基于BIM技术的降压井布置优化方法.pdf

上传人:b*** 文档编号:502116 上传时间:2018-02-19 格式:PDF 页数:8 大小:408.27KB
返回 下载 相关 举报
摘要
申请专利号:

CN201510602137.9

申请日:

2015.09.21

公开号:

CN105155561A

公开日:

2015.12.16

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):E02D 19/10申请日:20150921|||公开

IPC分类号:

E02D19/10; E02D17/02

主分类号:

E02D19/10

申请人:

中铁上海工程局集团有限公司; 中铁上海工程局集团第二工程有限公司

发明人:

刘学明; 王冬冬; 翟昌骏; 周波; 胡洋; 秦钊辉; 杨天宇

地址:

200436上海市闸北区江场三路272、278号10层

优先权:

专利代理机构:

上海申蒙商标专利代理有限公司31214

代理人:

徐小蓉

PDF下载: PDF下载
内容摘要

本发明公开了一种基于BIM技术的降压井布置优化方法,包括如下步骤:在BIM软件中三维土层模型;根据降压井的设计位置在三维土层模型中布置降压井模型;观察降压井上的滤水管位置是否作用于目标降压水层中,若否,则调整降压井的位置使其作用于目标降压水层中;构建三维非稳定地下水渗流数值模型,根据降压井的布置空间位置及其抽水速率,计算模拟降压井抽水后目标降压水层中的水位线变化值以及降水对周边土层所造成的沉降变化值,对比优化得出目标降压水层中降深符合规范中对抗突涌验算要求以及降水对周边土层所造成的沉降变化值最小的降压井布置空间位置。本发明的优点是,通过构建三维土层模型直观表达降压井滤水管与目标降压水层之间的位置关系。

权利要求书

1.  一种基于BIM技术的降压井布置优化方法,其特征在于所述优化方法包括如下步骤:在BIM软件中建立施工区域内的三维土层模型;根据降压井的设计位置在所述三维土层模型中布置降压井模型;观察所述降压井上的滤水管位置是否作用于目标降压水层中,若否则调整所述降压井的位置使其作用于目标降压水层中;构建三维非稳定地下水渗流数值模型,根据所述降压井的布置空间位置及其抽水速率,计算模拟所述降压井抽水后所述目标降压水层中的水位线变化值以及降水对周边土层所造成的沉降变化值,对比优化得出所述目标降压水层中降深符合规范中对抗突涌验算要求以及降水对周边土层所造成的沉降变化值最小的所述降压井布置空间位置。

2.
  根据权利要求1所述的一种基于BIM技术的降压井布置优化方法,其特征在于所述目标降压水层为承压水层或微承压水层。

3.
  根据权利要求1所述的一种基于BIM技术的降压井布置优化方法,其特征在于观察所述降压井上的滤水管位置是否作用于目标降压水层中,若否则在竖直方向上调节所述降压井埋深以使所述滤水管长度全部位于所述目标降压水层中。

4.
  根据权利要求1所述的一种基于BIM技术的降压井布置优化方法,其特征在于观察所述降压井上的滤水管位置是否作用于目标降压水层中,若否则调整所述降压井的水平面设置坐标和埋深,以使所述滤水管长度全部位于所述目标降压水层中。

5.
  根据权利要求1所述的一种基于BIM技术的降压井布置优化方法,其特征在于所述对比优化是指:将所述降压井在其N米水平半径内调整布置位置,通过所述三维非稳定地下水渗流数值模型计算模拟所述降压井在不同布置位置时抽水后所述目标降压水层中的水位线变化值以及降水对周边土层所造成的沉降变化值,并从中筛选得出所述目标降压水层中降深符合规范中对抗突涌验算要求以及降水对周边土层所造成的沉降变化值最小的所述降压井布置空间位置。

说明书

基于BIM技术的降压井布置优化方法
技术领域
本发明属于BIM技术领域,具体涉及一种基于BIM技术的降压井布置优化方法。
背景技术
随着国内城市轨道交通以及高层建筑的快速发展,深基坑工程越来越多,在上有相对隔水层、下有隔水层的地层中,其含水层具有一定的承压性,而基坑围护结构未深入到不透水层,内外水系联系,在此工况下,基坑施工降水就尤为重要。基坑施工开挖过程中,减小了含水层上覆地层的厚度,当减小到一定程度时,承压水的水头压力能顶破或冲毁基坑底板,造成突涌,从而造成基坑失稳和整个地层悬浮流动,基底发生类似于沸腾的喷水现象。
为了避免上述现象的发生,在基坑施工前需要布置降压井进行降压,目前降压井的常规布置方法如下:
(1)首先利用地勘单位勘察报告以及平剖面图纸,再利用水位沉降监测及室内土工试验等手段来获取原始数据;从而查明相对隔水层的埋藏条件、地下水类型、初始水位及其试验期间自然变化幅度、探明各含水层之间的水力联系以及水平和垂向影响深度;再通过现场试验,测定各项水文地质参数;
(2)通过对现场水位、地表沉降以及土层沉降的监测和数据分析,初步探讨复杂地层结构条件下抽汲深部承压含水层诱发的土层沉降和地表沉降的规律;
(3)现场设置抽水试验井试验抽水,试验期间对地面和土层进行了沉降监测,通过监测数据来评估试验抽水对周边环境的影响;
(4)最后根据抽水试验结论,确定出隔水层、微承压水层及承压水层空间位置以及降压井空间位置及数量的布置。
上述降压井的布置方法所存在的缺点为:利用勘察资料,分析地勘图纸布置降压井滤水管空间位置时,需要多个平面图、剖面图比对,较为繁琐,易因人为因素导致降压井滤水管作用部位不完全在或者更本不在承压水层(或微承压水层),造成降压井降水减压效率降低,甚至降水减压效果为零。
发明内容
本发明的目的是根据上述现有技术的不足之处,提供一种基于BIM技术的降压井布置优化方法,该布置优化方法通过建立三维土层模型以实现降压井模型在其中进行可视化布置。
本发明目的实现由以下技术方案完成:
一种基于BIM技术的降压井布置优化方法,其特征在于所述优化方法包括如下步骤:在BIM软件中建立施工区域内的三维土层模型;根据降压井的设计位置在所述三维土层模型中布置降压井模型;观察所述降压井上的滤水管位置是否作用于目标降压水层中,若否则调整所述降压井的位置使其作用于目标降压水层中;构建三维非稳定地下水渗流数值模型,根据所述降压井的布置空间位置及其抽水速率,计算模拟所述降压井抽水后所述目标降压水层中的水位线变化值以及降水对周边土层所造成的沉降变化值,对比优化得出所述目标降压水层中降深符合规范中对抗突涌验算要求以及降水对周边土层所造成的沉降变化值最小的所述降压井布置空间位置。
所述目标降压水层为承压水层或微承压水层。
观察所述降压井上的滤水管位置是否作用于目标降压水层中,若否则在竖直方向上调节所述降压井埋深以使所述滤水管长度全部位于所述目标降压水层中。
观察所述降压井上的滤水管位置是否作用于目标降压水层中,若否则调整所述降压井的水平面设置坐标和埋深,以使所述滤水管长度全部位于所述目标降压水层中。
所述对比优化是指:将所述降压井在其N米水平半径内调整布置位置,通过所述三维非稳定地下水渗流数值模型计算模拟所述降压井在不同布置位置时抽水后所述目标降压水层中的水位线变化值以及降水对周边土层所造成的沉降变化值,并从中筛选得出所述目标降压水层中降深符合规范中对抗突涌验算要求以及降水对周边土层所造成的沉降变化值最小的所述降压井布置空间位置。
本发明的优点是,(1)利用BIM技术,将地勘土层数据以及降压井相关参数三维模型信息化,直观表达降压井滤水管位置与承压水层(或微承压水层)的相互关系,避免因人为分析失误,而导致降压井作用部位偏位,使降压井抽水效率降低;(2)利用visualmodflow软件,构建三维非稳定地下水渗流数值模型,模拟降压井抽水后,坑内外水位降深情况以及坑内外水位降深引起的土层沉降情况等,该模拟方案能够在降压井实际抽水前,分析出抽水后的水位变化及周边环境土层沉降情况,为有针对性地制定施工风险控制措施提供依据。
附图说明
图1为本发明中降压井在基坑中初始布置位置平面示意图;
图2为本发明中降压井在基坑中初始布置位置纵剖面示意图;
图3为本发明中降压井在基坑中优化布置位置后的平面示意图;
图4为本发明中降压井在基坑中优化布置位置后的纵剖面示意图。
具体实施方式
以下结合附图通过实施例对本发明的特征及其它相关特征作进一步详细说明,以便于同行业技术人员的理解:
如图1-4,图中标记1-5分别为:降压井1、地下连续墙2、基坑3、目标降压水层4、滤水管5。
实施例:本实施例具体涉及一种基于BIM技术的降压井布置优化方法,该优化方法通过BIM系统建立三维土层模型以及降压井模型,实现降压井模型在三维土层模型中空间布设位置的直观观测和调整,并通过应用三维土层模型和降水井模型进行水-土力学数值的模拟分析,推演承压水头降深,进行对比筛选,以优化降压井的布设位置。
如图1-4所示,本实施例中的降压井布置优化方法具体包括如下步骤:
(1)利用BIM系统,根据地质勘查单位提供的数据,对不同勘探点位之间的土层分布进行线性插值,从而建立一个在施工区域内的完整三维土层模型,以最大限度地描述土层分布情况,直观展现各土层的空间位置,例如土层分布厚薄不均、局部缺失、透镜体等复杂状况;
其中,施工区域具体是指本实施例中的基坑3,基坑3的边缘布置有地下连续墙2,各降压井1的布置位置位于基坑3中,施工区域内的三维土层模型自上而下依次包括潜水含水层、相对隔水层、目标降压水层4、隔水层等,附图2、4为了便于清晰展示的目的,仅示出目标降压水层4,目标降压水层4为承压水层或微承压水层;
(2)根据降水方案,精确设计出降压井1的空间布置位置(即平面布置坐标以及埋深),之后根据降压井1的设计位置,在前述三维土层模型中布置降压井1的模型;
(3)本实施例中,每口降压井1在降水方案中均对一个目标降压水层4进行降压,为了达到最佳的降水效果,降压井1上的作用部位(即滤水管5)全部长度应均位于目标降压水层4中;
通过BIM系统查看三维土层模型,观察检验降压井1的作用部位(即滤水管5)是否都被精确置于目标降压水层4中;如图1、2所示,若降压井1上的滤水管5只有部分长度位于目标降压水层中时,则调整降压井1的空间布置位置使其滤水管5的全部长度均位于目标降压水层4中(参见附图3、4);前述的调整降压井1的空间布置位置具体分成以下两种情况:
(a)若降压井1所处位置处的目标降压水层4的厚度大于滤水管5的长度,则在竖直方向上调整降压井1的位置,使其滤水管5的全部长度均位于目标降压水层4中;
(b)若降压井1所处位置处的目标降压水层4的厚度小于滤水管5的长度,则调整降压井1的平面坐标移动至具有足够厚度的目标降压水层4位置处,并相应调整其埋深,以使其滤水管5的全部长度均位于目标降压水层4中;
(4)待完成降压井1布设位置的初步优化后,通过对基坑降水效果的仿真分析并筛选以进一步优化降压井1的布置位置,具体如下:
利用BIM系统中的降水模拟软件VisualMODFLOW构建三维非稳定地下水渗流数值模型,根据降压井1的布置空间位置及其抽水速率,计算模拟降压井1抽水后目标降压水层4中的水位线变化值以及降水对周边土层所造成的沉降变化值;
同时将降压井1在其水平半径N米范围内调整布置位置,并通过前述的三维非稳定地下水渗流数值模型计算模拟降压井1在不同布置位置时抽水后目标降压水层4中的水位线变化值以及降水对周边土层所造成的沉降变化值;
从中对比筛选得出降水效果最好的降水井空间布置位置,使得承压水降深复合规范中对抗突涌验算的要求,周边沉降值最小、沉降变化最平缓;
需要说明的是,VisualMODFLOW是一种三维地下水流和溶质运移模拟评价的标准可视化专业软件系统,该软件由Modflow(水流评价)、Modpath(平面和剖面流线示踪分析)和MT3D(溶质运移评价)三大部分组成,并且具有强大的图形可视界面功能,新型菜单结构允许用户在计算机上直接圈定模型区域和剖分计算单元,并可为各剖分单元和边界条件赋值、运行模型模拟(MT3D、MODFLOW和MODPATH)、对模型进行校正以及用等值线或颜色填充将其结果可视化显示;在建立模型和显示结果的任何时候,都可以用剖面图和平面图的形式将模型网格、输入参数和结果加以可视化显示;
(5)按照上述步骤1-4中降压井1的布置方案,在实际施工现场基坑3中布设降压井1,并通过现场实际观测记录,反馈降压井1的实际降水效果,验证降压井布置优化方案的合理性与准确性。
本实施例的有益效果在于:(1)目前BIM技术多应用于各类人造结构物、构筑物中,本实施例将BIM技术引入地质领域,建立三维土层模型以及降压井模型,清晰直观展示了降压井与各土层之间的关系,通过比对降压井与其相应的目标降压水层之间的相对位置关系,优化降压井的布置位置,避免了一口废井的出现,提高了降水井效率,保证了基坑开挖的安全、顺利;(2)将所建立的三维土层模型和降压井模型用于数值模拟分析,可推演基坑降水效果和周边沉降。

基于BIM技术的降压井布置优化方法.pdf_第1页
第1页 / 共8页
基于BIM技术的降压井布置优化方法.pdf_第2页
第2页 / 共8页
基于BIM技术的降压井布置优化方法.pdf_第3页
第3页 / 共8页
点击查看更多>>
资源描述

《基于BIM技术的降压井布置优化方法.pdf》由会员分享,可在线阅读,更多相关《基于BIM技术的降压井布置优化方法.pdf(8页珍藏版)》请在专利查询网上搜索。

本发明公开了一种基于BIM技术的降压井布置优化方法,包括如下步骤:在BIM软件中三维土层模型;根据降压井的设计位置在三维土层模型中布置降压井模型;观察降压井上的滤水管位置是否作用于目标降压水层中,若否,则调整降压井的位置使其作用于目标降压水层中;构建三维非稳定地下水渗流数值模型,根据降压井的布置空间位置及其抽水速率,计算模拟降压井抽水后目标降压水层中的水位线变化值以及降水对周边土层所造成的沉降变化。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 固定建筑物 > 水利工程;基础;疏浚


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1