包括高密度金属纳米团簇的硅纳米线及其制备方法技术领域
本公开涉及一种包括高密度金属纳米团簇的硅纳米线及其制备方法,更
具体地讲,涉及一种包括形成在其表面上的金属纳米团簇的硅纳米线结构。
所述金属纳米团簇以高密度形成在硅纳米线表面上。
背景技术
由于1维纳米结构能够用于纳米级的并具有优异性能的电子器件、光学
器件、生物传感器等中,所以诸如硅纳米线的1维纳米结构作为“下一代纳米
材料”吸引了很多关注。
具体地讲,已经对能够增加半导体的集成密度和速度的垂直型硅纳米线
场效应晶体管(FET)进行了探索和研究。由于硅的高容量性能,所以它也
能够用于硅纳米线锂电池中。硅的高容量性能还使得其适合用于太阳能电池
中。
发明内容
这里公开了一种硅纳米线,所述硅纳米线与不具有相同结构的其它硅纳
米线相比,具有改善的电导率和改善的光学特性。
这里也公开了一种制备硅纳米线的方法。
这里也公开了硅纳米线的各种应用。
另外的方面将部分地在下面的描述中阐述,部分地将通过描述是清楚的,
或者可以通过提出的实施例的实施来了解。
根据本发明的一方面,硅纳米线包括金属纳米团簇,所述金属纳米团簇
形成在硅纳米线的表面上。
所述金属纳米团簇可具有大约1纳米至大约10纳米的平均尺寸。
所述金属纳米团簇可具有大约2纳米至大约5纳米的平均尺寸。
所述金属纳米团簇可以以高密度设置在硅纳米线的表面上。
所述金属纳米团簇可以以大约1×106个纳米团簇/cm2至大约1×1016个纳
米团簇/cm2(纳米团簇每平方厘米)的密度存在。
所述金属纳米团簇可以以大约1×1011个纳米团簇/cm2至大约1×1013个纳
米团簇/cm2的密度存在。
所述金属纳米团簇可包括从由过渡金属、镧系元素、13族元素(除硼之
外)以及14族元素(除碳和硅之外)组成的组中选择的至少一种金属。
金属纳米团簇可包括从由金(Au)、镍(Ni)、铁(Fe)、银(Ag)、铝(Al)、
锗(Ge)、钆(Gd)、铜(Cu)、铟(In)和铅(Pb)组成的组中选择的至少
一种金属。
硅纳米线的截面可具有六边形结构。
硅纳米线的端部可包括半球形的金属帽。
硅纳米线的直径可以为大约10纳米至大约500纳米。
硅纳米线的长度可以为0.5μm(微米)至大约20μm。
硅纳米线可以通过快速热化学气相沉积(CVD)、激光热CVD(LTCVD)
或金属有机CVD(MOCVD)得到。
根据本发明的另一方面,这里公开了一种制备硅纳米线的方法,所述方
法包括:在硅基底上设置金属薄膜层;在第一煅烧工艺中,在氢气氛下煅烧
其上设置有金属薄膜层的硅基底来形成金属-硅岛;在第二煅烧工艺中,在混
合气体的存在下煅烧形成有金属-硅岛的硅基底以形成包括金属纳米团簇的
硅纳米线。
根据本发明的另一方面,电子器件可包括具有设置在其上的金属纳米团
簇的硅纳米线。
电子器件可以是太阳能电池、锂电池、晶体管、存储器件、光学传感器、
生物传感器、发光二极管、波导器、发光器件或电容器。
附图说明
通过参照附图进一步详细地描述本公开的示例性实施例,本公开的上述
和其它方面、优点和特征将变得更清楚,附图中:
图1示出了根据本发明实施例的硅纳米线的扫描电子显微镜(SEM)显
微照片,所述硅纳米线是在示例1中得到的并包括以高密度设置在硅纳米线
的表面上的金(Au)纳米团簇;
图2A示出了在示例1中得到的并包括以高密度设置在其表面上的Au
纳米团簇的硅纳米线的显微照片的放大图像;
图2B是在示例1中得到的、包括以高密度设置在其表面上的Au纳米团
簇的硅纳米线的上部的局部放大显微图像;
图2C是在示例1中得到的、包括以高密度设置在其表面上的Au纳米团
簇的硅纳米线的中部的局部放大显微图像;
图3A示出了在示例1中得到的、包括以高密度设置在其表面上的Au
纳米团簇的硅纳米线的剖面的透射电子显微镜(TEM)显微照片;
图3B示出了在示例1中得到的、包括以高密度设置在其表面上的Au纳
米团簇的硅纳米线的剖面的Z-衬度(Z-contrast,原子序数衬度)(STEM)图
像;
图4A示出了包括于在示例1中得到的硅纳米线中的Au纳米团簇的高分
辨率Z-衬度图像;
图4B、4C和4D是示出由图4A中的a、b和c区域的衬度强度的差异
区分的Si原子和Au原子的曲线图;
图5是示出通过测量和对比存在于在示例1中得到的硅纳米线中的Au
帽和Au纳米团簇的表面等离体子(surface plasmon)激发能而得到的单色
EELS(Monochrome-EELS,单色电子能量损失谱)数据的曲线图;
图6是使用在示例1中得到的并包括以高密度设置在其表面上的Au纳
米团簇的硅纳米线制造的纳米光学器件的SEM图像;
图7A是通过在700℃的温度下对硅纳米线执行热处理得到的硅纳米线
的表面的放大图像,其中,在示例1中得到的硅纳米线包括以高密度设置在
其表面上的Au纳米团簇;
图7B是示出Au纳米团簇根据其尺寸的分布的示图;
图8A是通过在800℃的温度下对硅纳米线执行热处理得到的硅纳米线
的表面的放大图像,其中,在示例1中得到的硅纳米线包括以高密度设置在
其表面上的Au纳米团簇;
图8B是示出Au纳米团簇根据纳米团簇的尺寸的分布的示图;
图9A是通过在900℃的温度下对硅纳米线执行热处理得到的硅纳米线
的表面的放大图像,其中,在示例1中得到的硅纳米线包括以高密度设置在
其表面上的Au纳米团簇;
图9B是示出Au纳米团簇根据其尺寸的分布的示图。
具体实施方式
现在,在下文中将参照示出各种实施例的附图来更加充分地描述本发明。
然而,本发明可以用许多不同的形式来实施,且不应该解释为局限于在这里
所提出的实施例。相反,提供这些实施例使得本公开将是彻底和完全的,并
将把本发明的范围充分地传达给本领域技术人员。相同的标号始终表示相同
的元件。
应该理解的是,当元件被称作“在”另一元件“上”时,它可以直接在该另
一元件上,或者也可以在它们之间存在中间元件。相反,当元件被称作“直接
在”另一元件“上”时,不存在中间元件。如这里所使用的,术语“和/或”包括一
个或多个相关所列项的任意组合和所有组合。
应该理解的是,尽管这里可使用术语“第一”、“第二”、“第三”等来描述各
种元件、组件、区域、层和/或部分,但是这些元件、组件、区域、层和/或部
分不应受这些术语的限制。这些术语仅是用来将一个元件、组件、区域、层
或部分与另一个元件、组件、区域、层或部分区分开来。因此,在不脱离这
里的教导的情况下,下面讨论的第一元件、组件、区域、层或部分可被称作
第二元件、组件、区域、层或部分。
这里使用的术语仅为了描述特定实施例的目的,而不意图具有限制性。
如这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数
形式。还应理解的是,当在本说明书中使用术语“包含”和/或“包括”时,说明
存在所述特征、区域、整体、步骤、操作、元件和/或组件,但不排除存在或
附加一个或多个其它特征、区域、整体、步骤、操作、元件、组件和/或它们
的组。
此外,这里可使用诸如“在……下”或“下面的”和“在……上”或“上面
的”的相对术语来描述如在图中所示的一个元件与其它元件的关系。应该理解
的是,相对术语意在包含除了在附图中描述的方位之外的装置的不同方位。
例如,如果一幅图中的装置被翻转,则描述为“在”其它元件“下”侧的元件随
后将被定位为“在”所述其它元件“上”侧。因此,示例性术语“在……下”可
依据图的具体方位包括“在……下”和“在……上”两种方位。类似地,如
果一幅图中的装置被翻转,则描述为“在”其它元件“下方”或“下面”的元件随后
将被定位为“在”所述其它元件的“上方”。因此,示例性术语“在……下方”
或“在……下面”可包括“在……上方”和“在……下方”两种方位。
除非另有定义,否则这里使用的所有术语(包括技术术语和科学术语)
具有与本公开所属领域的普通技术人员所通常理解的意思相同的意思。还将
理解的是,除非这里明确定义,否则术语(诸如在通用字典中定义的术语)
应该被解释为具有与相关领域和本公开的上下文中它们的意思一致的意思,
而将不以理想的或者过于正式的含义来解释它们。
在此参照作为理想实施例的示意图的剖视图来描述示例性实施例。这样,
预计会出现例如由制造技术和/或公差引起的图示形状的变化。因此,这里描
述的实施例不应该被解释为局限于在此示出的区域的具体形状,而应该包括
例如由制造导致的形状上的偏差。例如,示出或描述为平坦的区域通常可以
具有粗糙的和/或非线性的特征。此外,示出的尖角可以被倒圆。因此,在图
中示出的区域本质上是示意性的,它们的形状并不意图示出区域的精确形状,
也不意图限制本权利要求书的范围。
本发明提供了一种包括金属纳米团簇的硅纳米线,其中,硅纳米线具有
包括至少两种不同材料的异质结构。包括金属纳米团簇的硅纳米线具有在硅
纳米线的表面上形成金属纳米团簇的结构。
硅纳米线的各种性能(例如,电荷容量特性、电荷捕获特性、电导率、
光学特性等)可因以高密度设置在硅纳米线上的金属纳米团簇而得到改善。
金属纳米团簇的电导率高于硅纳米线的电导率,因此,相对于不含有设
置在其上的金属纳米团簇的对比硅纳米线,含有设置在其上的金属纳米团簇
的硅纳米线的电导率可以得到改善。此外,由于在硅纳米线的表面上以高密
度设置金属纳米团簇,所以当通过金属纳米团簇的表面等离体子共振测量时,
硅纳米线具有适合于显示优异的响应信号的光学特性。
向硅纳米线提供这样的特性的金属纳米团簇可以包括从由过渡金属、镧
系元素、13族元素(除硼之外)和14族元素(除碳和硅之外)组成的组中
选择的至少一种金属。例如,金属纳米团簇可包括从由金(Au)、镍(Ni)、
铁(Fe)、银(Ag)、铝(Al)、锗(Ge)、钆(Gd)、铜(Cu)、铟(In)、铅
(Pb)和包括前述金属中的至少两种的组合组成的组中选择的至少一种。在
这些金属中,根据目的,可将无毒金属用作药物递送材料或用于生物学应用
中。例如,无毒金属可以是Au或Ag。
金属纳米团簇可包括以纳米点(nanodot)的形式团聚的金属。金属纳米
团簇可具有圆形形状或不规则形状。金属纳米团簇的尺寸可小于硅纳米线的
直径,例如,尺寸小于或等于大约500纳米(这是纳米线的特性),具体地为
大约5纳米至大约400纳米,更具体地为大约10纳米至大约300纳米。例如,
金属纳米团簇的平均尺寸可以为大约1纳米至大约100纳米,具体地为大约
1纳米至大约10纳米,更具体地为大约2纳米至大约5纳米。当金属纳米团
簇具有圆形形状时,可按照金属纳米团簇的直径来限定金属纳米团簇的尺寸。
另一方面,当金属纳米团簇具有不规则形状时,可按照金属纳米团簇的长轴
的长度来限定金属纳米团簇的尺寸。期望通过金属纳米团簇的质心来测量长
轴的长度。
金属纳米团簇以高密度存在于硅纳米线的表面上,例如以大约1×106个
纳米团簇/cm2至大约1×1016个纳米团簇/cm2的密度,具体地为以大约1×1011
个纳米团簇/cm2至大约1×1013个纳米团簇/cm2的密度。这样,可以均匀地布
置以这样的高密度存在的金属纳米团簇,并且可以以大约1纳米至大约100
纳米的间距布置金属纳米团簇。在一个实施例中,可将金属纳米团簇周期性
地布置在硅纳米线的表面上。在另一实施例中,可将金属纳米团簇不定期地
布置在硅纳米线的表面上。
金属纳米团簇的分布范围、布置间距和尺寸可根据制造工艺的条件而改
变,并且可基于将使用硅纳米线的目的和应用来适当地调整。
任何硅材料都可用于纳米线而不管其形状和尺寸如何。在一个实施例中,
可使用非晶硅、晶体硅或包括二氧化硅的硅材料来制造纳米线而不管其形状
和尺寸如何。根据本发明实施例的包括金属纳米团簇的硅纳米线可具有六边
形截面,(硅纳米线的)上端部可包括具有半球形的金属帽。
硅纳米线可具有大约10纳米至大约500纳米的直径和大约0.5微米至大
约20微米的长度。在一个实施例中,硅纳米线的直径是大约20纳米至大约
400纳米,具体地为大约50纳米至大约300纳米。
硅纳米线的长度可以是大约1微米至大约15微米,具体地为大约5微米
至大约10微米。可通过相对于硅纳米线的长度垂直地截取的截面来测量硅纳
米线的直径。例如,如果硅纳米线具有六边形截面,则可通过长轴(连接与
长轴的长度垂直的对应的顶点的线)的长度来测量该截面。硅纳米线的长度
和直径可根据用于制作硅纳米线的制造工艺的条件而改变。
可通过在氢气氛下将金属薄膜层设置在硅基底上,然后在硅基底上生长
硅纳米线来制备包括形成在硅纳米线表面上的金属纳米团簇的硅纳米线。
根据本发明的实施例,硅纳米线可以如下制备:将金属薄膜层设置在硅
基底上,通过对其上设置有金属薄膜层的硅基底执行第一煅烧工艺来设置金
属-硅岛。在氢气氛下在化学气相沉积(CVD)室中形成金属-硅岛。通过在
向CVD室中注入混合气体的同时对其上设置有金属-硅岛的硅基底执行第二
煅烧工艺来执行硅纳米线的生长。
设置在硅基底上的金属薄膜层可以是包括用于形成金属纳米团簇的金属
的金属薄膜层。金属薄膜层可包括从由过渡金属、镧系元素、13族元素(除
硼之外)、14族元素(除碳和硅之外)和包括前述金属中的至少两种的组合
组成的组中选择的至少一种。例如,用于形成金属纳米团簇的金属可包括从
由Au、Ni、Fe、Ag、Al、Ge、Gd、Cu、In、Pb和包括前述金属中的至少两
种的组合组成的组中选择的至少一种。
可通过溅射、CVD、旋涂、原子层沉积(ALD)或金属有机化学气相沉
积(MOCVD)将金属薄膜层以大约1纳米至大约100纳米(更具体地,大
约1纳米至大约10纳米)的厚度设置在硅基底上。金属薄膜层可形成在硅基
底的至少一个表面上,或者可形成在硅基底的相对的表面上。
在硅基底上形成金属薄膜层,随后在硅基底上生长硅纳米线。可通过快
速热化学气相沉积(RTCVD)、激光热化学气相沉积(LTVCD)或MOVCD
来生长硅纳米线。
为了生长硅纳米线,可将包括其上设置有金属薄膜层的硅基底放置在
CVD室内。CVD室可以是使用卤素灯或激光器的CVD室。
当在CVD室中执行第一煅烧工艺时,金属与硅基底彼此作用,因此,
在基底上均匀地设置金属-硅岛。纳米级的金属-硅岛是具有硅化物形状的颗粒
材料。
可在氢气氛下执行第一煅烧工艺,并且可在真空气氛下例如在大约0.1
托至大约500托的压强下执行第一煅烧工艺。可在大约300℃至大约1000℃
的温度执行第一煅烧工艺大约5分钟至大约1小时。
在通过第一煅烧工艺在硅基底上均匀地形成金属-硅岛之后,执行第二煅
烧工艺以生长包括金属纳米团簇的硅纳米线。
可在向CVD室中注入混合气体的同时,当将CVD室保持在大约0.1托
至大约10托的压强和大约500℃至大约600℃的温度时,执行第二煅烧工艺
大约0.1小时至大约10小时。混合气体可以是硅烷(SiH4)和H2的混合物。
SiH4的量可以是大约1标准立方厘米/分钟(sccm)至大约10sccm,H2的量
可以是大约10sccm至大约100sccm。
在执行第二煅烧工艺之后,可获得包括以高密度均匀地形成在其表面上
的金属纳米团簇的硅纳米线。
可在第一煅烧工艺和第二煅烧工艺过程中通过调节CVD室的压强、温
度、保持时间等来控制金属纳米团簇的尺寸、分布度和布置间距或者硅纳米
线的直径、长度等。例如,可通过调节CVD室的压强、温度、保持时间等来
控制包括Au纳米团簇的硅纳米线。
在制备了包括设置在其表面上的金属纳米团簇的硅纳米线之后,可以以
大约300℃至大约1000℃的温度对硅纳米线另外执行热处理大约0.1小时至
大约10小时,以调节金属纳米团簇的尺寸或密度。需要注意的是,金属纳米
团簇设置在硅纳米线上并直接与硅纳米线接触。
当与其上没有设置金属纳米团簇的其它硅纳米线相比时,具有以高密度
设置在其表面上的金属纳米团簇的硅纳米线具有改善的电子捕获特性、改善
的电导率和改善的光学特性(吸光或发光)。因此,硅纳米线可用在各种电子
器件中。
电子器件可包括太阳能电池、场效应晶体管(FET)、电荷捕获闪速(CTF)
存储器、光学传感器、生物传感器、发光二极管、表面等离体子波导器、光
致发光(PL)器件、电容器等。
当将其上设置有金属纳米团簇的硅纳米线用在生物领域中时,适合于递
送生物材料或适合于生物传感器的金属纳米团簇以高密度分布在硅纳米线的
表面上,因而,与用于生物领域中的传统的硅纳米线相比,(包括金属纳米团
簇的)硅纳米线可被用作具有较低毒性的纳米材料。
此外,当将包括金属纳米团簇的硅纳米线用在锂电池中时,所述硅纳米
线具有优异的导电性,并且与包括其上没有设置金属纳米团簇的对比硅纳米
线的锂电池的劣化情况相比,所述硅纳米线具有可减少因充电/放电而导致的
硅的劣化的结构,因而,可制造具有改善的特性的硅纳米线锂电池。
此外,可制造因在硅纳米线的表面上过饱和的高密度金属纳米团簇的表
面等离体子共振而具有优异的响应信号时间的光学器件。与通过传统的薄膜
制造工艺制造的CTF存储器相比,可通过简单的工艺将金属纳米团簇的电荷
捕获特性应用到器件,以使所述器件具有优异的电荷捕获特性。
在下文中,可参照下面的示例来描述本发明,但是下面的示例意图描述
而非限制本发明。
示例
示例1
在尺寸为1.0×1.0cm2且厚度为700微米的硅(100)基底上,通过溅射来
沉积厚度为1.0至1.5纳米的金(Au)薄膜层。
将其上形成有Au薄膜层的硅基底移到包括卤素灯的RTCVD室,然后在
700℃的温度并以0.5托的压强在氢气氛下,在所述室中执行煅烧工艺达10
分钟,以形成直径为50纳米至150纳米的Au-硅岛。
在形成Au-硅岛之后,在将室的压强和温度分别保持为0.5托和550℃的
同时,将SiH4(2sccm)和H2(50sccm)的混合气体注入到所述室中,以生
长硅纳米线,从而制备出包括形成在其表面上的Au纳米团簇的硅纳米线。
在硅纳米线侧壁上的Au纳米团簇的密度数至少为3×1012cm-2。如果假设
Au纳米团簇为半球形且平均尺寸为4nm,则可估计出整个Si纳米线表面的
大约37%被Au纳米团簇覆盖。该密度是由高角度环形暗场扫描透射电子显
微镜层析成像仪(high-angle annular dark field scanning transmission electron
microscopy tomography)测得。
图1是由上面方法得到的包括形成在其表面上的Au纳米团簇的硅纳米
线的扫描电子显微镜(SEM)图像。如图1中所示,硅纳米线具有大约30纳
米至大约100纳米的直径和大约0.5微米至大约12微米的长度。
图2A是包括以高密度形成在其表面上的Au纳米团簇的一根硅纳米线的
Z-衬度图像。硅纳米线具有均匀的厚度。
图2B是图2A的包括以高密度形成在其表面上的Au纳米团簇的硅纳米
线的上部的局部放大图像。尺寸均为大约2纳米至大约5纳米的Au纳米团
簇均匀地分布在硅纳米线的整个表面上,由Au形成的半球形帽形成在硅纳
米线的上部上。
图2C是硅纳米线的中部的局部放大图像,尺寸均为大约2纳米至大约5
纳米的Au纳米团簇均匀地分布在硅纳米线的整个表面上。
图3A是示例1的包括形成在其表面上的Au纳米团簇的硅纳米线的剖面
的透射电子显微镜(TEM)图像。图3B是示出硅纳米线的六边形剖面的Z-
衬度图像,其中,Au纳米团簇以预定的间距仅均匀地分布在硅纳米线的表面
上。
通过使用三维(3D)层析(tomography)技术确定Au纳米团簇的密度,
确定出Au纳米团簇以大约3.2×1012个纳米团簇/cm2的密度存在于硅纳米线的
表面上。
图4A是示出了在示例1中得到的硅纳米线的表面上的Au纳米团簇的分
布的高分辨率Z-衬度图像。图4B至图4D示出了图4A中的a、b和c区域的
衬度强度的分布。图4B至图4D的曲线图示出了Au存在于高强度位置且硅
原子存在于低强度位置。因此,图4A示出了过饱和结构,在所述过饱和结
构中,Au原子代替了存在于硅纳米线的表面上的硅原子。
图5是示出通过测量存在于在示例1中得到的硅纳米线的上端部上的Au
帽的光学特性和存在于硅纳米线的表面上的Au纳米团簇的光学特性而得到
的结果的曲线图。在Au帽中在大约2.31eV(537纳米)处发生表面等离体子
共振,并且在Au纳米团簇中在大约3.12eV(397纳米)处发生表面等离体子
共振。在图5中,“超饱和Au2”和“超饱和Au1”是指在硅纳米线的表面上
超饱和的Au纳米团簇。
图6是使用如下原理制造的纳米光学器件的SEM图像:当波长大约397
纳米的光照射到示例1的包括Au纳米团簇的硅纳米线上时,电阻由于Au纳
米团簇的表面等离体子共振效应而减小。如下制造纳米光学器件:在玻璃基
底上形成尺寸为数十微米的两个Au电极,将示例1的包括Au纳米团簇的硅
纳米线以桥形连接、然后用铂(Pt)覆盖存在于两个Au电极中的硅纳米线。
图7A、图8A和图9A是分别通过在氮气氛下、以700℃、800℃和900℃
的温度对示例1的硅纳米线执行热处理而得到的Au纳米团簇的局部放大图
像,图7B、图8B和图9B是示出根据Au纳米团簇的尺寸的分布的示图。根
据热处理的温度,Au纳米团簇的尺寸可在大约1纳米至大约30纳米变化。
根据本发明实施例的包括金属纳米团簇的硅纳米线具有改善的电导率和
光学特性,因此,硅纳米线能够用在使用硅纳米线的各种半导体器件中。
此外,当具有较低毒性的Au或Ag用作金属纳米团簇时,金属纳米团簇
能够用作适合于生物材料的递送或用于生物传感器的纳米材料。
当包括金属纳米团簇的硅纳米线用在锂电池中时,硅纳米线具有优异的
导电性并具有可减少因充电/放电而导致的硅的劣化的结构,因此,能够制造
具有改善的电学特性的锂电池。
此外,能够使用包括金属纳米团簇的硅纳米线来制造因利用表面等离体
子共振而具有优异的响应信号时间的光学器件(例如,太阳能电池)。
当与通过传统的薄膜制造工艺制造的CTF存储器相比时,包括在硅纳米
线中的金属纳米团簇的电荷捕获特性优异,并且根据本发明的方法制备的硅
纳米线是简单的。
应该理解,这里描述的示例性实施例应该被认为仅是描述意义上的而非
出于限制的目的。在每个实施例中对特征或方面的描述通常应该被认为可用
于其它实施例中的其它类似的特征或方面。