备:称取收集的重组菌E. coli BL21/pET‑28a/unsC1 0.5g用磷酸盐缓冲液(50mM、pH8.0)15mL悬浮,超声破碎(功率350W、破碎2s、间隔2s、共超声破碎5min)。
长链‑酰基‑辅酶A合成酶unsC转化体系:在50mL转化瓶中加入E. coli BL21/pET‑28a/unsC1超声破碎菌体10mL、0.1g棕桐酸,0.1g ATP,0.1gCoA,30℃、150r/min转化,转化结束后,离心取上清备以后续检测。
检测方法:气相色谱条件:30m×0.32mm×0.25mm弹性石英毛细管柱;柱初温柱初温190℃,保温1min,以6℃/min升温至230 ℃,然后恒温;气化室温度250℃;载气为高纯He(99.999%);柱前压62.6KPa;载气流速1.4mL/min;进样量1μL;分流比60:1。质谱条件:离子源为EI源;离子源温度230℃;四极杆温度150℃;电子能量70eV;接口温度260℃;溶剂延迟2min;质量范围10‑550u。
经过上述的色谱条件检测和计算,长链‑酰基‑辅酶A合成酶重组菌E. coli BL21/pET‑28a/unsC1所表达的长链‑酰基‑辅酶A合成酶unsC1的最大比酶活(Specific Activity) 为10.8 mol/min/mg,底物转化率75.86%。
(2)长链‑酰基‑辅酶A合成酶unsC2蛋白活性检测:
酶液制备:称取收集的重组菌E. coli BL21/pET‑28a/unsC2 0.5g用磷酸盐缓冲液(50mM、pH8.0)15mL悬浮,超声破碎(功率350W、破碎2s、间隔2s、共超声破碎5min)。
长链‑酰基‑辅酶A合成酶unsC2转化体系:在50mL转化瓶中加入E. coli BL21/pET‑28a/unsC2超声破碎菌体10mL、0.1g棕桐酸,0.1g ATP,0.1gCoA,30℃、150r/min转化,转化结束后,离心取上清备以后续检测。
检测方法:气相色谱条件:30m×0.32mm×0.25mm弹性石英毛细管柱;柱初温柱初温190℃,保温1min,以6℃/min升温至230 ℃,然后恒温;气化室温度250℃;载气为高纯He(99.999%);柱前压62.6KPa;载气流速1.4mL/min;进样量1μL;分流比60:1。质谱条件:离子源为EI源;离子源温度230℃;四极杆温度150℃;电子能量70eV;接口温度260℃;溶剂延迟2min;质量范围10‑550u。
经过上述的色谱条件检测和计算,我们得出以下结论:长链‑酰基‑辅酶A合成酶重组菌E. coli BL21/pET‑28a/unsC2所表达的长链‑酰基‑辅酶A合成酶unsC2的最大比酶活(Specific Activity) 为10.8 mol/min/mg,底物转化率79.53%。

冬虫夏草合成十六烷基辅酶A的酶、基因及其应用.pdf_第1页
第1页 / 共25页
冬虫夏草合成十六烷基辅酶A的酶、基因及其应用.pdf_第2页
第2页 / 共25页
冬虫夏草合成十六烷基辅酶A的酶、基因及其应用.pdf_第3页
第3页 / 共25页
点击查看更多>>
资源描述

《冬虫夏草合成十六烷基辅酶A的酶、基因及其应用.pdf》由会员分享,可在线阅读,更多相关《冬虫夏草合成十六烷基辅酶A的酶、基因及其应用.pdf(25页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 103087998 A (43)申请公布日 2013.05.08 CN 103087998 A *CN103087998A* (21)申请号 201210426276.7 (22)申请日 2012.10.30 C12N 9/00(2006.01) C12P 19/40(2006.01) C12N 15/52(2006.01) C12N 15/70(2006.01) C12N 1/21(2006.01) C12R 1/645(2006.01) (71)申请人 浙江工业大学 地址 310014 浙江省杭州市下城区潮王路 18 号 申请人 杭州中美华东制药有限公司 (72)。

2、发明人 郑裕国 柳志强 吴晖 李邦良 许静 林善 许峰 薛亚平 袁水金 王鸿艳 (74)专利代理机构 杭州天正专利事务所有限公 司 33201 代理人 黄美娟 冷红梅 (54) 发明名称 冬虫夏草合成十六烷基-辅酶A的酶、 基因及 其应用 (57) 摘要 本发明涉及一个来自 “百令” 生产菌冬虫夏 草中国被毛孢参与棕桐酸出发合成代谢十六烷 基 - 辅酶 A 的长链 - 酰基 - 辅酶 A 合成酶, 编码这 个酶的基因及其应用。所述长链 - 酰基 - 辅酶 A 合成酶氨基酸序列与SEQ ID No.1或SEQ ID No.3 所示序列具有 90% 以上同源性。本发明从原理上 对棕桐酸合成十六烷基。

3、 - 辅酶 A 的代谢途径进行 了详细研究, 包含本发明所提供的核苷酸序列的 克隆 DNA 可以用来通过转导、 转化、 结合转移的方 法转入工程菌中, 通过调节十六烷基-辅酶A生物 合成基因的表达, 赋予宿主长链-酰基-辅酶A合 成酶的高表达性, 为扩大十六烷基-辅酶A的产量 提供了有效途径, 具有重大应用前景。 (51)Int.Cl. 权利要求书 1 页 说明书 11 页 序列表 5 页 附图 7 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书1页 说明书11页 序列表5页 附图7页 (10)申请公布号 CN 103087998 A CN 103087998 A 。

4、*CN103087998A* 1/1 页 2 1. 一种参与棕桐酸合成代谢十六烷基 - 辅酶 A 的长链 - 酰基 - 辅酶 A 合成酶, 与 SEQ ID No.1 或 SEQ ID No.3 所示序列具有 90% 以上同源性。 2. 如权利要求 1 所述的长链 - 酰基 - 辅酶 A 合成酶, 其特征在于其氨基酸序列如 SEQ ID No.1 或 SEQ IDNo.3 所示。 3. 如权利要求 1 或 2 所述的长链 - 酰基 - 辅酶 A 合成酶, 其特征在于该酶来自 “百令” 生产菌冬虫夏草中国被毛孢。 4. 如权利要求 1 所述的长链 - 酰基 - 辅酶 A 合成酶在生物催化棕桐酸制。

5、备十六烷 基 - 辅酶 A 中的应用。 5. 编码权利要求 1 或 2 所述长链 - 酰基 - 辅酶 A 合成酶的基因。 6.如权利要求5所述的基因, 其特征在于所述基因的核苷酸序列如SEQ ID No.2或SEQ ID No.4 所示。 7.如权利要求6所述的基因在构建能够生物催化棕桐酸制备十六烷基-辅酶A的基因 工程菌中的应用。 权 利 要 求 书 CN 103087998 A 2 1/11 页 3 冬虫夏草合成十六烷基 - 辅酶 A 的酶、 基因及其应用 (一) 技术领域 0001 本发明涉及一种来自 “百令” 生产菌冬虫夏草中国被毛孢的参与棕桐酸出发合成 代谢十六烷基-辅酶A的长链-酰。

6、基-辅酶A合成酶 (long-chain acyl-CoA synthetase) , 编码这个酶的基因及其应用。 (二) 背景技术 0002 冬虫夏草 (Cordyceps sinensis (Berk.) Sacc.)是冬虫夏草菌寄生在鳞翅目 (Lepidoptera) 蝙蝠蛾科昆虫 (Hepialus armoricanus Oberthur) 幼虫上的子座及幼虫尸 体上的复合体 (包括子座和虫体) 。冬虫夏草是一类珍惜的传统真菌药材资源, 具有代谢产 物和生物活性多样的特点, 在生物医药领域展现出巨大的应用和发展前景。冬虫夏草以其 多种药用功效广泛、 明显而备受关注, 在世界范围内备受。

7、推崇。中医认为, 冬虫夏草入肺肾 二经, 既能补肺阴, 又能补肾阳, 主治肾虚, 阳痿遗精, 腰膝酸痛, 病后虚弱, 久咳虚弱, 劳咳 痰血, 自汗盗汗等, 是唯一的一种能同时平衡、 调节阴阳的中药。 现代药理学已证实, 冬虫夏 草具有免疫调节、 抗菌、 抗肿瘤、 抗氧化、 抗衰老、 降血糖血脂、 性激素样作用等广泛的生物 活性。 0003 冬虫夏草菌是一种子囊菌, 在其生活史中具有分生孢子阶段 (无性型) 和子囊孢子 阶段 (有性型) 。而在人工培养、 液体发酵等实际生产中使用的是无性阶段的冬虫夏草菌, 因 而冬虫夏草无性型的鉴定非常重要。 国内外学者在冬虫夏草资源调查、 无性型确证、 活性。

8、成 分分离分析和作用机理、 开发应用方面做了大量工作。冬虫夏草中国被毛孢已被证明是冬 虫夏草的无性型存在形式, 具有与天然冬虫夏草相同的活性成分和药效。 0004 天然虫草具有严格的寄生性以及特殊的生态环境, 故其产量很低, 价格高昂。 野生 冬虫夏草由于受生长环境等因素制约, 资源匮乏。 由于近几年在人工栽培上进展不大, 野生 冬虫夏草代用品研究多集中在液体发酵上。利用液体深层发酵培养冬虫夏草菌丝体、 提取 物或发酵液, 是解决冬虫夏草药源的一种有效途径。 虫草发酵生产虫草替代品, 既可有效保 护虫草这一珍贵资源, 又不受气候、 地理环境和虫草寄生条件严格的限制, 适合于工业化大 规模生产。。

9、生产出的替代品如菌丝体其成分和药效也与天然虫草相似, 因而国内外一直致 力于虫草菌丝体的发酵培养。人工发酵培养冬虫夏草中国被毛孢得到的菌丝, 经毒理、 药 理、 植化研究, 证明与天然虫草化学组成、 药理作用基本一致, 可代替天然虫草生产虫草制 品, 以弥补自然资源的短缺, 通过对发酵条件的优化, 菌丝体生物量和代谢产物的量均有明 显提高。 0005 近年来, 随着天然产物化学和现代色谱技术的飞速发展, 在对虫草产品研发中已 逐步由虫草原料或粗提物的直接利用转向更深层次的功能性代谢产物研究。 国内外已对虫 草代谢产物做了大量的研究, 代谢产物主要包括核苷、 多糖、 多肽、 甾醇等几大类化合物,。

10、 其 中嘌呤类核苷、 虫草多糖、 甘露醇等具有代表性的功能性代谢产物在生物合成、 药理作用等 方面的研究初见成效。 0006 不饱和脂肪酸是指分子中含有一个或多个双键的脂肪酸, 其熔点较饱和脂肪 说 明 书 CN 103087998 A 3 2/11 页 4 酸低。不饱和脂肪酸是构成体内脂肪的一种脂肪酸, 人体必需的脂肪酸, 不饱和脂肪酸 根据双键个数的不同, 分为单不饱和脂肪酸和多不饱和脂肪酸二种。多不饱和脂肪酸 (Polyunsaturated Fatty Acids, PUFAs) 相对饱和脂肪酸来说具有更多的功效, 它可以降 低血中胆固醇和甘油三酯, 调节心脏功能, 降低血液黏稠度, 。

11、改善血液微循环, 提高脑细胞 的活性, 增强记忆力和思维能力, 增强人体防御系统的功能等, 此外它还可以排除人体内多 余的 “垃圾” , 也就是由于摄人了过量的饱和脂肪酸形成的多余脂肪, 从而达到减肥的目的。 因此, 其潜在的医用药用价值受到了世界的广泛关注, 引起了食品、 医药甚至化妆品等行业 的高度重视。 0007 1999 年 Yung-Sheng 引克隆了高山被孢霉 (Mortiere Uaalpina) 的 6 和 12 脂肪酸脱氢酶基因并在酿酒酵母中进行了表达。2004 年, Dyer 等人将桐树中的 3 去 饱和酶转入酵母, 成功地获得了产亚麻酸的酵母菌。2007 年 Maali。

12、-Amiri 等人将藻青菌 (Cyanobacterium) 的 12 去饱和酶转入马铃薯, 成功检测到马铃薯脂肪酸成分发生了明 显变化。2008 年, Hao 等人将卷枝毛霉的 6 去饱和酶转人转基因烟草中, 成功获得了高产 -亚麻酸的菌株。 此外, 还有许多脂肪酸去饱和酶相关的基因被克隆并转化应用。 由于大 部分去饱和酶为膜结合蛋白, 其分离纯化十分困难, 已经分离纯化并鉴定的去饱和酶屈指 可数, 而绝大多数的研究是围绕去饱和酶基因及其表达调控来进行的。 0008 目前, 所应用的不饱和脂肪酸生产菌以枯草芽孢杆菌为主, 而作为重要合成代谢 不饱和脂肪酸的冬虫夏草菌, 还只停留在代谢产物成分。

13、分析和功效的研究上, 对冬虫夏草 菌不饱和脂肪酸合成代谢途径中相关基因和蛋白的研究还很少见。 (三) 发明内容 0009 本发明目的在于针对以上存在的不足和需要解决的技术问题, 对 “百令” 生产菌冬 虫夏草中国被毛孢合成代谢十六烷基 - 辅酶 A 的长链 - 酰基 - 辅酶 A 合成酶及其编码基因 进行深入研究, 提供了 “百令” 生产菌冬虫夏草中国被毛孢参与棕桐酸出发合成代谢十六烷 基 - 辅酶 A 的长链 - 酰基 - 辅酶 A 合成酶、 编码基因及其应用。 0010 本发明采用的技术方案是 : 0011 一种参与棕桐酸出发合成代谢十六烷基 - 辅酶 A 的长链 - 酰基 - 辅酶 A 。

14、合成酶, 该酶与 SEQ ID No.1 或 SEQ ID No.3 所示序列具有 90% 以上同源性。该酶可催化棕桐酸制 备相应的十六烷基 - 辅酶 A。由于氨基酸序列的特殊性, 任何含有 SEQ ID NO.1 或 SEQ ID No.3 所示氨基酸序列的肽蛋白的片段或其变体, 如其保守性变体、 生物活性片段或衍生物, 只要该肽蛋白的片段或肽蛋白变体与前述氨基酸序列同源性在 90% 以上, 均属于本发明保 护范围之列。具体的所述改变可包括氨基酸序列中氨基酸的缺失、 插入或替换 ; 其中, 对于 变体的保守性改变, 所替换的氨基酸具有与原氨基酸相似的结构或化学性质, 如用亮氨酸 替换异亮氨酸。

15、, 变体也可具有非保守性改变, 如用色氨酸替换甘氨酸。 0012 优选的, 所述长链 - 酰基 - 辅酶 A 合成酶氨基酸序列如 SEQ ID No.1 或 SEQ ID No.3 所示 (分别记为 unsC1, unsC2蛋白) 。 0013 本发明所述的长链 - 酰基 - 辅酶 A 合成酶来自 “百令” 生产菌冬虫夏草中国被毛 孢。 0014 由各棕桐酸合成代谢获得对应十六烷基 - 辅酶 A 的路径如下所示 : 说 明 书 CN 103087998 A 4 3/11 页 5 0015 0016 本发明还涉及所述的长链 - 酰基 - 辅酶 A 合成酶在生物催化棕桐酸制备十六烷 基 - 辅酶 。

16、A 中的应用。 0017 本发明还涉及上述长链 - 酰基 - 辅酶 A 合成酶的编码基因, 即长链 - 酰基 - 辅酶 A 合成酶基因。具体的, 该编码基因可为与 SEQ ID NO : 2 或 SEQ ID No.4 所示多核苷酸具有 90% 以上同源性的基因序列。由于核苷酸序列的特殊性, 任何 SEQ ID NO : 2 或 SEQ ID No.4 所示多核苷酸的变体, 只要其与该多核苷酸具有 90% 以上同源性, 均属于本发明保护范围 之列。所述多核苷酸的变体是指一种具有一个或多个核苷酸改变的多核苷酸序列。此多核 苷酸的变体可以使生的变位变异体或非生的变异体, 包括取代变异体、 缺失变异。

17、体和插入 变异体。 如本领域所知的, 等位变异体是一个多核苷酸的替换形式, 它可能是一个多核苷酸 的取代、 缺失或插入, 但不会从实质上改变其编码的肽蛋白的功能。 0018 优选的, 所述基因的核苷酸序列如SEQ ID No.2或SEQ ID No.4所示 (记为unsC1, unsC2基因, unsC1基因编码 unsC1蛋白, unsC2基因编码 unsC2蛋白) 。 0019 所述的基因可用于构建能够生物催化棕桐酸制备十六烷基 - 辅酶 A 的基因工程 菌, 以扩大十六烷基 - 辅酶 A 或其衍生物的产量。 0020 本发明的要点在于提供了SEQ ID NO : 1或3所示的氨基酸序列和。

18、SEQ ID NO : 2或 4 所示的核苷酸序列, 在已知该氨基酸序列和核苷酸序列的情况下, 该氨基酸序列和核苷酸 序列的获得, 以及相关载体、 宿主细胞的获得, 对于本领域技术人员来说均是显而易见的。 0021 本发明的有益效果主要体现在 : 本发明从原理上对棕桐酸合成十六烷基 - 辅酶 A 代谢途径进行了详细研究, 包含本发明所提供的核苷酸序列的克隆 DNA 可以用来通过转 导、 转化、 结合转移的方法转入工程菌中, 通过调节十六烷基-辅酶A生物合成基因的表达, 赋予宿主长链 - 酰基 - 辅酶 A 合成酶的高表达性, 为扩大十六烷基 - 辅酶 A 或其衍生物的 产量提供了有效途径, 具。

19、有重大应用前景。 (四) 附图说明 0022 图 1 为 “百令” 生产菌冬虫夏草中国被毛孢总 RNA 的甲醛变性凝胶电泳图 ; 0023 图 2 为脂肪酸合成代谢途径注释图 ; 0024 图 3 为脂肪酸代谢途径注释图 ; 0025 图 4 为不饱和脂肪酸合成代谢途径注释图 ; 0026 图 5 为长链 - 酰基 - 辅酶 A 合成酶基因 PCR 扩增产物凝胶电泳图 ; 0027 图 6 为克隆载体 pMD18-T Vector 与表达载体 pET-28a 物理图谱 ; 0028 图 7 为重组克隆质粒 pMD18-T / uns C 物理图谱 ; 0029 图 8 为重组表达质粒 pET-。

20、28a / uns C 构建过程示意图 ; 0030 图 9 为重组表达质粒 pET-28a /uns C 物理图谱 ; 0031 图 10 为长链 - 酰基 - 辅酶 A 合成酶蛋白的 SDS-PAGE 图。 说 明 书 CN 103087998 A 5 4/11 页 6 (五) 具体实施方式 0032 下面结合具体实施例对本发明进行进一步描述, 但本发明的保护范围并不仅限于 此 : 0033 实施例 1 : “百令” 生产菌冬虫夏草中国被毛孢的培养 0034 菌株来源 : 首先从青海采集天然冬虫夏草, 并将其带回杭州进行分离筛选, 得到 了 L0106 菌株, 并经菌种鉴定该菌株为中国被毛。

21、孢 (Hirsutella Sinensis) , 该菌种保 藏在中国典型培养物保藏中心, 保藏编号为 CCTCC No : M 2011278, 已在先前申请的专利 CN102373190A 中披露。 0035 将该菌种接种于斜面, 培养基配方 (此为固化之前的液体配方, 按下述比例配制好 之后再制成斜面) 为葡萄糖 2.0% (w/v, 1% 表示 100mL 培养基中含有 1g, 下同) 、 玉米粉 1.0%、 土豆汁 0.5%、 糊精 0.5%、 酵母粉 0.5%、 麸皮 1.0%、 蚕蛹粉 2.0%、 蛋白胨 1.0%、 硫酸镁 0.05%、 磷酸二氢钾 0.05%、 琼脂粉 1.0。

22、%, 余量为水, 在 1216培养 25 天 ; 然后将菌种接种于发酵 培养基, 培养基配方为葡萄糖1.0%、 糖蜜1.0%、 蚕蛹粉0.5%、 黄豆饼粉1.0%、 酵母膏0.5%、 硫 酸镁0.01%、 磷酸二氢钾0.02%, 余量为水, 置于摇床上, 温度1216培养25天, 培养结束后 在无菌条件下, 进行固液分离, 并将固体置于无菌器具, 备用。 0036 实施例 2 :“百令” 生产菌冬虫夏草中国被毛孢总 RNA 的提取 0037 用TRIzol试剂提取总RNA, 步骤具体为 : 1) 液氮研磨 : 取1g新鲜菌体放入研钵中, 反复加入液氮充分研磨至粉末状, 分装到预冷的1.5mL离。

23、心管中, 加入1mL TRIzol试剂, 混 匀, 冰上静置 5min, 使核酸蛋白复合物完全分离。2) RNA 分离 : 加入 0.2mL 氯仿, 用力震荡混 匀 15s, 冰上静置 23min, 4、 12000rpm 离心 15min, 分层, 取上层水相, 约 600L。3) RNA 沉淀 : 加入 500L 异丙醇, 在冰上静置 10min, 4、 12000rpm 离心 10min, 弃上清。4) RNA 洗 涤 : 加入 1mL 75%(v/v) 乙醇, 将沉淀悬起, 冰上静置 10min, 4、 7500rpm 离心 15min ; 重复 上面洗涤步骤, 再洗一遍。5) 溶解 。

24、RNA : 将离心管置于冰上敞开干燥 510min, 加适量 DEPC 水溶解。 0038 实施例 3 :“百令” 生产菌冬虫夏草中国被毛孢 RNA 样品测序 0039 提取样品总 RNA 后, 用带有 Oligo(dT) 的磁珠富集 mRNA。加入 fragmentation buffer 将 mRNA 打断成短片段 (200700bp) , 以 mRNA 为模板, 用六碱基随机引物 (random hexamers) 合成第一条 cDNA 链, 然后合成第二条 cDNA 链, 再经过 QiaQuick PCR 试剂盒纯化 并加 EB 缓冲液洗脱之后做末端修复、 加 polyA 并连接测序接。

25、头, 然后用琼脂糖凝胶电泳进 行片段大小选择, 最后进行 PCR 扩增, 建好的测序文库用 Illumina GA IIx 进行测序。测序 得到的原始图像数据经base calling转化为序列数据, 即raw data或raw reads。 除去原 始测序 reads 中只含 adaptor 序列的 reads, 备以后续分析。 0040 实施例 4 :“百令” 生产菌冬虫夏草中国被毛孢 RNA 短读序列组装 0041 使用短reads组装软件SOAPdenovo (Li, Zhu et al. De novo assembly of human genomes with massively。

26、 parallel short read sequencing J. Genome Res, 2010, 20: 265-272.) 做转录组从头组装。SOAPdenovo 首先将具有一定长度 overlap 的 reads 连 成更长的不含 N 的 Contig 片段。然后将 reads 比对回 Contig, 通过 paired-end reads 确 定来自同一转录本的不同 Contig 以及这些 Contig 之间的距离, SOAPdenovo 将这些 Contig 说 明 书 CN 103087998 A 6 5/11 页 7 连在一起, 中间未知序列用 N 表示, 这样就得到 Sc。

27、affold。进一步利用 paired-end reads 对 Scaffold 做补洞处理, 最后得到含 N 最少, 两端不能再延长的 Unigene 序列。最后, 将 Unigene序列与蛋白数据库nr、 Swiss-Prot、 KEGG和COG做blastx比对 (evalue0.00001) , 取比对结果最好的蛋白确定 Unigene 的序列方向。如果不同库之间的比对结果有矛盾, 则按 nr、 Swiss-Prot、 KEGG 和 COG 的优先级确定 Unigene 的序列方向, 跟以上四个库皆 对比不上的 Unigene 用软件 ESTScan(Iseli, Jongeneel 。

28、et al. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequencesJ. In Proceedings of 9th InternationalConference on Intelligent Systems for Molecular Biology. AAAIPress, Menlo Park, CA, pp. 1999, 138-148.) 预测其编码区并确定序列的方向。对于能确定序列方向的 Unigene 给出其从 5 到 3 。

29、方向 的序列, 对于无法确定序列方向的 Unigene 给出组装软件得到的序列。 0042 实施例 5 :“百令” 生产菌冬虫夏草中国被毛孢 Unigene 功能注释 0043 功能注释信息给出 Unigene 的蛋白功能注释、 Pathway 注释、 COG 功能注释和 Gene Ontology(GO) 功能注释。首先, 通过 blastx 将 Unigene 序列比对到蛋白数据库 nr、 Swiss-Prot、 KEGG和COG (evalue0.00001) , 得到跟给定Unigene具有最高序列相似性的蛋 白, 从而得到该 Unigene 的蛋白功能注释信息。根据 KEGG 注释信。

30、息能进一步得到 Unigene 的 Pathway 注释。将 Unigene 和 COG 数据库进行比对, 预测 Unigene 可能的功能并对其做 功能分类统计。根据 nr 注释信息, 使用 Blast2GO 软件 (Conesa, Gotz et al. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics researchJ. Bioinformatics, 2005, 21(18): 3674-3676.)得到 Unigene 的 GO 注释信息。得到每个。

31、 Unigene 的 GO 注释后, 用 WEGO 软件 (Ye, Fang et al. WEGO: a web tool for plotting GO annotationsJ. Nucleic Acids Research, 2006, 34: 293-297.) 对所有Unigene做GO功能分类统计, 从宏观上认识该物种的基因功能分布特征。 0044 实施例 6 :“百令” 生产菌冬虫夏草中国被毛孢十六烷基 - 辅酶 A 代谢途径分析 0045 图 2 是 KEGG 代谢途径注释中的脂肪酸合成代谢 (map00061) , 图 3 是 KEGG 代谢途 径注释中的脂肪酸代谢 (ma。

32、p00071) , 图4是KEGG代谢途径注释中的不饱和脂肪酸合成代谢 (map01040) , 已注释的酶是已检测到的 “百令” 生产菌冬虫夏草中国被毛孢十六烷基 - 辅酶 A 代谢途径相关酶类, 从图中可以看出, 检测到了从棕桐酸出发合成对应十六烷基 - 辅酶 A 的长链 - 酰基 - 辅酶 A 合成酶 2 个 Unigene。通过 NCBI 中的 ORF Finder 软件在线检测, 找 出了这个基因的开放阅读框 (SEQ ID No.2, SEQ ID No.4) 并得到了相应的蛋白质序列 (SEQ ID No.1, SEQ ID No.3) 。 0046 实施例 7 :“百令” 生产。

33、菌冬虫夏草中国被毛孢长链 - 酰基 - 辅酶 A 合成酶基因引 物设计 0047 运用GENE RUNNER引物设计软件根据预测得到的各基因开放阅读框DNA序列设计 引物, 用于克隆 “百令” 生产菌中国被毛孢合成代谢十六烷基 - 辅酶 A 的长链 - 酰基 - 辅酶 A 合成酶基因, 引物由上海生工生物工程有限公司合成, 引物序列如下所列 : 0048 unsC1基因 : 正向引物 5 ATAGAATTCATGGACTCCTGGGGTCTGGAC3 0049 反向引物 5 AGAAAGCTTTCACTCAGTGCCAGCATCGTC3 0050 unsC1基因长度为 1239bp。 说 明 。

34、书 CN 103087998 A 7 6/11 页 8 0051 unsC2基因 : 正向引物 5 AGCGAATTCATGCCCCTCATGACAGGATAC3 0052 反向引物 5 ATAAAGCTTTCACATGCCAGACAGGCCGC3 0053 unsC2基因长度为 411bp。 0054 实施例 8 :“百令” 生产菌冬虫夏草中国被毛孢 cDNA 第一链的制备 0055 先按照实施例 1 提供的方法培养出中国被毛孢发酵菌丝体后, 再按照实施例 2 所 提供的方法对中国被毛孢进行总 RNA 的提取, 得到总 RNA 后按下述进行 “百令” 生产菌冬虫 夏草中国被毛孢 cDNA 第。

35、一链的合成, 用于后续各基因克隆实验。 0056 采用 PrimeScript 1st Strand cDNA Synthesis Kit 试剂盒 (TaKaRa) 从 Total RNA 中反转录合成 cDNA 第一链, 实验步骤如下 : 0057 1) 在 Microtube 管中配制下列混合液。 0058 0059 2) 变性、 退火操作有利于模板 RNA 的变性以及反转录引物和模板的特异性退火, 可提高反转录反应效率, 所以在 PCR 仪上进行变性、 退火反应, 条件设置如下 : 0060 65, 5 min 0061 3) 退火结束后离心数秒钟使模板RNA/引物等的混合液聚集于Mic。

36、rotube管底部。 0062 4) 在上述 Microtube 管中配制下列反转录反应液。 0063 0064 5) 在 PCR 仪上按下列条件进行反转录反应。 0065 42 15 30 min 0066 70 15 min 0067 一般情况, 在真核生物 mRNA 3 末端都有一个 PolyA 结构, A 碱基的数量在十至几 百个不等, 利用这一结构可以利用Oligo(dT)引物, 在反转录酶的作用下, 以mRNA为模板合 成cDNA第一链, 本发明采用由TaKaRa独自开发的dT区域的序列 (PrimeScript 1st Strand cDNA Synthesis Kit 中提供)。

37、 为引物, 如果获得的 mRNA 完整性较好, 那么通过逆转录过程 可以得到物种中所有酶蛋白编码基因的 cDNA 第一链。 0068 实施例 9 :“百令” 生产菌冬虫夏草中国被毛孢合成代谢十六烷基 - 辅酶 A 功能基 因长链 - 酰基 - 辅酶 A 合成酶 unsC 基因的克隆、 表达以及蛋白活力的检测 说 明 书 CN 103087998 A 8 7/11 页 9 0069 1、 长链 - 酰基 - 辅酶 A 合成酶 unsC 基因的 PCR 扩增 0070 以实施例 8 中得到的 cDNA 第一链为模板, 用实施例 7 中合成的 unsC1基因引物 : 5 ATA GAA TTC AT。

38、G GAC TCC TGG GGT CTG GAC3 和5 AGA AAG CTT TCA CTC AGT GCC AGC ATC GTC3 , unsC2基因引物 : 5 AGC GAA TTC ATG CCC CTC ATG ACA GGA TAC3 和 5 ATA AAG CTT TCA CAT GCC AGA CAG GCC GC3 进行 Pfu DNA 聚合酶 PCR 扩增反应, 条件设置如 下 : 0071 Pfu PCR 扩增反应体系 : 0072 0073 Pfu DNA Ploymerase PCR 扩增条件 : 0074 0075 2、 长链 - 酰基 - 辅酶 A 合成酶。

39、 unsC 基因 PCR 产物凝胶电泳检测 0076 具体检测方法为 : 1) 将配制好的 0.9% 的琼脂糖凝胶用微波炉加热使其溶解均匀 ; 2) 取 15mL 凝胶, 待凝胶冷却至 50左右时, 加入 1L 染色液 Gold view, 混合均匀后倒入 电泳凝胶板上, 除去气泡后插入点样梳 ; 3) 凝胶凝固后, 小心取出点样梳, 将胶板放入电泳 槽中(点样孔一端靠近电泳槽的负极), 在电泳槽中加入TAE电泳缓冲液 ; 4) 取5L样品然 后加入6Loading Buffer 1.5L和ddH2O 4L混合后用移液枪上样, 上样量为10 L ; 5) 连接电泳槽与电泳仪之间的电源线, 正极。

40、为红色, 负极为黑色 ; 6) 开启电源, 开始电泳, 最 高电压不超过 5 V/cm ; 7) 当样品跑过胶板的 2/3 时可终止电泳 ; 8) 切断电源后, 将凝胶取 出放入凝胶成像仪中观察、 拍照。 0077 转录组测序预测长链 - 酰基 - 辅酶 A 合成酶 unsC1基因的大小为 1239bp, unsC2基 因的大小为 411bp, 琼脂糖凝胶电泳结果表明已成功扩增出了长链 - 酰基 - 辅酶 A 合成酶 unsC1基因的大小约为 1200bp, unsC2基因的大小约为 400bp, 。图 5 为 “百令” 生产菌中国 说 明 书 CN 103087998 A 9 8/11 页 。

41、10 被毛孢合成代谢十六烷基 - 辅酶 A 功能基因 PCR 产物凝胶电泳图。 0078 3、 长链 - 酰基 - 辅酶 A 合成酶 unsC 基因 PCR 产物的加碱基 A 处理以及纯化 0079 由于 Pfu DNA 聚合酶 PCR 产物末端为平端, 所以在胶回收后还需进行加碱基 A 处 理、 纯化后才可用于 T 载体连接。胶回收产物加碱基 A 体系如下 : 0080 0081 PCR 仪中 72加 A 碱基 20 min, 最后用 AxyPrep PCR 清洁试剂盒纯化。 0082 4、 长链 - 酰基 - 辅酶 A 合成酶 unsC 基因与克隆载体的连接 0083 克隆载体 pMD18。

42、-T Vector 购自 TaKaRa 公司 (TaKaRa code D101A) , 其物理图谱 见图 6, 将长链 - 酰基 - 辅酶 A 合成酶 unsC1, unsC2基因与克隆载体连接构建重组质粒 pMD18-T/unsC1, pMD18-T/unsC2, 物理图谱见图 7, 连接体系和连接条件如下。 0084 0085 连接体系 : 0086 连接条件 : 16, 16h ; 灭活 : 65, 15min。 0087 5、 长链 - 酰基 - 辅酶 A 合成酶重组质粒 pMD18-T/unsC 的转化 0088 将重组质粒 pMD18-T/unsC 转入大肠杆菌 E. coli 。

43、JM109 中构建携带长链 - 酰 基 - 辅酶 A 合成酶 unsC 基因的重组菌 E. coli JM109/pMD18-T/unsC, 具体步骤为 : 1) 将 10L 反应体系转至感受态细胞 E. coli JM109 中, 冰浴 30min ; 2) 热击 : 42, 90s ; 3) 冰 浴 : 2-3min ; 4) 加入 800L 液体 LB, 37, 250rpm, 1h ; 5) 涂布平板 (含 Amp 抗性) ; 6) 37 培养箱培养过夜。 0089 6、 长链 - 酰基 - 辅酶 A 合成酶 E. coli JM109/pMD18-T/unsC 阳性重组菌的筛选 00。

44、90 菌落 PCR 可不必提取基因组 DNA, 而直接以菌体热解后暴露的 DNA 为模板进行 PCR 扩增, 该方法操作简便、 快捷、 可以快速鉴定菌落是否为含有目的质粒的阳性菌落, 在转化 鉴定中较为常见。实验中, 将接种到液体培养基中对应的单菌落进行菌落 PCR, 以验证是否 转入目的基因。首先, 用牙签挑取单菌落加入含 50L 无菌水的 1.5mL 离心管中, 沸水浴 30min, 然后离心以上清作为模板, 进行 PCR 扩增, PCR 程序设定为 Taq 酶扩增一般程序。最 说 明 书 CN 103087998 A 10 9/11 页 11 后采用 0.9% 的琼脂糖凝胶电泳检测菌落 。

45、PCR 产物。 0091 7、 长链 - 酰基 - 辅酶 A 合成酶重组质粒 pMD18-T/unsC 的测序 0092 对菌落 PCR 检测出的阳性重组菌液体 LB 培养基培养过夜后, 取 4mL 菌液提取质 粒, 方法按 AxyPrep 质粒 DNA 小量试剂盒提供的操作说明。测序由上海桑尼生物科技有限 公司完成。经测序验证, 序列 SEQ ID No.2 和 SEQ ID No.4 以已分别重组至 pMD18-T/unsC1 和 pMD18-T/unsC2中。 0093 8、 长链 - 酰基 - 辅酶 A 合成酶重组表达质粒 pET-28a/unsC 的构建 0094 实验根据外源基因在。

46、大肠杆菌中表达的原则, 以及表达载体 pET-28a 和长链 - 酰 基 - 辅酶 A 合成酶 unsC 基因酶切位点比对情况, 确定了 unsC1, unsC2为 EcoR 和 Hind 双酶切位点, 并对重组大肠杆菌E. coli JM109/pMD18-T/unsC进行液体LB试管摇床培养、 重组质粒提取。 0095 长链 - 酰基 - 辅酶 A 合成酶 unsC 基因的重组质粒 pMD18-T/unsC 及表达载体 pET-28a 分别用 EcoR /Hind 限制性内切酶在 37分别酶切处理 6h, 酶切体系如下所 示 : 0096 EcoR /Hind 双酶切体系 : 0097 0。

47、098 酶切结束后 65灭活 15min, 然后分别用 Axygen DNA 凝胶回收试剂盒进行回收、 纯化。 0099 长链 - 酰基 - 辅酶 A 合成酶 unsC 基因及表达载体 pET-28a 经双酶切、 纯化后再用 T4连接酶16连接过夜, 构建重组表达质粒pET-28a/unsC, 其构建过程见图8, 构建得到的 重组表达质粒 pET-28a/unsC1, pET-28a/unsC2图谱见图 9。连接体系组成如下 : 0100 连接体系 : 0101 0102 9、 长链 - 酰基 - 辅酶 A 合成酶重组表达质粒 pET-28a/unsC 的转化以及阳性单克 隆的筛选 说 明 书。

48、 CN 103087998 A 11 10/11 页 12 0103 将构建好的表达质粒热激转化至E. coli BL21宿主菌中, 然后涂布到含有卡那霉 素 (Kan) 抗性的 LB 琼脂平板上, 37培养过夜。从平板上随机挑选单菌落, 以各功能基因 的引物进行 PCR 扩增, 挑选阳性克隆。 0104 10、 长链 - 酰基 - 辅酶 A 合成酶重组菌 E. coli BL21/pET-28a/unsC 的诱导表达 0105 将鉴定为阳性的单克隆接种于 5mL 含有 Kan 抗性的 LB 液体培养基中, 37、 250r/ min 培养过夜。取 1mL 培养物, 将其转接于 50mL 含有 Kan 抗性的 LB 液体培养基中 37、 250r/min 培养至菌体浓度 OD600 约为 0.6 0.8 左右。向培养物中分别加入一定浓度的 IPTG 诱导培养 8h。收集菌体供电泳分析以及酶活检测。 0106 11、 长链 - 酰基 - 辅酶 A 合成酶重组菌 E. coli BL21/pET-28a/unsC 表达产物 SDS-PAGE 分析 0107 以转入空载体的 E. coli BL21 菌及未加入诱导剂 IPTG 的重组菌作为对照。鉴定 为阳性的重组菌经IPTG诱导培养一定时间后, 取0.5mL诱导培养物, 离心收集菌体, 重悬于 50L 蒸馏水中, 加入 50L 上样缓。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 生物化学;啤酒;烈性酒;果汁酒;醋;微生物学;酶学;突变或遗传工程


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1