部件粘结方法、盘制造方法及装置.pdf

上传人:r7 文档编号:514589 上传时间:2018-02-20 格式:PDF 页数:29 大小:1.22MB
返回 下载 相关 举报
摘要
申请专利号:

CN01137944.8

申请日:

2001.11.06

公开号:

CN1361002A

公开日:

2002.07.31

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的终止(未缴年费专利权终止)授权公告日:2006.1.25|||授权|||实质审查的生效|||公开

IPC分类号:

B29C65/14; //B29L17:00

主分类号:

B29C65/14; //B29L17:00

申请人:

大日本油墨化学工业株式会社;

发明人:

蛯沢胜英; 伊藤大介

地址:

日本东京

优先权:

2000.11.06 JP 338039/2000; 2001.03.14 JP 072865/2001

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

陈健

PDF下载: PDF下载
内容摘要

一种盘制造方法,以阳离子聚合型紫外线固化性组合物作为粘结剂贴合2片盘基板1a、1b形成1片盘,其中,具有将上述阳离子聚合型紫外线固化性组合物涂覆到盘基板1a的粘合面的一部分的涂覆工序、对涂覆的上述紫外线固化性组合物S照射紫外线的工序、夹着照射了紫外线的上述阳离子聚合型紫外线固化性组合物粘合盘基板1a与盘基板1b的工序、及对处于盘基板1a、1b间的阳离子聚合型紫外线固化性组合物S进行展延的工序。这样,可通过提高对粘合面涂覆阳离子聚合型紫外线固化性组合物的精度,防止盘基板间的紫外线固化性组合物的渗出和间隙的发生。

权利要求书

1: 一种构件粘结方法,通过紫外线固化性组合物使2个被粘结构件 粘结,其特征在于:具有将上述紫外线固化性组合物涂覆到一方的被粘 结构件的被连接部分的一部分的工序、对涂覆的上述紫外线固化性组合 物照射紫外线的工序、通过照射了紫外线的上述紫外线固化性组合物使 上述一方的被粘结构件与另一方的被粘结构件接合的工序、及对夹在双 方的被粘结构件间的上述紫外线固化性组合物展延的工序,而且该紫外 线固化性组合物为阳离子聚合型紫外线固化性组合物。
2: 根据权利要求1所述的构件粘结方法,其特征在于:阳离子聚合 型紫外线固化性组合物在波长带310~340nm的光吸收系数为2×10 3 m -1 以 下。
3: 根据权利要求1或2所述的构件粘结方法,其特征在于:仅对涂 覆于上述被粘结部分的上述紫外线固化性组合物照射紫外线。
4: 一种盘制造方法,以阳离子聚合型紫外线固化性组合物作为粘结 剂贴合2片盘基板形成1片盘,其特征在于:具有将上述紫外线固化性 组合物涂覆到一方的盘基板的粘合面的一部分的涂覆工序、对涂覆的上 述紫外线固化性组合物照射紫外线的工序、夹着照射了紫外线的上述紫 外线固化性组合物粘合上述一方的盘基板与另一方的盘基板的工序、及 对夹在双方的盘基板间的上述紫外线固化性组合物进行展延的工序。
5: 根据权利要求4所述的盘制造方法,其特征在于:上述紫外线固 化性组合物为波长带310~340nm的光吸收系数在2×10 3 m -1 以下的阳离子 聚合型紫外线固化性组合物。
6: 根据权利要求4或5所述的盘制造方法,其特征在于:相对上述 盘基板构成同心圆地涂覆上述紫外线固化性组合物。
7: 根据权利要求4~6中任何一项所述的盘制造方法,其特征在于: 仅对涂覆到上述粘合面的上述紫外线固化性组合物照射紫外线。
8: 根据权利要求4~7中任何一项所述的盘制造方法,其特征在于: 当进行上述展延时,朝周向使夹住上述紫外线固化性组合物粘合的2片 盘基板回转。
9: 根据权利要求4~8中任何一项所述的盘制造方法,其特征在于: 上述盘为DVD。
10: 一种盘制造装置,以阳离子聚合型紫外线固化性组合物作为粘结 剂贴合2片盘基板形成1片盘,其特征在于:具有将上述紫外线固化性 组合物涂覆到一方的盘基板的粘合面的一部分的涂覆装置、对涂覆的上 述紫外线固化性组合物照射紫外线的紫外线照射装置、夹着照射了紫外 线的上述紫外线固化性组合物粘合上述一方的盘基板与另一方的盘基板 的粘合装置、及对处于双方的盘基板间的上述紫外线固化性组合物进行 展延的展延装置。
11: 根据权利要求10所述的盘制造装置,其特征在于:上述涂覆装 置具有对于粘合面从规定位置排出上述紫外线固化性组合物的排出部和 使具有上述粘合面的盘基板朝周向回转的盘基板回转驱动部。
12: 根据权利要求10或11所述的盘制造装置,其特征在于:上述紫 外线照射装置具有对涂覆了上述紫外线固化性组合物的上述盘基板照射 紫外线的光源和将从光源照射的紫外线的照射区域仅限制于上述紫外线 固化性组合物的照射区域限制部。
13: 根据权利要求10~12中任何一项所述的盘制造装置,其特征在 于:上述展延装置具有把持夹持着上述紫外线固化性组合物地粘合的2 片盘基板并使其朝周向回转的盘回转驱动部。

说明书


部件粘结方法、盘制造方法及装置

    【技术领域】

    本发明涉及一种以阳离子聚合型紫外线固化性组合物作为粘结剂粘合2个被粘结构件的粘结方法,另外,还涉及以阳离子聚合型紫外线固化性组合物作为粘结剂粘合2片盘基板形成1片盘的盘制造方法和盘制造装置。背景技术

    过去,作为粘结例如塑料制部件等各种构件的方法,主要有利用热熔粘结剂、溶剂系粘结剂、紫外线固化性组合物等粘结剂的方法和使用热熔接的方法等。

    另外,当制造例如数字用图象/通用盘即所谓的DVD时,采用以紫外线固化性组合物作为粘结剂粘合2片盘基板的方法。这里所说的紫外线固化性组合物至少包含阳离子聚合型紫外线固化性组合物和游离基聚合型紫外线固化性组合物。阳离子聚合型紫外线固化性组合物在照射紫外线后不立即硬化,经过规定时间后产生硬化,具有迟效性,而游离基聚合型紫外线固化性组合物在照射紫外线后立即硬化,具有速效性。对于后者的游离基聚合型紫外线固化性组合物,在粘合的2片盘基板为紫外线透过性例如DVD-ROM等的场合,由于可在夹住紫外线固化性组合物地预先粘合盘基板后透过基板照射紫外线,所以,可用作盘粘合粘结剂,而在例如两面记录DVD-RAM等那样的粘合的2片盘基板都完全不透过紫外线的那样的场合,粘合后不能照射紫外线,所以难以用作粘合用粘结剂。而对于前者的阳离子聚合型紫外线固化性组合物,由于硬化速度慢,所以,可在粘合盘基板之前预先进行紫外线照射,所以,在粘合紫外线不透过的盘基板之间地场合也可使用。

    当用阳离子聚合型紫外线固化性组合物作为粘结剂粘合2片不透过紫外线的盘基板时,先在盘基板的至少一方涂覆上述紫外线固化性组合物,夹着它重合2片盘基板。

    另外,紫外线照射时刻必须在重合2片基板之前。作为那样的一个方法,具有在涂覆之前对紫外线固化性组合物照射紫外线的方法。

    具体地说,具有这样的方法,即,从喷嘴排出阳离子聚合型紫外线固化性组合物,使其在空中落下,在一方的盘基板的粘合面绘成圆地涂覆。此时,对阳离子聚合型紫外线固化性组合物的紫外线照射在上述紫外线固化性组合物从喷嘴的前端落下到达盘基板之前的空间进行。

    对于使用热熔粘结剂、溶剂系粘结剂等的粘结方法,根据被粘结构件的用途的不同,除了缺乏耐热性或粘结强度和粘结精度难以满足要求等外,还存在粘结时间长、作业性差等问题。

    另一方面,对于由上述那样的阳离子聚合型紫外线固化性组合物的落下照射进行的盘基板的粘合,由于不对盘基板直接照射紫外线,所以,不需要考虑光源的热对信息记录层的影响。另外,通过在紫外线固化性组合物的落下路径照射紫外线,可均匀而且充分地对紫外线固化性组合物整体进行照射。其反面,由于从盘基板的较高上方使粘结剂落下,所以,对粘合面涂覆的正确性存在问题。例如,在邻接于落下轨道的部位产生的静电使落下途中的紫外线固化性组合物的轨道紊乱,不能在粘合面上涂覆成所期望的形状,或在最初到达粘合面的部分形成比其它部分大的紫外线固化性组合物的块,不能沿周向均匀地涂覆。

    这样在不正确地涂覆紫外线固化性组合物的状态下粘合盘基板时,紫外线固化性组合物从盘基板间渗出,或者紫外线固化性组合物不均布到盘基板间而产生间隙。

    为了防止这样的现象发生,在现有技术的盘制造装置中,预先对紫外线固化性组合物的涂覆量进行计量后涂覆,以提高涂覆的精度,但在连续地产生大量的盘的场合,虽然可能性很小,但有时可能发生上述那样的现象。

    因此,利用外观检查装置发现并除去紫外线固化性组合物渗出的盘和在盘基板间产生间隙的盘的发现、除去作业。这样,如为紫外线固化性组合物渗出的盘,则基本上可完全除去。

    然而,对于在盘基板间产生间隙的盘,目前由外观检查装置也难以发现。由于盘基板间的间隙在盘的内周侧或外周侧产生,所以,当长期使用产生间隙的盘时,在盘基板间侵入水分,耐久性下降,而且还可能对从盘读取信息或对盘写入信息带来故障。

    此外,在现有盘制造装置中,在长期持续进行生产的过程中,存在落下轨道的周边(例如覆盖落下轨道的防风筒的内面)附着固定气化了的紫外线固化性组合物,妨碍紫外线固化性组合物的落下的问题。

    另一方面,还有这样的方法,即,对至少盘基板的一方均匀地涂覆紫外线固化性组合物后或进一步展延变宽后照射紫外线,粘合2片盘基板。该方法可在照射紫外线之前以良好的精度充分地展延紫外线固化性组合物,而且可对展延后的组合物以宽面积照射紫外线。然而,当粘合展延后的被粘结构件时,涂覆和展延后的粘结剂的表面与另一方的盘表面在粘合初期于表面相互间进行接触,所以,易产生封闭于粘结层内的气泡,而且存在一时产生的气泡不易逸出的缺点。发明目的

    本发明就是鉴于上述情况而作出的,其目的在于通过在粘合例如2片的盘基板的场合等粘结2个被粘结构件时以强的粘结力、高粘结精度进行粘结,在短时间内以良好的作业性粘结,及提高在粘合面的粘结剂的涂覆精度,从而消除被粘结构件间的粘结剂的渗出及间隙和气泡的发生,提高产品的合格率。发明的概述

    为了解决上述问题,本发明人发现,将紫外线固化性组合物涂覆到至少一方的被粘结构件后,即使在展延前照射紫外线,也可在其后的展延工序中充分而且均匀地展延紫外线固化性组合物,为了提高涂覆精度,当然最好这样进行。而且,即使在展延前涂料局部存在于被粘结构件的状态下照射紫外线,也可不对展延或展延后的硬化产生不良影响地实现,对防止气泡的发生当然较好。在此发现的基础上,完成了本发明。

    作为解决上述问题的手段,本发明人采用以下那样的构成的构件的粘结方法、盘制造方法、及盘制造装置。

    即,本发明的构件粘结方法为通过紫外线固化性组合物使2个被粘结构件粘结的方法,其特征在于:具有将上述紫外线固化性组合物涂覆到一方的被粘结构件的被连接部分的一部分的工序、对涂覆的上述紫外线固化性组合物照射紫外线的工序、通过照射了紫外线的上述紫外线固化性组合物使上述一方的被粘结构件与另一方的被粘结构件接合的工序、及对处于双方的被粘结构件间的上述紫外线固化性组合物展延的工序,而且该紫外线固化性组合物为阳离子聚合型紫外线固化性组合物。

    按照该构件的粘结方法,在被粘结构件上涂覆紫外线固化性组合物,并在对该紫外线固化性组合物照射紫外线,所以,可从与被粘结部分接近的位置涂覆紫外线固化性组合物。因此,可将紫外线固化性组合物以良好的精度涂覆到规定部位,防止粘结后的产品的紫外线固化性组合物渗出或发生间隙。

    另外,对涂覆于被粘结构件的紫外线固化性组合物照射紫外线后,使该紫外线固化性组合物展延,从而可使2个被粘结构件的粘结面积变大,获得牢固的粘结力,并获得高的封闭效果。

    由于紫外线固化性组合物在展延前局部存在于被粘结构件上,2个被粘结构件在此状态下接合,所以,可使局部存在于被粘结构件间的紫外线固化性组合物展延,朝构件的端部扩展该组合物。为此,在被粘结构件间不易残留气泡。

    另外,紫外线固化性组合物为阳离子聚合型,从紫外线照射到硬化结束需要的时间较长,所以,可抑制气泡的发生,并且可进行精度良好的粘合。

    另外,照射紫外线后,通过由紫外线固化性组合物接合一方的被粘结构件和另一方的被粘结构件,从而可在短时间使两构件粘结。因此,粘结工序所需时间极短,所以,可用于连续工序,可提高生产率。

    在本发明的构件粘结方法中,最好阳离子聚合型紫外线固化性组合物在波长带310~340nm的光吸收系数为2×103m-1以下。一般情况下,紫外线固化性组合物的光致聚合涉及波长350nm以下的紫外线,作为光致聚合引发剂,使用在350nm以下具有大的光吸收系数的材料。为此,在一般的紫外线固化性组合物中,特别是有助于聚合产生的340nm以下的波长的光吸收系数为1×104m-1以上的场合较多。在这里,光吸收系数在与入射光强度I0、透过光强度I、透过距离x的关系式

    I=I0×10-αx中,由α表示。

    在光吸收系数为1×104m-1的场合,入射光强度衰减到10分之1之前透过的距离仅达到0.1mm,照射的紫外线能量基本上由表面吸引。因此,仅在表面部分产生硬化,在表面与内部的硬化状态产生差,所以,在如本发明的粘结方法那样照射紫外线后进行展延的场合,成为紫外线固化性组合物不能均匀地扩展的原因。另一方面,如光吸收系数在2×103m-1以下,则入射光在衰减到10分之1之前透过0.5mm以上,所以,紫外线能量在5倍以上的体积中被吸收,不易产生上述那样的仅在表面集中的吸收导致的局部硬化,可均匀地展延。而且,当由紫外线吸收对紫外线固化性组合物植下反应种时,聚合反应连锁地波及到紫外线不能充分透过、不能形成反应种的部分,所以,展延后的粘结剂层的固化性没有问题。

    在本发明的构件粘结方法中,最好仅对涂覆于上述被粘结部分的上述紫外线固化性组合物照射紫外线。

    被粘结构件由于可能因为光源的热而受到损害,所以,如仅对涂覆于被粘部分的紫外线固化性组合物照射紫外线,则被粘结构件不会受到光源的热的影响。

    本发明的构件的粘结方法可适用于盘的制造。即,本发明的盘制造方法为以紫外线固化性组合物作为粘结剂贴合2片盘基板形成1片盘的盘制造方法,其特征在于:具有将上述紫外线固化性组合物涂覆到一方的盘基板的粘合面的一部分的涂覆工序、对涂覆的上述紫外线固化性组合物照射紫外线的工序、夹着照射了紫外线的上述紫外线固化性组合物粘合上述一方的盘基板与另一方的盘基板的工序、及对处于双方的盘基板间的上述紫外线固化性组合物进行展延的工序。

    按照该盘制造方法,在盘基板涂覆紫外线固化性组合物后,并对该紫外线固化性组合物照射紫外线,所以,可不需如过去那样从粘合面上方使紫外线固化性组合物落下。这样,可对粘合面从更近的位置涂覆紫外线固化性组合物,所以,不会出现落下轨道的紊乱等,可提高涂覆精度。这样,可防止盘基板间的紫外线固化性组合物的渗出和间隙的发生。

    在本发明的盘制造方法中,上述紫外线固化性组合物最好在波长带310~340nm的任意波长的光吸收系数为2×103m-1以下。如本发明的制造方法那样照射紫外线后进行展延的场合,如紫外线固化性组合物的光吸收系数为2×103m-1以下,则不易产生由仅在表面的集中的光吸收导致的部分硬化,可进行均匀的展延。这样,在盘基板间均匀地形成粘结层,可防止盘基板间的紫外线固化性组合物的渗出和间隙的发生。另外,当由紫外线吸收在紫外线固化性组合物中植入反应种时,聚合反应连锁地波及到紫外线不能充分透过、不能形成反应种的部分,所以,不用担心在粘结层产生硬化不均。

    在本发明的盘制造方法中,上述盘基板都为圆板状,最好相对该盘基板构成同心圆地涂覆上述紫外线固化性组合物。如构成同心圆地相对圆板状的盘基板涂覆紫外线固化性组合物,则可由保持着同心状地朝径向由展延使紫外线固化性组合物扩展,形成均匀厚度的粘结层,不会从盘基板间的一部分渗出紫外线固化性组合物或总是仅在一部分扩展而产生间隙。

    在本发明的盘制造方法中,最好仅对涂覆到上述粘合面的上述紫外线固化性组合物照射紫外线。盘基板可能因光源的热使在信息记录层受到损伤。因此,如仅对涂覆到粘合面的紫外线固化性组合物照射紫外线,则信息记录层不会受到光源的热影响。

    在本发明的盘制造方法中,当进行上述展延时,最好朝周向使夹住上述紫外线固化性组合物粘合的2片盘基板回转。当使粘合的2片盘基板朝周向回转时,夹于盘基板间的紫外线固化性组合物受到离心力的作用,保持着同心圆状朝径向扩展,在盘基板间全体中没有间隙地形成均匀厚度的粘结层。这样,紫外线固化性组合物不会从盘基板间的一部分渗出,或总是在一部分扩展而产生间隙。

    本发明的盘制造方法,也适用于上述盘为DVD的场合。当制造DVD时,对盘基板间的粘结层的均匀性要求非常严格,或要求通过极力减少表面凹凸降低轴加速度,但通过如上述那样形成紫外线固化性组合物的粘结层,则可制造满足要求的高精度的DVD。

    上述的盘制造方法可由如下那样构成的盘制造装置实施。即,本发明的盘制造装置为以阳离子聚合型紫外线固化性组合物作为粘结剂贴合2片盘基板形成1片盘的盘制造装置,其特征在于:具有将上述紫外线固化性组合物涂覆到一方的盘基板的粘合面的一部分的涂覆装置、对涂覆的上述紫外线固化性组合物照射紫外线的紫外线照射装置、夹着照射了紫外线的上述紫外线固化性组合物粘合上述一方的盘基板与另一方的盘基板的粘合装置、及对处于双方的盘基板间的上述紫外线固化性组合物进行展延的展延装置。

    按照该盘制造装置,可对粘合面从更近的位置涂覆紫外线固化性组合物,所以,不会出现落下轨道的紊乱等,可提高涂覆精度。这样,可防止盘基板间的紫外线固化性组合物的渗出和间隙的发生。

    在本发明的盘制造装置中,上述涂覆装置最好具有对于粘合面从规定位置排出上述紫外线固化性组合物的排出部和使具有上述粘合面的盘基板朝周向回转的盘基板回转驱动部。相对粘合面从规定位置排出紫外线固化性组合物,与此同时,使具有粘合面的一方的盘基板朝周向回转,则紫外线固化性组合物相对盘基板构成同心圆地涂覆。当使另一方的盘基板粘合地回转展延时,紫外线固化性组合物保持着同心圆状朝径向扩展,在盘基板间全体没有间隙地形成均匀厚度的粘结层。

    在本发明的盘制造装置中,上述紫外线照射装置最好具有对涂覆了上述紫外线固化性组合物的上述盘基板照射紫外线的光源和将从光源照射的紫外线的照射区域仅限制于上述紫外线固化性组合物的照射区域限制部。如上述那样,盘基板可能固光源的热而使信息记录层受到损伤,所以,设置照射区域限制部,仅对涂覆于粘合面的紫外线固化性组合物照射紫外线,从而可防止信息记录层受到光源的热影响。

    在本发明的盘制造装置中,最好上述展延装置具有夹持着上述紫外线固化性组合物地把持粘合的2片盘基板朝周向回转的盘回转驱动部。当使粘合的2片盘基板朝周向回转时,处于盘基板间的紫外线固化性组合物受到离心力的影响,保持着同心圆状朝径向扩展,在盘基板间全体中没有间隙地形成均匀厚度的粘结层。附图说明

    图1为示出本发明第1实施形式的图,是图示出光盘的制造装置的概略构成的俯视图。

    图2为示出涂覆装置的概略构成的侧视图。

    图3为示出紫外线照射装置的概略构成的侧视图。

    图4为示出展延装置的概略构成的侧视图。

    图5为示出具有平面保持台的光盘制造装置的概略构成的俯视图。

    图6为示出平面保持装置的概略构成的侧视图。

    图7示出平面保持机构,(a)为俯视图,(b)为侧视图。

    图8为按工序顺序示出本发明的第2实施形式的图。具体实施方式

    下面以DVD的制造为例说明本发明的第1实施形式。

    图1示出DVD制造装置的示意构成。在图中,符号R1为盘基板取出部,符号R2为盘制作部,符号R3为盘检查部,符号R4为盘取出部,而且都收容在图中未示出的箱内部。

    盘基板取出部R1由堆放区域A1和取出区域A2构成,在该堆放区域A1,将用于粘合构成1片的盘(DVD)的2片盘基板1a、1b分别以叠放状态堆放于盘保持器2,在该取出区域A2,1张1张地取出保持于各盘保持器2的盘基板1a、1b。

    盘制作部R2由涂覆装置(涂覆手段)3、紫外线照射装置(紫外线照射手段)4、粘合装置(粘合手段)5、展延装置(展延手段)6、端面处理装置7、及移载装置8构成,该涂覆装置3朝盘基板1a的粘合面涂覆阳离子聚合型紫外线固化性组合物,该紫外线照射装置4对涂覆了阳离子聚合型紫外线固化性组合物的盘基板1a照射紫外线,该粘合装置5粘合涂覆了阳离子聚合型紫外线固化性组合物的盘基板1a和盘基板1b,形成1片盘1,该展延装置6展延结束粘合的盘1,该端面处理装置7进行结束了展延的盘1的端面硬化处理,该移载装置8从盘叠放·端面处理台D将结束了端面处理的盘1移载到盘检查部R3、盘取出部R4。

    盘检查部R3由检查盘1判定合格/不合格的盘检查装置9构成。盘取出部R4由取出判定为合格的盘1的合格品取出部10和取出判定为不合格品的盘1的不合格品取出部11构成。

    下面,说明如上述那样构成的DVD制造装置的盘1的制造工序。

    首先,将叠放于堆放区域A1的一方的盘基板1a供给到盘制作部R2。在堆放区域A1将多个盘基板1a叠放到盘保持器2,当从唯放区域A1将盘保持器2移动到取出区域A2时,由图中未示出的输送装置将叠放于盘保持器2上的盘基板1a中最上面的1片移送到涂覆台B的基板供给位置B1。

    盘基板1a在输送到涂覆台B时由翻转装置12翻转。这些因为,为了防止在上一工序将杂质等附着到粘合面,在堆放区域A1将粘合面朝下地堆放盘基板1a。这对于另一方的盘基板1b也一样,当输送到粘合装置5时,由翻转装置12翻转。

    移载到基板供给位置B1的盘基板1a通过涂覆台B朝图中箭头方向回转而移送到粘结剂涂覆位置B2。在移送到粘结剂涂覆位置B2的盘基板1a的粘合面,由涂覆装置3将阳离子聚合型紫外线固化性组合物S涂覆成与盘基板1a呈同心圆的环状。其中,阳离子聚合型紫外线固化性组合物S使用具有波长带310~340nm的光吸收系数为2×103m-1以下的特性的阳离子聚合型紫外线固化性组合物。这样的紫外线固化性组合物作为光致聚合引发剂通过选择使用350nm以下的光吸收系数较小的材料而获得。

    涂覆了阳离子聚合型紫外线固化性组合物S的盘基板1a通过使涂覆台B进一步回转而移送到基板移载位置B3。移送到基板移载位置B3的盘基板1a在这里一时停止,从紫外线照射装置4朝阳离子聚合型紫外线固化性组合物照射紫外线。结束了紫外线照射的盘基板1a由图中未示出的输送手段输送到粘合装置5。

    在粘合装置5,从取出区域A2由图中未示出的输送手段输送来的盘基板1b结束翻转后进入等候状态,盘基板1a、1b使粘合面相向地重合,通过阳离子聚合型紫外线固化性组合物粘合构成为1片盘1。

    盘1由图中未示出的输送手段输送到盘叠放·端面处理台D,在该过程中暂时移送到展延装置6。在展延装置6,盘1被利用中央的孔把持着朝自身的周向高速回转,利用离心力对阳离子聚合型紫外线固化性组合物进行一次展延处理。此时,通过使盘基板1a、1b的中央孔一致,将轴心对齐。

    结束一次展延处理后的盘1被输送到盘叠放·端面处理台D上。在盘叠放·端面处理台D沿周向隔开相等间隔地配置盘保持器2,盘1先被输送到位于叠放位置D1的位置的盘保持器2上。在盘保持器2,与刚体盘G交替地叠放由输送装置(未在图中示出)不断地输送的盘1。

    将多个盘1保持为叠放状态的盘保持器2随着盘叠放·端面处理台D的回转被移送到展延位置D2。在展延位置D2,多片盘1以叠放于盘保持器2的状态放置规定时间,进行阳离子聚合型紫外线固化性组合物的二次展延处理。盘1随着盘叠放·端面处理台D的回转连盘保持器2一起进行移动,在展延位置D2之后的D3、D4、D5各展延位置移动,在此期间,进行二次展延处理。

    结束二次展延处理后的盘1随着盘叠放·端面处理台D的回转连盘保持器2一起移送到端面加温位置D5。在加温位置D5,由端面处理装置7对端面近旁的阳离子聚合型紫外线固化性组合物加温,促进其硬化。

    结束端面硬化处理的盘1随着盘叠放·端面处理台D的回转与各盘保持器2一起被移送到分离位置D6。在移载装置8设置同步驱动的3个臂8a、8b、8c,保持于分离位置D6的盘保持器2的盘1由臂8b输送到盘检查装置9,同时,结束检查的盘1由臂8c输送到合格品取出部10或不合格品取出部11。另外,当进行臂8b、8c的复位动作时,由臂8a将保持于分离位置D6的盘保持器2上的刚体盘G输送到叠放位置D1,与从粘合装置5不断输送的盘1交替叠放。

    在盘检查装置9被判定为不合格品的盘离开正规的生产线,仅被判定为合格品的盘叠放在准备于合格品取出部10的盘保持器2上,与各盘保持器2一起输送到后一工序。

    这样在盘叠放·端面处理台D中,盘1在盘保持器2与刚体盘G交替地叠放,进行紫外线固化性组合物的二次展延和硬化,并且,与各盘保持器2一起被加温,进行端面部分的紫外线固化性组合物的硬化。

    这样进行阳离子聚合型紫外线固化性组合物的展延后,在该组合物完全硬化之前需要规定的硬化时间,其间不在盘1形成应变应力地将其保持为平面保持状态对不使硬化后的盘1产生应变和变形很重要。

    考虑到以上内容,上述盘制造装置的实施形式的盘叠放·端面处理台D的部分可变更为平面保持机构和平面保持装置的下述构成。在图5、图6、图7示意地示出具有平面保持装置的盘制造装置和平面保持机构。在本装置中,作为盘叠放·端面处理台D的替代结构,配置由平面保持装置20和平面保持机构构成的平面保持台。

    在图5、图6的盘制造装置中,结束了阳离子聚合型紫外线固化性组合物的展延的盘1被输送到端面处理装置7,在这里从盘1的表里两面侧闪光地照射包含紫外线和热线(红处线)的光线。此时,使用反射镜等,对盘1的端面也进行照射。这样,促进端面近旁的阳离子聚合型紫外线固化性组合物的硬化,防止从端面渗出组合物,并通过由热线加温,使阳离子聚合型紫外线固化性组合物全体的硬化时间缩短。

    结束在端面处理装置7的过程的盘1被输送到平面保持装置20。平面保持装置20具有规定长度的移动通道21和以规定移动速度在该移动通道21上移动的平面保持机构80。如图7所示,在平面保持机构80的上面设置具有贯通孔85、86的平板状的保持构件87,由收容于平面保持机构80内的风扇84吸气,从而以平面状将盘1保持于保持构件87。另外,通过使电极89与沿移动通道21的全长设置的接触电极(图中未示出)接触,从而将直流电压供给到风扇84的驱动手段。盘1先被输送到位于移动通道21的出发点(第1地点)22的平面保持机构80上,以平面状保持于该平面保持机构80的保持构件87。

    这样依次输送到平面保持装置的移动路径上的、保持盘1的平面保持机构多个相连地使平面保持机构80在移动通道21上移动到终点(第2地点)23。平面保持装置20的移动通道21使得平面保持组件可从其最高位置21相连地移动地形成,其间,平面保持机构80上的盘1仅在规定时间保持为平面状,其间阳离子聚合型紫外线固化性组合物的硬化进行,粘合的盘1的形状不出现变形和应变地以良好的平面度固化。

    在平面保持装置20内的过程结束了的盘1在终点23被从平面保持机构80取出,输送到盘检查装置9。

    在本实施形式中,移动通道21的出发点(第1地点)22与终点(第2地点)23为相同位置,在该位置,从平面保持机构80取出盘1后,将新的盘1载默默到该平面保持机构80上。

    在本实施形式中,从端面处理装置7到平面保持装置20的输送和从平面保持装置20到盘检查装置9的盘1的输送手段使用移载装置8,另外,盘1由该移载装置8从盘检查装置9输送到合格品取出部10或不合格品取出部11。

    在移载装置8设置同步地驱动的3个臂8a、8b、8c,由臂8a从端面处理装置7将移载装置8输送到平面保持装置20的同时,由臂8b从到达平面保持装置20的移动通道21的终点23的平面保持机构80取出盘1,输送到盘检查装置9,并在同时由臂8c将结束检查的盘1输送到合格品取出部10或不合格品取出部11。

    在盘检查装置9被判定为不合格品的盘离开正规的生产线,仅被判定为合格品的盘叠放在准备于合格品取出部10的盘保持器2上,与盘保持器2一起输送到后一工序。

    在图5的盘制造装置中,除上述平面保持装置20外,还改良了展延装置6。即,在上述展延装置6中,通过沿周向使由紫外线固化性组合物粘合的2片盘基板朝周向回转,从而进行展延,可使基板间的粘结层的厚度进一步均匀化。

    在该展延装置6,盘1被利用中央的孔把持着朝自身的周向高速回转,利用离心力对阳离子聚合型紫外线固化性组合物进行展延。这样,使盘基板1a、1b间的阳离子聚合型紫外线固化性组合物展延成均匀的厚度的层。另外,此时通过使盘基板1a、1b的中央孔一致,将轴心对齐。

    在大体如上述那样构成的DVD制造装置中,说明了将阳离子聚合型紫外线固化性组合物涂覆到盘基板1a的粘合面的涂覆装置3。

    涂覆装置3如图2所示那样由泵部(排出部)30和盘基板回转驱动部35构成,该泵部30在涂覆台B上的粘结剂涂覆位置B2对盘基板1a的粘合面排出阳离子聚合型紫外线固化性组合物,该盘基板回转驱动部35在相同的粘结剂涂覆位置B2朝周向使盘基板1a回转。

    在泵部30使前端朝下地设置排出阳离子聚合型紫外线固化性组合物的喷嘴31,泵部30固定在使喷嘴接近移动到粘结剂涂覆位置B2的盘基板1a的粘合面的位置。

    盘基板回转驱动部35具有利用中央孔把持移送到粘结剂涂覆位置B2的盘基板1a的把持部36和使把持部36与各盘基板1a一起朝周向回转的驱动部37,与涂覆台B一体地设置。

    下面说明如上述那样构成的涂覆装置3的工作方法。移送到粘结剂涂覆位置B2的盘基板1a先由把持部36把持中心孔。接着,对盘基板1a的粘合面从接近粘合面的喷嘴31的前端排出阳离子聚合型紫外线固化性组合物。

    在盘基板回转驱动部35中,与阳离子聚合型紫外线固化性组合物从喷嘴31的排出同步地使盘基板1a朝周向回转。此时,如阳离子聚合型紫外线固化性组合物的温度满足规定条件,则从喷嘴31排出粘结所需量的阳离子聚合型紫外线固化性组合物所需时间为一定。因此,按阳离子聚合型紫外线固化性组合物的排出所需时间正确地使盘基板1a回转1周地控制驱动部37的动作。这样,将阳离子聚合型紫外线固化性组合物涂成相对盘基板1a呈同心圆的环状。

    这样按照涂覆装置3,可相对盘基板1a的粘合面从更近的位置涂覆阳离子聚合型紫外线固化性组合物,所以,不会出现落下轨道的紊乱,可提高涂覆精度。

    下面,说明对涂覆了阳离子聚合型紫外线固化性组合物的盘基板1a照射紫外线的紫外线照射装置4。

    紫外线照射装置4如图3所示具有光源40和光掩模(照射区域限制部)45,该光源40在涂覆台B上的基板移载位置B3对涂覆阳离子聚合型紫外线固化性组合物S后的盘基板1a照射紫外线,该光掩模45将从光源40照射的紫外线的照射区域仅限制为阳离子聚合型紫外线固化性组合物S。

    光源40采用闪光型的闪光灯装置(乌西奥(ウシオ)制SBC13),配置在基板移载位置B3正上方。

    光掩模45位于涂覆台B与光源40之间,与移送到基板移载位置B3的盘基板1a平行地配置。在光掩模45上形成环状的开口46,该开口46与阳离子聚合型紫外线固化性组合物S相对齐,使得可从紫外线的照射方向观看时可看透盘基板1a上的阳离子聚合型紫外线固化性组合物S,而且其它基板面成为阴影,看不透。

    光掩模45的材质最好不易吸收紫外线、可视光线、红外线等光能,而且在上述光线全体的波长区域光反射率高。这是因为,在光掩模45吸收光能使温度上升较大的场合,来自该处的热辐射可能在盘基板1a导致热变形。

    下面说明如上述那样构成的紫外线照射装置4的工作方法。

    涂覆阳离子聚合型紫外线固化性组合物S的盘基板1a随着涂覆台B的回转被移送到基板移载位置B3。移送到基板移载位置B3的盘基板1a一时在此处停止,从紫外线照射装置4朝紫外线固化性组合物反复闪光地照射紫外线。每1照射向灯的输入能量和照射次数可相应于作为粘结剂使用的阳离子聚合型紫外线固化性组合物的固化性组合物的硬化感度进行调节。

    这样按照紫外线照射装置4,可仅对涂覆到盘基板1a的粘合面的阳离子聚合型紫外线固化性组合物S照射紫外线,所以,可防止信息记录层受到光源的热影响。

    另外,由于光源40采用闪光灯,所以,与常时亮灯的光源相比热保有量少,不易对涂覆台B上的盘基板1a和涂覆到粘合面的阳离子聚合型紫外线固化性组合物产生热影响。此外,与时常亮灯型的光源相比,由于耗电量少,所以可实现运行成本的降低。

    下面,说明对结束粘合后的盘1进行展延的展延装置6。

    展延装置6如图4所示那样具有把持部60和驱动部61,该驱动部61利用孔中心把持夹持阳离子聚合型紫外线固化性组合物S而被粘合的盘基板1a、1b即盘1,该驱动部61朝周向使把持部60与盘1一起进行回转。

    下面说明如上述那样构成的展延装置6的作动方法。移送到展延装置6的盘1由把持部60把持中心孔,由驱动部61朝周向施加回转运动。当盘1朝周向回转时,处于盘基板1a、1b间的阳离子聚合型紫外线固化性组合物S受到离心力作用,在保持同心圆状的状态下朝径向扩展,在盘基板1a、1b间全体不存在间隙地形成均匀的厚度的粘结层。

    这样,按照展延装置6,阳离子聚合型紫外线固化性组合物S在保持同心圆状的状态下朝径向扩展,盘基板1a、1b间不存在间隙地形成均匀的厚度的粘结层,所以,阳离子聚合型紫外线固化性组合物S不会渗出,相反,不会仅在一部分扩展阳离子聚合型紫外线固化性组合物S,不会产生间隙。

    在本实施形式中,展延装置6采用了利用离心力的旋转方式,但也可在此基础上采用从两侧面推压盘1的方式的展延装置。

    下面,根据图8说明本发明的第2实施形式。在本实施形式中,作为被粘结构件的例列举构件的例子,可列举出筒状构件101和板状构件102,说明在筒状构件101的开口部粘结板状构件102的方法。图8按工序顺序示出本实施形式的粘结方法。

    在本实施形式中,筒状构件101为四角筒状,板状构件102为封闭筒状构件101的开口部的矩形,在图8中,为了方便,仅示出筒状构件101和板状构件102的一部分。

    另外,如图8(a)所示,在筒状构件101的开口端面沿全周形成凹槽101b,凹槽101b的内侧的堤部101a比外侧的堤部101c低。另一方面,如图8(d)所示那样,形成为嵌合于筒状构件101外侧的堤部101c的形状。

    先如图8(b)所示那样,在凹槽101b内涂覆紫外线固化性组合物103。作为紫外线固化性组合物103,使用在波长区域310~340nm的光吸收系数为2×103m-1以下的特性的材料。这样的紫外线固化性组合物作为光致聚合引发剂,通过选择使用350nm以下的光吸收系数较小的材料获得。

    紫外线固化性组合物103的涂覆量比凹槽101b内的空间容积稍多,使得在后一展延工序紫外线固化性组合物103的一部分渗出到内侧的堤部101a。

    如图8(c)所示,对涂覆于凹槽101b内的紫外线固化性组合物103照射紫外线。

    虽然图中未示出,但紫外线的照射从筒状构件101开口端面正上方进行,使用将紫外线的照射区域仅限制于紫外线固化性组合物103的掩模。紫外线的照射量可相应于作为粘结剂使用的紫外线固化性组合物103的硬化感度进行调节。

    通过这样在照射紫外线时使用掩模,可仅对涂覆于凹槽101b内的紫外线固化性组合物103照射紫外线,所以,可使筒状构件101自身不受光源的热的影响。

    照射紫外线后,如图8(d)所示那样,将板状构件102嵌合到筒状构件101的开口部,进一步朝筒状构件101内侧的堤部101a推压板状构件102,使紫外线固化性组合物103的一部分在堤部101a上展延。

    这样,筒状构件101和板状构件102通过凹槽101b内的紫外线固化性组合物103和内侧的堤部101a上的紫外线固化性组合物粘结。

    在这样粘结的筒状构件101与板状构件102之间,不仅存在涂覆于沿筒状构件101开口部全周的凹槽101b内的紫外线固化性组合物103,而且还存在从此处进而展延到内侧的堤部101a的紫外线固化性组合物103,所以,两构件间的粘结面积大,粘结力强。另外,由紫外线固化性组合物103构成的粘结剂层沿筒状构件101的开口部全周没有间隙地形成,由该粘结层形成的粘结面积也大,所以,由板状构件102封闭筒状构件101的开口部的效果也高。

    通过涂覆紫外线固化性组合物103,在照射紫外线后嵌合两构件,可在短时间进行粘结。例如,在不使用紫外线固化性组合物而是使用热硬化型粘结剂的方法中,粘结时需要几个小时的时效,按照本实施形式,粘结所需时间极短,因此,可应用于连续工序,提高生产率。

    在本实施形式中,列举了在筒状构件101的开口部粘结板状构件102的例子,但构件的形状和被粘结部分可适当变更,本发明的粘结方法可用于各种材料的粘结。

    另外,在本实施形式中,在作为被粘结部的筒状构件101的开口端面设置凹槽101b,将紫外线固化性组合物103涂覆到该凹槽101b内,但也可不在被粘结构件形成槽,而是在平坦面上将紫外线固化性组合物涂覆成线状。在该场合,如在涂覆紫外线固化性组合物的部位组合被粘结构件并推压,则紫外线固化性组合物扩展到其涂覆面积以上,所以,紫外线固化性组合物在展延状态下粘结两构件,获得牢固的粘结力和优良的封闭性。

    另外,在本实施形式中,作为紫外线固化性组合物,使用具有在波长区域310~340nm的光吸收系数为2×103m-1以下的特性的材料,但紫外线固化性组合物只要具有可在照射紫外线后由适当的展延方法展延到所需扩展面积的物性即可,根据被粘结部分的形状和大小、要求的粘结状态等,也可使用上述以外的紫外线固化性组合物。

    最后说明在本发明中可使用的粘结剂。

    作为可在本发明中使用的粘结剂的阳离子聚合型紫外线固化性组合物,可从公知惯用的组合物选择适用于本发明的组合物或将其进行组合后使用,包含例如阳离子聚合型光致聚合引发剂的环氧树脂与其相当。作为阳离子聚合型光致聚引发剂,具有锍盐、碘鎓盐、及重氮鎓盐。

    作为本发明的粘结剂,可使用含有光阳离子聚合引发剂和缩水甘油醚型环氧树脂的阳离子聚合型紫外线固化性组合物,但为了使在波长区域310~340nm的组合物的光吸收系数在2×103m-1以下,特别是可通过选择在波长区域310~340nm的光吸收系数小的光阳离子聚合引发剂达到。作为具有满足该条件的引发剂,可列举出这样的由阳离子部分和阴离子部分构成的鎓盐,该阳离子部分为二苯基-4-苯基锍、三苯锍那样的芳香族锍、二苯碘鎓、二(十二烷基苯)碘鎓、4-甲基苯基-4-(1-甲基乙基)苯碘鎓那样的芳香族碘鎓,阴离子部分为BF4-、PF6-、SbF6-、[BX4]-(其中,X为由至少2个以上的氟或三氟甲基置换后的苯基)。另外,作为可与这些引发剂并用的引发剂,可列举出这样的由阳离子部分和阴离子部分构成的鎓盐,该阳离子部分为二[4-(二苯锍)苯]硫那样的芳香族锍,阴离子部分为BF4-、PF6-、SbF6-、[BX4]-(其中,X为由至少2个以上的氟或三氟甲基置换后的苯基),吸收系数小,所以,即使使用,也最好使使用量尽量少。

    另外,为了仅使用表面部分的硬化,作为缩水甘油醚型环氧树脂,最好含有脂肪族多元醇型聚缩水甘油醚。由脂肪族多元醇型聚缩水甘油醚可使组合物的聚合在照射光后推迟发生,所以,可抑制表面硬化。

    作为脂肪族多元醇型聚缩水甘油醚,例如可列举出乙二醇二缩水甘油醚、丙二醇二缩水甘油醚、新戊二醇二缩水甘油醚、丁二醇二缩水甘油醚、己二醇二缩水甘油醚、环己烷二甲醇二缩水甘油醚、聚丙二醇二缩水甘油醚、三羟甲基丙烷二和/或三缩水甘油醚、季戊四醇三和/或四缩水甘油醚、山梨糖醇五和/或六缩水甘油醚。发明的效果

    如以上说明的那样,按照本发明,由于可对被粘结构件从更近的位置涂覆紫外线固化性组合物,所以,不会发生落下轨道的紊乱等,可提高涂覆精度。这样,可防止被粘结构件间的紫外线固化性组合物的渗出和产生间隙。

    另外,在对涂覆于被粘结构件的紫外线固化性组合物照射紫外线后,通过使该紫外线固化性组合物展延,可使2个被粘结构件的粘结面积增大,获得牢固的粘结力,同时获得高的封闭效果。

    照射紫外线后,通过由紫外线固化性组合物接合一方的被粘结构件与另一方的被粘结构件,可在短时间内粘结两构件。因此,可使粘结工序所需时间极短,所以,可用于连续工序,提高生产率。

    另外,通过使用波长带310~340nm的光吸收系数在2×103m-1以下的紫外线固化性组合物,紫外线充分地透过到内部,表面与内部的硬化状态不易产生差别,所以,展延时紫外线固化性组合物均匀地扩展。这样,在被粘结构件间均匀地形成粘结层,可防止被粘结构件间的紫外线固化性组合物渗出和产生间隙。

部件粘结方法、盘制造方法及装置.pdf_第1页
第1页 / 共29页
部件粘结方法、盘制造方法及装置.pdf_第2页
第2页 / 共29页
部件粘结方法、盘制造方法及装置.pdf_第3页
第3页 / 共29页
点击查看更多>>
资源描述

《部件粘结方法、盘制造方法及装置.pdf》由会员分享,可在线阅读,更多相关《部件粘结方法、盘制造方法及装置.pdf(29页珍藏版)》请在专利查询网上搜索。

一种盘制造方法,以阳离子聚合型紫外线固化性组合物作为粘结剂贴合2片盘基板1a、1b形成1片盘,其中,具有将上述阳离子聚合型紫外线固化性组合物涂覆到盘基板1a的粘合面的一部分的涂覆工序、对涂覆的上述紫外线固化性组合物S照射紫外线的工序、夹着照射了紫外线的上述阳离子聚合型紫外线固化性组合物粘合盘基板1a与盘基板1b的工序、及对处于盘基板1a、1b间的阳离子聚合型紫外线固化性组合物S进行展延的工序。这样。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 塑料的加工;一般处于塑性状态物质的加工


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1