分流立式氨转换器 【技术领域】
本发明涉及对于含有氮和氢的气态供料流进行催化反应以便产生氨的氨转换器。
背景技术
已经开发出的精心设计和先进的反应器结构用于在固定催化床中转化气相的氮和氢以便形成氨。该结构试图优化气流与催化剂容积单元的比例以便使得催化剂的效率最大。即使如此,始终希望降低反应器相对于氨产量的尺寸。该反应器的尺寸当然对于其成本具有影响。
由于通过氮和氢气体合成氨是在高的温度和压力下进行的反应,所以氨转换器是复杂的。因此,通常在一系列催化区域之间使用级间冷却,从而保持适于最佳转化效率的动态和平衡的条件。同样必须提供用于维护催化区域的措施,例如催化剂失去其有效性时周期地去除和更换催化剂。
在氨转换器结构中使用径向流动和混合的轴向流动地配置已经变成立式氨转换器的标准。但是这些结构通常需要干舷或不起作用的催化剂容积单元。这些结构同样可使得催化剂加载和去除复杂化,并需要在结构上注意以便避免径向流动催化剂容积单元的上端处可能出现的催化剂流化。
【发明内容】
本发明针对立式固定床氨转换器,其中固定床催化剂区域构造成两个机械分开的催化剂容积单元和两个平行操作的气流。该结构在整个床上保持所述气流与催化剂容积单元的比例,与垂直径向流动的结构相比,没有催化剂有效性的损失。由于两个催化剂容积单元可最佳地布置在反应器外壳内,本发明可以降低反应器的尺寸。催化剂床和气流路径构造成使得气流向下流过每个催化剂容积单元,因此消除不起作用的催化剂容积单元和可能的催化剂的流化。该结构有助于现有技术的立式径向固定床氨转换器中常用的热交换器和催化剂床进行常规现有技术的对中。
本发明的每个固定床催化剂区域最好将催化剂保持在两个同心罩之间形成的空间内,该同心罩围绕管壳式热交换器布置。与每个区域相关联的两个催化剂床沿内部热交换器的长度上下布置。在优选的分流结构中,管道或导管布置通过该床以便实现平行的气流构形。在另一优选实施例中,通过经过包括催化剂床的内罩的通道形成环形流动。
在一个实施例中,本发明提供一种立式氨转换器,其包括具有直立圆柱形外壳的容器和多个在容器中垂直间隔开的固定床催化剂区域,该多个催化剂区域包括最上方和最下方催化剂区域和至少一中间催化剂区域。至少该最上方和中间催化剂区域围绕各自的管壳式热交换器同心布置,以便对于来自催化剂区域的流出气体进行级间冷却。磁铁催化剂布置在最上方的催化剂区域内,并且高活性催化剂布置在中间和最下方催化剂区域内。至少中间催化剂区域包括至少两个机械分开的催化剂床,该催化剂床相互垂直布置并构造成在至少两个催化剂床之间平行向下分流气流。
最下方催化剂区域最好具有至少两个机械分开的催化剂床,该催化剂床相互垂直布置并构造成在至少两个催化剂床之间平行向下分流气流。该容器外壳最好沿催化剂区域的长度具有大致一致的直径以有助于制造。立式氨转换器最好包括多个通过每个各自催化剂床以便实现平行气流分流的导管或围绕每个催化剂床以便实现该分流的环形流动通道。
在另一实施例中,氨转换器包括直立的圆柱形外壳和至少一个在该外壳内布置在上气体入口区域和下气体出口区域之间的固定床区域。该固定床区域具有上和下催化剂容积单元,其构造用于平行流过每个催化剂容积单元的向下气流。用于催化剂容积单元的环形壳体通过围绕管壳式热交换器的内和外同心罩形成。环形壳体内的分隔板布置在上催化剂容积单元和下催化剂容积单元之间。上排出增压通道形成在分隔板和上催化剂容积单元之下的催化剂支承件之间。中间入口增压通道形成在分隔板和下催化剂容积单元之间。气体旁路设置用来将来自气体入口区域的向下气流的一部分通过上催化剂容积单元分流到下催化剂容积单元之上的中间入口增压通道。在下催化剂容积单元的下端处有位于催化剂支承件之下的下排出增压通道。排出通道与每个上和下排出增压通道以及通向热交换器的外壳侧部流体入口之间流体连通。通向热交换器的外壳侧部流体出口与气体出口区域流体连通。当希望使用氨转换器时,催化剂容积单元填充适当的氨转化催化剂。
气体旁路最好包括通过上催化剂容积单元和上排出增压通道的第一组管。第二组管可通过中间入口增压通道和下催化剂容积单元,并在上和下排出增压通道之间连通。外罩可从固定在外壳和外罩上端之间的倒转的支承锥体悬置。排出通道可包括在内罩和具有更大直径的同心中间罩之间的环形通道。
作为选择,气体旁路最好包括外罩和外壳之间的环形通道和多个位于外罩内并进入中间入口的开口。外罩可支承在固定在外壳和外罩下端之间的支承锥体上。排出通道可包括内罩和具有更大直径的同心中间罩之间的环形通道。多个开口可形成在上排出增压通道和排出通道之间的中间罩内。固定床区域最好构造成通过支承锥体连接在外壳上模块化的预制组件。
【附图说明】
图1是按照本发明一个实施例的分流固定床立式氨转换器的局部截面示意图,其表示在催化剂区域内催化剂容积单元之间分流气流的管道的使用;
图2是按照本发明另一实施例的分流固定床立式氨转换器的局部截面示意图,其表示在催化剂区域内催化剂容积单元之间分流气流的环形通道的使用;
图3是按照本发明另一实施例的立式氨转换器的局部截面示意图,其表示传统上部床之下的多个平行分流固定床催化剂区域。
【具体实施方式】
参考附图,附图中相同参考标号用来表示类似部件。图1表示布置在按照本发明的一个实施例的氨转换器的垂直外壳102内的催化剂区域100,设置人孔104、106以便在各自气体入口区域108和气体出口区域110处操作。
壳体112同心地围绕管壳式热交换器114布置,壳体112具有内和外同心罩116、118。中间罩140布置在内罩116的外部。罩118、140布置在环形上和下催化剂容积单元120、122的任一侧上。如这里所使用的那样,术语“催化剂容积单元”指的是用来包括氨转化催化剂的空间,而不管它实际包括催化剂还是仍未填充催化剂。环形分隔板124布置在催化剂容积单元120、122之间。每个催化剂容积单元120、122之下的催化剂支承件126、127由金属网、成形金属丝网筛(例如商品名称Johnson Screen)、或本领域公知的支承固定催化剂床的其他结构制成。类似的网筛128、129布置在每个催化剂床120、122的顶部。每个催化剂容积单元120、122最好具有大致相同的体积,即大致相同的内直径、外直径和深度,以便对于供应到每个催化剂床的相同量的气体进行大致相同程度的氨转化处理,将在下面详细说明。
环形上排出增压通道130形成在分隔板124和催化剂支承件126之间。环形下排出增压通道132类似地形成在催化剂支承件127和壳体112的环形底板134之间。环形中间入口增压通道136形成在分隔板124和下催化剂容积单元122的上端之间。
环形排出通道138形成在内罩116和从中向外间隔开的同心中间罩140之间。在中间罩140的下端和底板134之间有用于气体的通道。通向热交换器114上端的外壳侧部流体入口142通过在内罩116的上端处开孔形成。
第一组管道144布置通过上催化剂容积单元120和分隔板124。第二组管道146布置通过分隔板124和下催化剂容积单元122。如果需要,管道144、146可以圆形形式均匀隔开地布置,但每组需要提供大致相同的截面流动区域和水力半径,以有助于供应到每个催化剂容积单元的气体进行均匀的50-50分流。如果需要,通过使用适当的直径以减少表面面积并获得适当的热传递系数(即壁厚、双管道构造和/或绝缘),使得可以减少传递到管道144、146内气体的任何热量。其中该热量传递显著到足以加热通过管道144和/或146的气体,上和/或下催化剂容积单元120、122的深度可略微进行调整以便补偿。
对于了解现有技术径向流动氨转换器中采用的类似级间热交换器的人们可以了解热交换器114。外壳通过内罩116形成。管148的任一端支承在各自入口和出口封头154、156处的管板150、152上,并通过传统挡板157。通常包括供料气体的冷却流体通过连接到入口封头154上的入口管道158引入。入口封头154最好具有小于内罩116外直径的外直径以便提供环形通道,使得冷却的外壳侧部气体进入气体出口区域110。出口封头156最好具有大致内罩116外直径的外直径。加热的冷却流体从出口封头156通过出口管道162排空。
中间罩140通过锥形环164支承在出口封头156上。外罩118的上端通过锥形支承环166固定在外壳102上。环164、166将壳体112密封以便防止气体从催化剂区域100旁通。
催化剂以传统方式引入上催化剂床120和/或从中去除。催化剂可通过输入经过管道144的软管(未示出)引入下催化剂床122和/或从中去除。采用可拆卸的顶部保持网筛128有助于催化剂加载,并且提供通过上部床支承网格126和分隔板124的人员通道(未示出)。这使得可以加载下部床,并且安装保持网格129,随后安装人员通道开口内的舱口,加载上部床,并且安装保持网格128。
在图1实施例的一个实例中,外壳102可具有12英尺的内直径,外罩118具有11.5英尺的直径,中间罩140具有5英尺的直径并且内罩116具有4英尺的直径。入口和出口管道158、162可具有12英尺的公称直径,并且管148的长度为12英尺。增压通道130、132、136具有1英尺的高度,并且催化剂支承件126、127和网筛128、129具有大约3英寸的厚度。在此实例中,四个10英寸管道144、146用来通过每个具有3.5英尺深度的床120、122。总的催化剂容积单元是567立方英尺,并且压力降(不包括热交换器)是大约6.7psi。
图2表示与图1实施例类似的催化剂区域200,但它使用外部旁路而不是通过图1的内旁路管道,从而将供料气体供应到下催化剂床122上。外壳102和外罩118之间的环形通道201具有与气体入口区域108流体连通的开口上端部。将壳体112的下端固定在外壳102上的支承锥体202在环形通道201的下端处贴靠气体出口区域110以形成液密密封。多个穿孔204形成在外罩118中以便在环形通道201和中间入口增压通道136之间形成流体连通。多个穿孔206类似地形成在中间罩140中以便形成从出口增压通道130到排出通道138的流体连通。穿孔204、206应该设定尺寸和数量以便与各自流体流动阻力匹配,从而在上和下催化剂床120、122之间提供大致均匀的50-50的分流。
在图2实施例的一个实例中,外壳102可具有12英尺的内直径,外罩118具有11英尺的直径,中间罩140具有5英尺的直径并且内罩116具有4英尺的直径。入口和出口管道158、162可具有12英尺的公称直径,并且管148的长度为12英尺。增压通道130、136具有15英寸的高度,增压通道132具有12英寸的高度,并且催化剂支承件126、137和网筛128、129具有大约3英寸的厚度。每个床120、122具有3.75英尺深度。总的催化剂容积单元是565立方英尺,并且压力降(不包括热交换器)是大约7.6psi。
本发明具有减少主要受限于轴向尺寸的径向热应力的附加优点。本发明还可以进行模块化构造。在图2实施例中,例如,可以接近支承锥体202使得可以采用区域200的机械部件的模块化结构,使得其中没有催化剂的组装后的模块可下降到外壳102内并通过焊接支承锥体202的周边来固定。图1实施例支承在顶部,所以包括罩和交换器管的部件的轴向热彭胀向下进行,并且热彭胀中的任何微小差别在底部得到解决。另外,图1实施例在顶部没有开口空间,该空间在加载或卸载时使得工具、部件、碎片或类似物落入其中。图2结构在容器外壳附近布置环形气流,其结果是反应器的长度减小。
图3表示根据本发明的原理的集成多区域立式氨转换器的实施例。该容器具有直径一致的垂直圆柱形外壳302和传统的拱形顶部和底部封头304、306。第一、第二、第三和第四催化剂区域308、310、312、314在容器内部从顶部到底部垂直间隔开。第一区域308最好包括磁铁催化剂,而其他区域310、312、314最好包括本领域技术人员公知的高活性氨转化催化剂,如美国专利4,055,628;4,122,040和4,163,775所述,这些专利结合于此作参考。与其中外壳内第一催化剂区域周围具有大直径的许多现有技术径向流动氨转换器相比,通过使用直径一致的外壳302便于本发明的制造。
供料气体通过入口喷嘴316引入转换器300的顶部。第一磁铁催化剂区域308最好是传统的径向流动结构并包括第一级间热交换器318和相关的冷却流体入口和出口管道320、322,该管道分别通过外壳302和顶部封头304。第一催化剂床308可通过人孔324维护。
第二、第三和第四催化剂区域310、312和314包括高活性催化剂并通常按照图1所述的结构构造。技术人员将便于理解的是图2的结构可以用作选择。第二和第三催化剂区域310、312与各自级间热交换器326、328,冷却流体入口管道330、332和冷却流体出口管道334、336相关联。由于是终端催化剂区域并不需要在反应器内冷却,第四催化剂区域314最好不与级间冷却器相关联,但如果需要可以与同心热交换器(未示出)相关联。人孔338、340、342设置在每个催化剂区域310、312、314之上以便催化剂的添加和/或去除,以及其他的维护。
本发明通过以上说明书和实例进行说明。本领域普通技术人员将在所述实施例的启发下进行不同的变型和改型。所有的这些变型和改型将包括在所附权利要求限定的范围和精神内。