一种皮层脑电信号的反馈系统随机共振增强方法.pdf

上传人:00062****4422 文档编号:5079575 上传时间:2018-12-12 格式:PDF 页数:6 大小:388.16KB
返回 下载 相关 举报
摘要
申请专利号:

CN201110331467.0

申请日:

2011.10.27

公开号:

CN102499675A

公开日:

2012.06.20

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):A61B 5/0476申请日:20111027|||公开

IPC分类号:

A61B5/0476

主分类号:

A61B5/0476

申请人:

杭州电子科技大学

发明人:

范影乐; 王海玲; 赵磊; 郭芳芳; 陈金龙

地址:

310018 浙江省杭州市下沙高教园区2号大街

优先权:

专利代理机构:

杭州求是专利事务所有限公司 33200

代理人:

杜军

PDF下载: PDF下载
内容摘要

本发明涉及一种皮层脑电信号的反馈系统随机共振增强方法。与皮层脑电信号的传统增强方法不同,它认为在一定强度的噪声干扰下,通过随机共振机制有利于改善对皮层脑电信号进行增强的性能。考虑到皮层脑电这类电生理信号的特点,本发明采用符合神经元电生理特性的FitzHugh-Nagumo模型,并在单向神经元网络结构上引入了反馈环节,使其更符合神经系统中神经元之间的复杂互连关系。本发明方法相对于传统滤除噪声的方法,能更好的复原和增强皮层脑电信号。

权利要求书

1: 一种皮层脑电信号的反馈系统随机共振增强方法, 其特征在于该方法包括如下步 骤: 步骤 1、 通过皮层脑电采集系统, 获得皮层脑电信号, 并划分成若干个不重叠的特定时 长窗口, 对各个窗口内的皮层脑电信号求取基准值, 将其最大值和最小值间的中间值, 作为 该皮层脑电信号处理的基准值 ; 步骤 2、 对各个窗口内的皮层脑电信号, 分别进行幅值的双极性处理, 具体是 : 将各个 窗口内的皮层脑电信号值减去步骤 1 求得的基准值, 获得具有双极性的皮层脑电信号, 使 其满足神经元模型输入信号具有双极性的要求 ; 步骤 3、 将步骤 2 获得的皮层脑电信号、 添加的噪声信号以及输出信号的反馈值作为基 于 FHN 神经元反馈网络模型的输入信号, 利用 FHN 神经元反馈网络模型的随机共振作用, 获 得增强的皮层脑电输出信号 ; 步骤 4、 对于步骤 3 中, 在添加噪声信号的不同强度下, 分别计算 FHN 神经元反馈网络模 型响应的信噪比 ; 利用随机共振机制, 当信噪比达到极大值时, 此时皮层脑电信号将得到信 噪比评价指标下的最优增强, 将此皮层脑电信号作为输出信号 ; 步骤 5、 将步骤 4 中的输出信号与步骤 1 求取的基准值进行求和, 逆映射回原幅值范围, 从而获得幅值还原后的增强的皮层脑电信号。

说明书


一种皮层脑电信号的反馈系统随机共振增强方法

    技术领域 本发明属于生物医学工程领域, 涉及一种皮层脑电信号增强的处理方法, 具体涉 及一种基于神经元反馈网络模型随机共振机制的微弱皮层脑电信号实时增强方法。
     背景技术 由于皮层脑电信号容易受到各种电生理信号以及其他噪声的干扰, 因此检测的皮 层脑电信号比较微弱, 含噪声比较大, 这对于我们研究脑电信号有很大的影响。有效的消 除噪声的有害影响, 同时保留有用的脑电信号变得尤为重要。传统的对于有害的噪声主要 采取滤除的方法, 干扰信号的先验知识, 采集到的皮层脑电信号信噪比较低, 若去除噪声, 脑电信号会受到很大的损害, 甚至会将脑电信号当作噪声一起滤除, 使得脑电信号畸变无 法复原。 由于随机共振机制能够调和非线性系统、 信号以及噪声之间的关系, 将噪声能量向 信号能量转移, 因此在某种意义上随机共振机制认为噪声的存在是有意义的, 适合信噪比 较低的皮层脑电信号。 目前已有的随机共振的非线性系统通常来源于双稳态系统等物理抽 象模型, 它通过脑电信号、 噪声信息以及非线性系统三者间的随机共振, 实现脑电信号的增 强。 但这些物理抽象模型过于理想化, 其对脑电这类典型的生理电信号是否适合, 并没有充 分的依据。 因此本发明提出采用能够真实反映神经元电生理特性的 FitzHugh-Nagumo(FHN) 神经元模型, 并形成网络反馈结构以模拟大脑神经元之间的互相连接 ; 将受到各种干扰的 低信噪比皮层脑电信号作为前述反馈神经元网络模型的输入, 利用随机共振机制实现弱信 号的增强。
     发明内容 本发明基于 FHN 神经元模型, 提供了一种基于神经元反馈网络模型的随机共振机 制, 以此来实现微弱皮层脑电信号的增强。在 FHN 神经元网络模型的基础上添加了反馈环 节, 以此避免神经元网络模型的单向控制和不稳定性, 实现输出信号对于输入信号的调节 作用, 改善 FHN 神经元网络模型的随机共振性能。
     本发明方法包括以下步骤 : 步骤 (1) 通过皮层脑电采集系统, 获得皮层脑电信号, 并划分成若干个不重叠的特定时 长窗口。 对各个窗口内的皮层脑电信号求取基准值, 将其最大值和最小值间的中间值, 作为 该皮层脑电信号处理的基准值。
     步骤 (2) 对各个窗口内的皮层脑电信号, 分别进行幅值的双极性处理 : 将各个窗 口内的皮层脑电信号值减去步骤 (1) 求得的基准值, 获得具有双极性的皮层脑电信号, 使其 满足神经元模型输入信号具有双极性的要求。
     步骤 (3) 将步骤 (2) 获得的皮层脑电信号、 添加的噪声信号以及输出信号的反馈 值作为基于 FHN 神经元反馈网络模型的输入信号, 利用 FHN 神经元反馈网络模型的随机共 振作用, 获得增强的皮层脑电输出信号。
     步骤 (4) 对于步骤 (3) 中, 在添加噪声信号的不同强度下, 分别计算 FHN 神经元反
     馈网络模型响应的信噪比。 利用随机共振机制, 当信噪比达到极大值时, 此时皮层脑电信号 将得到信噪比评价指标下的最优增强, 将此皮层脑电信号作为输出信号。
     步骤 (5) 将上述的输出信号与步骤 (1) 求取的基准值进行求和, 逆映射回原幅值 范围, 从而获得幅值还原后的增强的皮层脑电信号。
     本发明的有益效果 : 1、 由于皮层脑电信号具有瞬变特性, 本发明对动态采集到的皮层脑电信号, 设定短时 长窗口求取其中间值, 获取后续双极性映射处理的基准值, 此基准值具有动态特性, 有利用 瞬变脑电信号的实时处理。
     2、 本发明基于 FHN 神经元反馈网络模型的随机共振机制, 与传统的基于噪声滤除 的信号增强方法不同, 其将噪声的消极能量转换为信号的积极能量, 从而实现微弱皮层脑 电信号的增强。
     3、 本发明在脑电信号的随机共振增强中, 舍弃了常用的双稳态系统等抽象模型, 而是采用符合真实神经元电生理特性的神经元模型 ; 同时在神经元单向连接的网络模型基 础上增加了反馈环节, 更符合神经系统中神经元之间的互连关系, 有利于改善微弱皮层脑 电信号增强过程中的稳定性。 附图说明
     图 1 为 FHN 神经元反馈双层网络模型结构示意图。 具体实施方式
     步 骤 (1) 使 用 皮 层 脑 电 信 号 采 集 系 统,采 集 一 段 连 续 的 皮 层 脑 电 信 号,将 其 划 分 成 若 干 个 不 重 叠 的 窗 口,窗 口 时 长 记 为 , 其中 N 表示窗口内的采样点数, T 表示采样周期。因此窗口内的皮层脑电信号可记 为 ( , ) 。 对其求取最大值 和最小值 。 , 将它们的均值作为此窗口脑电信号的动态基准值, 记为
     步骤 (2) 将步骤 (1) 各个窗口内的皮层脑电信号, 进行幅值的双极性处理。即将窗 口内的各个皮层脑电信号采样值分别减去步骤 (1) 求得的基准值, 获得具有双极性的皮层 脑电信号 极性特点。 步骤 (3) 将步骤 (2) 获得的皮层脑电信号、 添加的高斯白噪声以及输出信号的反 馈值, 作为 FHN 神经元反馈网络模型的输入信号。
     以双层反馈 FHN 神经元网络模型为例进行具体说明, 其中模型结构示意图如图
     , () , 使其满足神经元模型的输入信号双1 所示, 图中为当前时刻经双极性映射处理后的皮层脑电信号 ;是相同噪声强度的独立噪声项 ; 反馈 ;为反馈调节参数, 其中网络系统为负表示第一层的第 个神经元和第二层神经元的连接系数 ; 为第一层的第 个 FHN 神经元 ; 为第二层 FHN 神经元 ; 为第二层神经元的输出膜电压, 即输出信号。数学模型如式 (1) 和式 (2) 所示 : 第一层 : (1) 第二层 : (2) 式 (1) 和式 (2) 中, 为采样周期 ; 为输出信号 ; 为时间常数, 决定了神经元的点火速率 ; 为临界值, 促使神经元定期点火 ; 为信号电平均值与 组常数 ; 为双层反馈 FHN 神经元网络模型的输入信号,的差值 ; 、 为方程 ,为双极性映射处理后的皮层脑电信号, 0、 自相关函数为 示冲激函数 ;是输入信号中的噪声项, 通常由均值为 为噪声强度, 表的高斯白噪声加以模拟, 其中 为反馈调节参数 ;为首层第 i 个神经元的输出膜电压 ; 为第二层神经元的输出膜电压, 即输出信号 ; 为第二层神经元的 慢变恢复变量 ; 连接系数为
     。利用待增强的皮层脑电信号、 添加的噪声信号以及响应的反馈值作为激励, 通过 FHN 神经元反馈网络模型的随机共振机制, 从而实现微弱皮层脑电信号的增强, 获得增强的 皮层脑电输出信号。
     步骤 (4) 对于步骤 (3) 中的噪声信号, 分别取不同强度 D 的噪声值。计算 FHN神经元反馈网络模型响应在不同强度噪声下的信噪比。根据随机共振机制, 在一定噪声强 度范围内, 随着噪声强度的增加, 响应信噪比将单调增加 ; 而当噪声强度增加到一定值时, 若继续增加噪声强度, 响应信噪比反而会下降, 直到噪声将信号完全淹没。 因此当响应信噪 比达到最大值时, 此时皮层脑电信号将得到信噪比意义上的最优增强。其中信噪比的定义 为: (3) 其中, 、 分别代表在功率谱密度中对应特定窗口时长的皮层脑电信号输出信号和 添加的噪声信号, 信噪比的单位为分贝 (dB)。 考虑到噪声的随机性, 因此在功率谱密度计算 中, 采用功率谱密度累加平均方法。 即在相同输入的皮层脑电信号和噪声强度作用下, 重复 求取模型的响应值, 对每组响应分别计算功率谱密度, 再将所有响应值的功率谱密度进行 累加平均。
     步骤 (5) 将上述的输出信号与步骤 (1) 求取的基准值进行求和, 逆映射回原幅值 范围, 即得到幅值还原的增强的皮层脑电信号。

一种皮层脑电信号的反馈系统随机共振增强方法.pdf_第1页
第1页 / 共6页
一种皮层脑电信号的反馈系统随机共振增强方法.pdf_第2页
第2页 / 共6页
一种皮层脑电信号的反馈系统随机共振增强方法.pdf_第3页
第3页 / 共6页
点击查看更多>>
资源描述

《一种皮层脑电信号的反馈系统随机共振增强方法.pdf》由会员分享,可在线阅读,更多相关《一种皮层脑电信号的反馈系统随机共振增强方法.pdf(6页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102499675 A (43)申请公布日 2012.06.20 CN 102499675 A *CN102499675A* (21)申请号 201110331467.0 (22)申请日 2011.10.27 A61B 5/0476(2006.01) (71)申请人 杭州电子科技大学 地址 310018 浙江省杭州市下沙高教园区 2 号大街 (72)发明人 范影乐 王海玲 赵磊 郭芳芳 陈金龙 (74)专利代理机构 杭州求是专利事务所有限公 司 33200 代理人 杜军 (54) 发明名称 一种皮层脑电信号的反馈系统随机共振增强 方法 (57) 摘要 本发明涉及一种皮。

2、层脑电信号的反馈系统随 机共振增强方法。与皮层脑电信号的传统增强 方法不同, 它认为在一定强度的噪声干扰下, 通 过随机共振机制有利于改善对皮层脑电信号进 行增强的性能。考虑到皮层脑电这类电生理信 号的特点, 本发明采用符合神经元电生理特性的 FitzHugh-Nagumo 模型, 并在单向神经元网络结 构上引入了反馈环节, 使其更符合神经系统中神 经元之间的复杂互连关系。本发明方法相对于传 统滤除噪声的方法, 能更好的复原和增强皮层脑 电信号。 (51)Int.Cl. 权利要求书 1 页 说明书 3 页 附图 1 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 1。

3、 页 说明书 3 页 附图 1 页 1/1 页 2 1. 一种皮层脑电信号的反馈系统随机共振增强方法, 其特征在于该方法包括如下步 骤 : 步骤 1、 通过皮层脑电采集系统, 获得皮层脑电信号, 并划分成若干个不重叠的特定时 长窗口, 对各个窗口内的皮层脑电信号求取基准值, 将其最大值和最小值间的中间值, 作为 该皮层脑电信号处理的基准值 ; 步骤 2、 对各个窗口内的皮层脑电信号, 分别进行幅值的双极性处理, 具体是 : 将各个 窗口内的皮层脑电信号值减去步骤 1 求得的基准值, 获得具有双极性的皮层脑电信号, 使 其满足神经元模型输入信号具有双极性的要求 ; 步骤 3、 将步骤 2 获得的。

4、皮层脑电信号、 添加的噪声信号以及输出信号的反馈值作为基 于FHN神经元反馈网络模型的输入信号, 利用FHN神经元反馈网络模型的随机共振作用, 获 得增强的皮层脑电输出信号 ; 步骤4、 对于步骤3中, 在添加噪声信号的不同强度下, 分别计算FHN神经元反馈网络模 型响应的信噪比 ; 利用随机共振机制, 当信噪比达到极大值时, 此时皮层脑电信号将得到信 噪比评价指标下的最优增强, 将此皮层脑电信号作为输出信号 ; 步骤5、 将步骤4中的输出信号与步骤1求取的基准值进行求和, 逆映射回原幅值范围, 从而获得幅值还原后的增强的皮层脑电信号。 权 利 要 求 书 CN 102499675 A 2 1。

5、/3 页 3 一种皮层脑电信号的反馈系统随机共振增强方法 技术领域 0001 本发明属于生物医学工程领域, 涉及一种皮层脑电信号增强的处理方法, 具体涉 及一种基于神经元反馈网络模型随机共振机制的微弱皮层脑电信号实时增强方法。 背景技术 0002 由于皮层脑电信号容易受到各种电生理信号以及其他噪声的干扰, 因此检测的皮 层脑电信号比较微弱, 含噪声比较大, 这对于我们研究脑电信号有很大的影响。有效的消 除噪声的有害影响, 同时保留有用的脑电信号变得尤为重要。传统的对于有害的噪声主要 采取滤除的方法, 干扰信号的先验知识, 采集到的皮层脑电信号信噪比较低, 若去除噪声, 脑电信号会受到很大的损害。

6、, 甚至会将脑电信号当作噪声一起滤除, 使得脑电信号畸变无 法复原。 由于随机共振机制能够调和非线性系统、 信号以及噪声之间的关系, 将噪声能量向 信号能量转移, 因此在某种意义上随机共振机制认为噪声的存在是有意义的, 适合信噪比 较低的皮层脑电信号。 目前已有的随机共振的非线性系统通常来源于双稳态系统等物理抽 象模型, 它通过脑电信号、 噪声信息以及非线性系统三者间的随机共振, 实现脑电信号的增 强。 但这些物理抽象模型过于理想化, 其对脑电这类典型的生理电信号是否适合, 并没有充 分的依据。 因此本发明提出采用能够真实反映神经元电生理特性的FitzHugh-Nagumo(FHN) 神经元模。

7、型, 并形成网络反馈结构以模拟大脑神经元之间的互相连接 ; 将受到各种干扰的 低信噪比皮层脑电信号作为前述反馈神经元网络模型的输入, 利用随机共振机制实现弱信 号的增强。 发明内容 0003 本发明基于 FHN 神经元模型, 提供了一种基于神经元反馈网络模型的随机共振机 制, 以此来实现微弱皮层脑电信号的增强。在 FHN 神经元网络模型的基础上添加了反馈环 节, 以此避免神经元网络模型的单向控制和不稳定性, 实现输出信号对于输入信号的调节 作用, 改善 FHN 神经元网络模型的随机共振性能。 0004 本发明方法包括以下步骤 : 步骤 (1) 通过皮层脑电采集系统, 获得皮层脑电信号, 并划分。

8、成若干个不重叠的特定时 长窗口。 对各个窗口内的皮层脑电信号求取基准值, 将其最大值和最小值间的中间值, 作为 该皮层脑电信号处理的基准值。 0005 步骤 (2) 对各个窗口内的皮层脑电信号, 分别进行幅值的双极性处理 : 将各个窗 口内的皮层脑电信号值减去步骤 (1) 求得的基准值, 获得具有双极性的皮层脑电信号, 使其 满足神经元模型输入信号具有双极性的要求。 0006 步骤 (3) 将步骤 (2) 获得的皮层脑电信号、 添加的噪声信号以及输出信号的反馈 值作为基于 FHN 神经元反馈网络模型的输入信号, 利用 FHN 神经元反馈网络模型的随机共 振作用, 获得增强的皮层脑电输出信号。 。

9、0007 步骤 (4) 对于步骤 (3) 中, 在添加噪声信号的不同强度下, 分别计算 FHN 神经元反 说 明 书 CN 102499675 A 3 2/3 页 4 馈网络模型响应的信噪比。 利用随机共振机制, 当信噪比达到极大值时, 此时皮层脑电信号 将得到信噪比评价指标下的最优增强, 将此皮层脑电信号作为输出信号。 0008 步骤 (5) 将上述的输出信号与步骤 (1) 求取的基准值进行求和, 逆映射回原幅值 范围, 从而获得幅值还原后的增强的皮层脑电信号。 0009 本发明的有益效果 : 1、 由于皮层脑电信号具有瞬变特性, 本发明对动态采集到的皮层脑电信号, 设定短时 长窗口求取其中。

10、间值, 获取后续双极性映射处理的基准值, 此基准值具有动态特性, 有利用 瞬变脑电信号的实时处理。 0010 2、 本发明基于 FHN 神经元反馈网络模型的随机共振机制, 与传统的基于噪声滤除 的信号增强方法不同, 其将噪声的消极能量转换为信号的积极能量, 从而实现微弱皮层脑 电信号的增强。 0011 3、 本发明在脑电信号的随机共振增强中, 舍弃了常用的双稳态系统等抽象模型, 而是采用符合真实神经元电生理特性的神经元模型 ; 同时在神经元单向连接的网络模型基 础上增加了反馈环节, 更符合神经系统中神经元之间的互连关系, 有利于改善微弱皮层脑 电信号增强过程中的稳定性。 附图说明 0012 图。

11、 1 为 FHN 神经元反馈双层网络模型结构示意图。 具体实施方式 0013 步 骤 (1) 使 用 皮 层 脑 电 信 号 采 集 系 统,采 集 一 段 连 续 的 皮 层 脑 电 信 号,将 其 划 分 成 若 干 个 不 重 叠 的 窗 口,窗 口 时 长 记 为 , 其中N表示窗口内的采样点数,T表示采样周期。因此窗口内的皮层脑电信号可记 为,() 。 对其求取最大值和最小值, 将它们的均值作为此窗 口脑电信号的动态基准值, 记为。 0014 步骤 (2) 将步骤 (1) 各个窗口内的皮层脑电信号, 进行幅值的双极性处理。即将窗 口内的各个皮层脑电信号采样值分别减去步骤 (1) 求得。

12、的基准值, 获得具有双极性的皮层 脑电信号,() , 使其满足神经元模型的输入信号双 极性特点。 0015 步骤 (3) 将步骤 (2) 获得的皮层脑电信号、 添加的高斯白噪声以及输出信号的反 馈值, 作为 FHN 神经元反馈网络模型的输入信号。 0016 以双层反馈 FHN 神经元网络模型为例进行具体说明, 其中模型结构示意图如图 1 所示, 图中为当前时刻经双极性映射处理后的皮层脑电信号 ;是 相同噪声强度的独立噪声项 ;为反馈调节参数, 其中网络系统为负 反馈 ;表示第一层的第 个神经元和第二层神经元的连接系数 ; 为第一层的第 个FHN神经元 ;为第二层FHN神经元 ; 为第二层神经 。

13、元的输出膜电压, 即输出信号。 说 明 书 CN 102499675 A 4 3/3 页 5 0017 数学模型如式 (1) 和式 (2) 所示 : 第一层 : (1) 第二层 : (2) 式 (1) 和式 (2) 中, 为采样周期 ; 为输出信号 ; 为时间常数, 决定了神经元的点 火速率 ; 为临界值, 促使神经元定期点火 ; 为信号电平均值与的差值 ; 、 为方程 组常数 ;为双层反馈 FHN 神经元网络模型的输入信号, 为双极性映射处理后的皮层脑电信号,是输入信号中的噪声项, 通常由均值为 0、 自相关函数为的高斯白噪声加以模拟, 其中为噪声强度,表 示冲激函数 ;为反馈调节参数 ; 。

14、为首层第i个神 经元的输出膜电压 ; 为第二层神经元的输出膜电压, 即输出信号 ; 为第二层神经元的 慢变恢复变量 ; 连接系数为。 0018 利用待增强的皮层脑电信号、 添加的噪声信号以及响应的反馈值作为激励, 通过 FHN 神经元反馈网络模型的随机共振机制, 从而实现微弱皮层脑电信号的增强, 获得增强的 皮层脑电输出信号。 0019 步骤 (4) 对于步骤 (3) 中的噪声信号, 分别取不同强度D的噪声值。计算 FHN 神经元反馈网络模型响应在不同强度噪声下的信噪比。根据随机共振机制, 在一定噪声强 度范围内, 随着噪声强度的增加, 响应信噪比将单调增加 ; 而当噪声强度增加到一定值时, 。

15、若继续增加噪声强度, 响应信噪比反而会下降, 直到噪声将信号完全淹没。 因此当响应信噪 比达到最大值时, 此时皮层脑电信号将得到信噪比意义上的最优增强。其中信噪比的定义 为 : (3) 其中, 、 分别代表在功率谱密度中对应特定窗口时长的皮层脑电信号输出信号和 添加的噪声信号, 信噪比的单位为分贝(dB)。 考虑到噪声的随机性, 因此在功率谱密度计算 中, 采用功率谱密度累加平均方法。 即在相同输入的皮层脑电信号和噪声强度作用下, 重复 求取模型的响应值, 对每组响应分别计算功率谱密度, 再将所有响应值的功率谱密度进行 累加平均。 0020 步骤 (5) 将上述的输出信号与步骤 (1) 求取的基准值进行求和, 逆映射回原幅值 范围, 即得到幅值还原的增强的皮层脑电信号。 说 明 书 CN 102499675 A 5 1/1 页 6 图 1 说 明 书 附 图 CN 102499675 A 6 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 人类生活必需 > 医学或兽医学;卫生学


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1