蒸发和浓缩干燥设备与方法 本发明一般地涉及蒸发和浓缩干燥设备与方法,特别是一项这种设备与方法方面的改进,用于通过在某一高温下液化来回收和重新利用汽化热量,亦即出现在增压或减压蒸发过程中的潜热,以致节省加热能量,并且用于在某一高温下氧化或碳化蒸发的各种杂质,诸如充满在蒸气中的气味、B.O.D.和C.O.D.,以便除掉蒸发的各种杂质并提供良好品质的冷凝水。
在传统的蒸发设备中,用于汽凝蒸气的冷却水必须与蒸发所需的热量,亦即沸腾热量(100Kcal)和汽化热量(蒸发潜热,539Kcal/l)一起加于设备。在使用上述蒸发设备通过蒸发和浓缩诸如湿泥浆或废水等湿料制备蒸馏水的情况下,一部分环境污染杂质,诸如充满在湿料中的气味、B.O.D.和C.O.D.,与蒸气一起蒸发,从而充斥在蒸气中。充斥在蒸气中的各种杂质本身又在冷凝蒸气时与蒸气一起被液化。蒸馏水因而不能达到允许的标准水质,以致蒸馏水需要进行再处理,以便达到允许的标准质量。
一般的蒸发设备以及一般的蒸发方法不能回收和重新利用蒸气的蒸发潜热(539 Kcal/l),而是通过一用于冷却和冷凝充斥各种杂质的蒸气的汽凝系统中把潜热废弃了。其次,潜热的这种废弃必定是与大量成本相伴的。
此外,一般的蒸发设备或一般的蒸发方法不能除掉各种杂质,诸如气味、B.O.D.和C.O.D.,这些杂质与蒸气一起蒸发和液化而降低了蒸馏水的质量。就此而论,蒸馏水必须经过一另外的水净化过程予以处理以便改进蒸馏水的质量。用于改进蒸馏水质量的另外的水净化过程是很复杂的并提高了制备蒸馏水的成本。
在使用一降压蒸发方法使水蒸发成为蒸汽时,汽化热量可以通过对应于某一真空度的降低压力的大小而得以节省。不过,这种降压蒸发方法仍存在一个难题,即冷凝水充满气味、B.O.D.和C.O.D.,从而冷凝水需要通过另外的脱臭和净水过程而予以处理。
在一般的加热蒸发设备中,在大气压下蒸发一升零度(0℃)的水所需的总热量是639Kcal。亦即,使水在100℃沸腾的沸腾热量是100Kcal,而用于蒸发沸腾水的汽化热量是539 Kcal,从而用于蒸发一升水的总热量是639 Kcal,亦即,100Kcal+539Kcal=639Kcal。在使用降压蒸发器蒸发1升零度(0℃)的水时,在真空度是大约10Torr(750mmHg)的条件下水在35℃时沸腾,以致用于蒸发1升水的总热量是605Kcal,即35Kcal+570Kcal=605Kcal(在蒸发压力是0.1Kg/cm2·A时,潜热可以是大约570Kcal)。
不过,一般的蒸发设备必须使用一部汽凝器以冷凝和液化蒸气,以致大量用于汽凝的冷却水必须加于设备。其次,蒸气的潜热(539Kcal)不能回收和重新使用,而是废弃掉了。
已经简略说明过,在使用或者是一般的降压蒸发方法或者是一般的加热蒸发方法在大气压下蒸发一升零度(0℃)的水时,有待施用于水的总热量是574Kcal或639Kcal。其次,用于向冷凝器提供冷却水的额外能量必须加于设备。在冷凝蒸气的过程中,蒸发潜热(539Kcal)不能回收而废弃掉了。此外,一般的蒸发设备本身不能从冷凝水中除掉各种环境污染杂质,诸如气味、B.O.D.和C.O.D.,以致冷凝水需要通过另外的脱臭和净水过程予以处理。
因而,本发明的目的是提供一种蒸发和浓缩干燥设备与方法,其中,以上各种问题得以克服并可提供优质冷凝水和节省汽化能量,以便通过重新利用在增压或减压蒸发过程中所出现的潜能而节省加热能量,并可广泛地用于使污染废水成为蒸馏水、净化废水和浓缩干燥各种各样的环境污染泥浆。
本发明的设备和方法可回收和重新利用加热能量,这种能量被施用于蒸气以便把蒸气加热到某一高温进行氧化或碳化,并除掉充满在蒸气中的各种环境污染杂质,诸如气味、B.O.D.和C.O.D.等,从而本设备和方法可显著地节约用于加热能量的成本。
本发明与传统的设备相比,可降低蒸发设备的生产成本和设备的操作成本,从而为用户提供了经济效益。与传统的设备相比本发明设备还可节省能量2到10倍。在本发明的设备中,充斥在蒸气中的气味和各种杂质在蒸气加热至某一高温时可被氧化和碳化并从蒸气中完全除掉,以致本设备可提供优质蒸馏水而勿需使用另外的水净化装置。
本发明以上和其他各项目的、特点和其他各项优点通过以下结合各附图所作的详细说明将会得到更为清晰的了解,其中
图1是本发明一优选实施例的蒸发和浓缩干燥设备的局部剖视图;
图2是图1设备的一热量回收装置的透视图,表明此装置的内部结构;
图3是图2热量回收装置的局部剖前视图,表明此装置中逆流高温蒸气与正流低温蒸气之间的热交换状态;
图4是搅动叶片和板式蒸汽室的局部透视图,这些叶片和腔室装设在图1设备的一蒸发器之中;以及
图5是表示图4各板式蒸汽室的局部放大视图。
参见图1,其中以局部剖视图表明本发明一优选实施例的蒸发和浓缩干燥设备的结构。此图中,附图标记1表示一用于盛放有待通过蒸发予以处理的湿料(wet material)的容器。其中配备有一盘管R的容器1在其顶部设有一第一入口15a,用于填装有待处理的湿料,比如水或湿泥浆。容器1的外壳是双重结构壁板,这种双重结构壁板用于从将在容器1中循环的冷凝水中回收废热。容器1与用于蒸发和浓缩干燥湿料的蒸发器10相连接,该蒸发器10是一搅动型蒸发器并在其中盛装诸如废水或湿泥浆等湿料。此蒸发器10在其顶部设有一第二入口15b,用于选择性地填装有待予以蒸发的湿料。此蒸发器10在其底部上做成圆形并在圆形底部旁边侧壁的下部有一凹槽11。一用于把泥浆排至蒸发器10外面的螺旋11s安放在凹槽11之中。为了搅动蒸发器10中的湿料,许多板式半圆形蒸汽室13铅直地设置在蒸发器10之中,以致这些腔室13沿水平方向排列并彼此等距地间隔开来,如图4和5所示。许多搅动叶片12设置在各腔室13之间。每一叶片12都可在由各腔室13界定的空间中沿相反的两个方向转动,从而搅动有待蒸发的湿料。如图5所示,各板式蒸汽室13的相对侧壁的内端部分平滑地渐缩至一单一脊部,从而使位于各板式蒸汽室13之间的各搅动叶片12作平滑转动。各搅动叶片12套装在一叶片轴S上,此轴S在长度方向上沿着蒸发器10的中心延伸。各板式蒸汽室13与形成在蒸发器10的双重结构壁板中的一蒸汽室14相连通。蒸发器10的顶部经由一连接管16连接于一溢流防止室17,此溢流防止室17本身又经由一U形弯管18连接于蒸发器10的内部。弯管18从腔室17的底部伸向蒸发器10的内部。
一第一导管R1从溢流防止室17的顶部伸向一蒸气压缩透平(va-por compressing turbine)20。导管R1设有一控制阀21,用于向流动于导管R1之中的蒸气供应预热空气。蒸气压缩透平20的后端本身又经由一第二导管R2连接于一蒸气压缩泵30。一第三导管R3从蒸气压缩泵30伸向一热量回收装置60。如图1至3所示,适于从高温蒸气回收热量并将回收的热量再用于预热低温蒸气的该热量回收装置60配备有一束第九导管或蒸汽导管R9,这些导管R9在装置60之中沿水平方向延伸并等距地间隔开来。热量回收装置60的对置两端本身又分别经由第四和第六导管R4和R6连接于一具有自己的加热装置的辅助锅炉40和蒸发器10。在辅助锅炉40中,第四导管R4连接于一燃烧器41喷嘴前面的一蒸气加热盘管42。燃烧器41装在锅炉40的前壁并生成将导引至锅炉40内部的火焰。环绕锅炉40中的一蒸气加热室43的盘管42本身又经由一第五导管R5连接于热量回收装置60。这样,蒸气的潜热可由装置60回收并重新用于预热流动在蒸汽导管R9之中的低温蒸气。
具有一压力调节器51以及一泄放阀52的第七导管R7在蒸发器10的圆形底部处从蒸发器10的蒸汽室14延伸出并连接于容器1。在容器1中,冷凝水在通过盘管R时失去热量。此后,冷凝水被送入一冷凝水池50,从而被收集在池50之中。
在上述设备的操作中,有待蒸发的湿料,比如废水,通过容器1的第一入口15a装进容器1,此容器1可从冷凝水中回收废热。废水本身又经由一第八导管R8被送进蒸发器10,从而在蒸发器10中被蒸发或浓缩干燥而成为蒸气。蒸气本身又经由连接管16流向溢流防止室17,并且随后经由第一导管R1被送进透平20。在蒸气被送往透平20之前,第一导管R1的控制阀21向蒸气添加适当数量的预热空气。在此,根据充斥在蒸气中的各种被蒸发的杂质的特性而添加于蒸气的预热空气是为了促进这些杂质的氧化。不过,应当理解,在不根据蒸发主体的特性添加预热空气的情况下,充满各种杂质的蒸气在高温下可能会碳化。此时,蒸发室10由于蒸气压缩透平20和蒸气压缩泵30的作用被抽成真空,以致蒸发器10具有大约60℃的内部温度以及范围从大约300mmHg(毫米汞柱)到大约400mmHg的真空度。蒸气此后由蒸气压缩泵30再予以压缩,以致蒸气压力增大。
高压蒸气本身又经由第三导管R3送进热量回收装置60的蒸汽导管R9并从装置60经由第四导管R4排放到辅助锅炉40。在辅助锅炉40中,蒸气在通过蒸气加热管42和蒸气加热室43时由蒸气加热装置予以加热,从而成为高温蒸气,此蒸气的温度范围从大约600℃到800℃。由于蒸气在锅炉40中被加热,充斥在蒸气中的各种杂质,诸如气味、B.O.D.和C.O.D.,通过氧化和碳化而予以清除。蒸气在由锅炉40加热之后经由第五导管R5返回热量回收装置60。在装置60中,600℃至800℃的蒸气与新蒸气交换热量,此新蒸气新送进装置60的导管R9并具有范围从60℃至100℃的低温。在热量回收装置60中,已被锅炉40的蒸气加热装置加热的蒸气由装置60的各导引隔板导向蒸汽导管R9周围,低温蒸气从导管R9通过。亦即,装置60中的高温蒸气在一曲折的通路中从装置60的后部流向前部并与从前部向后部通过导管R9的低温蒸气交换热量。
如图2所示,各导引隔板可以铅直地安放在热量回收装置60之中,以致各隔板以相等间距间隔开来。各隔板会延长装置60中蒸气的热交换时间,从而提高装置60的热交换效果。不过,在设备操作的第一阶段,锅炉40中的水由锅炉40的加热装置加热,从而成为高温蒸汽。经过碳化或氧化的锅炉40的高温蒸汽再经由一第十导管R10、带有调节器51的第三导管R3、热量回收装置60、第四导管R4、锅炉40、第五导管R5、装置60和第六导管R6提供给蒸发器10的各板式蒸汽室13和蒸汽室14。在蒸发器10中,从锅炉40供给的高温蒸汽与废水交换热量,从而使废水成为大约60℃至100℃的低温蒸气。约60℃至100℃的蒸气经过上述过程被送进热量回收装置60并吸收经由第五导管R5从锅炉40供给的高温蒸气的热量。由于热交换,低温蒸气的温度从60℃至100℃增至450℃至600℃。450℃至600℃的预热蒸气本身又经由第四导管R4从装置60排放到锅炉40。同时,由于在热量回收装置60中进行热交换而温度降至150℃至200℃的蒸气经由第六导管R6排放到蒸发器10。
经由第四导管R4从装置60排放到锅炉40的450℃至600℃的预热蒸气在锅炉40中由锅炉40的蒸气热装置加热并被送进蒸气加热盘管42和蒸气加热室43,从而被氧化或碳化并成为600℃至800℃的高温蒸气。锅炉40的经过氧化或碳化的蒸气经由第五导管R5被送进装置60,并沿曲折通路从装置60的后部流向前部,与从前部向后部通过导管R9的60℃至100℃低温蒸气交换热量。在此,在锅炉40中由蒸气加热装置施加于蒸气而加热蒸气并将蒸气温度提高到600℃至800℃的加热能量在热量回收装置60中予以回收。亦即,充满在600℃至800℃高温蒸气中的加热能量被回收并重新用于预热流经装置60的蒸汽导管R9的蒸气,如图3所示。由于预热,从蒸发器10送来的蒸气的温度从60℃至80℃提高到450℃至600℃。由于将被送进锅炉40的蒸气的温度通过在装置60中进行热交换而从60℃到80℃提高到450℃至600℃,锅炉40加热装置的加热能量可以大为节省。
经由第六导管R6从装置60排出并具有150℃至200℃温度、且其各种杂质被氧化或碳化的蒸气被供给蒸发器10的各板式蒸汽室13和蒸汽室14。在蒸发器10中,从装置60供给的蒸气与废水交换热量,从而失去其汽化热而被液化并成为相对高温的冷凝水,以致蒸发器10的水或湿料借助于在高温下液化而从蒸气中回收539Kcal(在蒸发压力是1.013Kg/cm2·A时)的潜热。大约80℃至120℃的这种冷凝水本身又经由兼有压力调节器51和泄放阀52二者的第七导管R7被送进容器1的盘管R。盘管R再次从冷凝水中回收废热。冷凝水被收集于冷凝水池50之中。当在池50中过滤冷凝水后,经过氧化或碳化的各种杂质从冷凝水中被去除,从而使冷凝水成为良好的蒸馏水。
在上述实施例中,废水通过降至蒸发方法被蒸发。不过,应当理解,废水可以在不低于大气压的某一高压下予以蒸发。亦即,本发明的设备可以在加压状况下蒸发废水。
本发明的操作效果将在以下予以说明。
容器1中有待蒸发的湿料或废水从流经盘管R的高温冷凝水吸收废热。此后,由于蒸气压缩透平20的降压作用以及蒸气压缩泵30的降压作用,经过预热的废水经由第八导管R8自然而然地被引进蒸发器10。在蒸发器10中,各搅动叶片12搅匀废水,以致废水将如下述被蒸发。在搅混预热废水之后,废水的浆渣收集在蒸发器10的凹槽11之中。凹槽11中的浆渣本身又通过浆渣排放螺旋11s被排放到蒸发器10的外面。同时,留下的不带浆渣的废水从流动在蒸发器10的各板式蒸汽室13之中和流动在蒸汽室14之中的150℃至200℃的高温蒸气吸收汽化热量,从而被蒸发而成为低温蒸气。处于蒸气状态的废水本身又经由连接管16从蒸发器10被送进溢流防止室17,此溢流防止室17具有U形弯管18,从腔室17的底部延伸向蒸发器10的内部并适于在蒸发器10中蒸发期间防止废水可能溢出蒸发器10。废水的蒸气此后经由从腔室17的顶部伸向蒸气压缩透平20的第一导管R1被送进蒸气压缩透平20。在蒸气送进透平20之前,在控制阀21的控制之下蒸气可以选择性地添加预定数量的预热空气,此阀21安放在透平20的蒸气入口的前面。
蒸气压缩透平20的蒸气本身又被送进蒸气压缩泵30,其中蒸气受到压缩以增大其压力。此时,蒸发器10中的废水由于蒸发器10中的降压状况而在大约60℃的温度下蒸发。此外,由于蒸气压缩透平20的降压作用以及由于蒸气压缩泵30的降压作用,蒸发器10达到范围从大约300mmHg至大约400mmHg的真空度。正如以下关于理想气体的基本方程(E-1)所表明的那样,蒸气压力既可由透平20也可由泵30予以提高,以致蒸气在某一高压和某一高温下得以液化。当然,本发明的设备可以使用一种真空增压泵(vacuum booster)、一种真空分子泵或一种蒸气压缩装置,代替上述主要实施例的蒸气压缩透平20。
PV=ntRT.........................(E-1)其中
P-蒸气压力;
V-蒸气体积;
T-蒸气的绝对温度;
R-气体常数;以及
nt-包含在体积V的蒸气中的各种气体的总摩尔数。
蒸气本身又在蒸气压力由透平20和泵30增加的条件下通过热量回收装置60的蒸汽导管R9。在通过蒸汽导管R9时,蒸气从在装置60中围绕导管R9逆流的高温蒸气吸收热量。充斥各种杂质的蒸气,在导管R9中经过预热之后,被送进锅炉40的蒸气加热室43并被锅炉40的蒸气加热装置加热到600℃至800℃的温度,从而被氧化或碳化。被氧化或碳化的高温蒸气返回到热量回收装置60并在装置60中沿着曲折的通路围绕蒸汽导管R9逆向流动。此时,被新送进装置60并具有60℃至100℃较低温度的新的蒸气在装置60的蒸汽导管R9之中流动。在装置60中,曾由锅炉40的蒸气加热装置予以加热的蒸气由装置60的沿铅直方向安放的各导引隔板导引而围绕蒸汽导管R9,从而与新蒸气交换热量,如图2和3所示。
被预热至450℃至600℃温度的蒸气经由第四导管R4被送进蒸气加热管42和蒸气加热室43,从而成为被氧化或碳化的600℃至800℃的高温蒸气。同时,失去热能且温度已被降低到150℃至200℃的蒸气经由导管R6被送进蒸发器10的各板式蒸汽室13和蒸汽室14。在通过蒸发器10的各板式蒸汽室13和蒸汽室14时,150℃至200℃的蒸气与废水交换热量,从而被液化并成为大约80℃至120℃的冷凝水。这是因为,如上述方程E-1所表明的那样,由于蒸气在某一正比于蒸气压力的温度下液化,高压蒸气在某一正比于其蒸气压力的高温下液化。
大约80℃至120℃的冷凝水本身又经由具有压力调节器51和泄放阀52的第七导管R7被送进容器1的盘管R。盘管R再次从冷凝水回收废热并把废热给予容器1的废水。冷凝水在失去废热之后被收集于冷凝水池50。另一方面,利用由蒸发器10回收的潜热通过蒸发废水所制备的温度为60℃至100℃的蒸气经由溢流防止室17被送进热量回收装置60。
蒸气中的各种杂质,诸如气味、B.O.D.和C.O.D.,它们与蒸气一同蒸发并充斥在蒸气之中,与由控制阀21供给的预定数量的预热空气相掺混,此阀21安放在透平20的蒸气入口的前面。由于与预热空气相掺混,蒸气的各种杂质成为可氧化的杂质。可氧化的杂质被送进锅炉40的蒸气加热装置,亦即蒸气加热管42和蒸气加热室43。因而,各种杂质在锅炉40中在600℃至800℃的高温氛围下被氧化和燃烧,从而从蒸气中除掉。另外,在不根据蒸气特性添加预热空气的情况下,充斥各种杂质的蒸气可在600℃至800℃的高温氛围下被碳化从而从蒸气中除掉诸如气味、B.O.D.和C.O.D.等各种杂质。曾由锅炉40的蒸气加热装置施用于蒸气以产生高温氛围的蒸气加热能量由装置60回收并重新用于预热装置60中的低温蒸气。就此而论,本发明的设备所节省的蒸气加热能量数量等于用于预热装置60中蒸气的回收能量。
应当理解,本发明的设备可以通过对容器1、蒸发器10、辅助锅炉40等作隔热处置而提高其能量效率。
为了度量本发明设备和方法的运用效果,曾经进行了以下的一项实例。亦即,作为有待蒸发的湿料的排泄物曾在620℃下被加热、氧化和燃烧或在620℃下被加热和碳化。结果示在下表(T-1)。如表(T-1)所示,使用本发明设备并按照本发明方法所处理的湿料可以最为有效地予以净化。
表(T-1)成分 标准 结果
(A) (B)pH 5.8-8.6 9.0 9.8COD 150(mg/l) 6.4(mg/l) 6.6(mg/l)BOD 150(mg/l) 5.6(mg/l) 5.9(mg/l)SS 150(mg/l) 4.0(mg/l) 4.5(mg/l)正己烷 30(mg/l) 0.8(mg/l) 4.0(mg/l)T-N 60(mg/l) 16.1(mg/l) 16.5(mg/l)T-P 8(mg/l) 0.033(mg/l) 0.034(mg/l)NH3-N - 5.358(mg/l) 4.632(mg/l)
如上所述,本发明与传统的蒸发设备相比可降低生产蒸发和浓缩干燥设备的成本和本设备的操作成本,从而为用户提供经济效益。本设备还可保持其经过改进的性能,以致本设备可以以低成本制备良好的蒸馏水并广泛用于有毒废水和环境污染废水的蒸发和浓缩干燥,以及废弃泥浆的蒸发、浓缩和干燥。其次,本发明设备的热量回收装置可回收蒸气加热能量,此能量曾由锅炉的加热装置施用于蒸气以便把蒸气加热到某一高温并除掉充斥在蒸气中的诸如气味、B.O.D.和C.O.D.等各种杂质。回收的能量重新用于预热新送进热量回收装置的蒸气。就此而论,本发明设备所节省的加热能量数量等于用于预热热量回收装置中蒸气的回收能量。
尽管本发明各项优选实施例已经为说明目的而予以披露,但是本技术领域的熟练人员应当理解,在不背离所附各项权利要求所阐明的、本发明的范畴和精神的条件下,各种各样的改变、附加和代换都是可能的。