用于微/纳米焊接的一维锡银二元纳米焊料.pdf

上传人:1** 文档编号:4855986 上传时间:2018-11-18 格式:PDF 页数:14 大小:557.46KB
返回 下载 相关 举报
摘要
申请专利号:

CN201310249805.5

申请日:

2012.05.16

公开号:

CN103406685A

公开日:

2013.11.27

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):B23K 35/24申请日:20120516|||公开

IPC分类号:

B23K35/24; B23K35/40; B23K1/00

主分类号:

B23K35/24

申请人:

兰州大学

发明人:

彭勇; 张宏; 贝芙莉·尹格申; 托尼·卡力斯

地址:

730000 甘肃省兰州市天水南路222号

优先权:

2011.11.02 CN PCT/CN2011/001845

专利代理机构:

江阴市永兴专利事务所(普通合伙) 32240

代理人:

达晓玲;施光亚

PDF下载: PDF下载
内容摘要

本发明涉及焊料材料领域,尤其是涉及用于微/纳米焊接的一维锡银二元纳米焊料。本发明还公开该焊料的焊接工艺。用于微/纳米焊接的一维锡银二元纳米焊料,一维纳米焊料是含Sn的直径为3纳米~400纳米的合金纳米线,所述的一维纳米焊料的成份为SnyAg100-y的合金纳米线,其中100>Y>0,其最佳成分为99>Y≥50。本发明焊料的合金体系具有:熔点低,电导率、热导率好,毒性低,使用时无需惰性气体保护,与多数焊接母体浸润性和扩散性好。

权利要求书

权利要求书
1.   用于微/纳米焊接的一维锡银二元纳米焊料,其特征是:一维纳米焊料是含Sn的直径为3纳米~400纳米的合金纳米线,所述的一维纳米焊料的成份为SnyAg100-y的合金纳米线,其中100>Y>0。

2.   权利要求1所述的用于微/纳米焊接的一维锡银二元纳米焊料,其特征是:99>Y≥50。

3.   权利要求1或2所述的用于微/纳米焊接的一维锡银二元纳米焊料的制备方法,其特征在于:首先用孔径为3~400纳米、厚度为10纳米~150微米的微孔材料为模板,在与所制备的焊料成份相应的金属离子电解液中通过电化学方法在模板的纳米孔内沉积相应的金属线或合金线,然后用可溶解模板材料而不能溶解处于模板材料纳米孔内的合金的溶液将模板材料溶解,使位于模板纳米孔中的金属纳米线或合金纳米线释放出来分散到溶液中,再通过清洗和过滤除掉体系中的各种盐成分后,将金属纳米线或合金纳米线分散到去离子水中。

4.   权利要求3所述的用于微/纳米焊接的一维锡银二元纳米焊料的制备方法,其特征在于:所述的模板为阳极氧化铝,进行电化学沉积作业前先去除阳极氧化铝模板表面的障壁层,并在模板表面沉积一层铜或银或金或铂或其它的任意导电金属作为电极导电层;在进行电沉积作业时,在两电极体系中以阳极氧化铝模板为阴极,用石墨电极为阳极,在三电极体系中以阳极氧化铝模板为工作电极,用铂或金或石墨电极为对电极,任何标准电极作为参考电极;溶解模板的溶液为氢氧化钠或氯化铜水溶液。

5.   权利要求3所述的用于微/纳米焊接的一维锡银二元纳米焊料的制备方法,其特征在于:所述的模板为聚碳酸脂,进行电化学沉积作业前先在模板表面沉积一层铜或银或金或铂或其它的任意导电金属作为电极导电层,进行电沉积作业时,在两电极体系中以聚碳酸脂模板为阴极,用石墨电极为阳极,在三电极体系中以聚碳酸脂模板为工作电极,用铂或金或石墨电极为对电极,任何标准电极作为参考电极;溶解模板的溶液为氯仿或其他可溶解聚碳酸脂的有机溶液。

6.  权利要求1或2所述的用于微/纳米焊接的一维锡银二元纳米焊料的焊接工艺,其特征在于:将一维纳米焊料用纳米控制器提取,放置于需要焊接部位;纳米控制器紧密连接于一维纳米焊料两端,接通电源,一维纳米焊料电学熔解;焊接部位冷却,接成整体。

说明书

说明书用于微/纳米焊接的一维锡银二元纳米焊料
本发明属于申请号为201210150049.6的分案申请,原申请的申请日为2012年5月16日,发明名称为用于微/纳米尺度焊接的一维纳米焊料及其制备方法。
技术领域           
本发明涉及焊料材料领域,尤其是涉及用于微/纳米焊接的一维锡银二元纳米焊料。
背景技术    
随着目前纳米材料研究的深入发展,人们已经能够轻易通过各种物理、化学或生物等办法制备出千千万万种纳米材料,然而利用现代焊接技术却无法直接在纳米尺度上将这些制备的单个纳米材料或纳米器件单元焊接到一起,连接成各种具有特种功能及作用的纳米电子器件、传感器、装置、设备和工具等。原因是现代焊接技术中焊接工艺所用焊接工具和焊料远大于纳米材料尺寸,无法彻底覆盖纳米焊接母体,尺寸上完全也无法匹配。目前,现代焊接技术,能在纳米空间将纳米尺度的单体材料或器件单元等焊接到一起的各种纳米焊接技术还严重缺乏。这也是为什么到今天纳米科技并没有如人们在十年前所预期的大规模地投入实际应用的一个根本原因。
现阶段许多纳米科技研究只是简单地使用如扫描探针显微镜技术、由底到上的生长技术将单个或阵列纳米材料放到一起,这与焊接而成牢靠结实能长期有效的联结点是有本质区别的。简单地将纳米材料放到一起并不能形成可靠、稳定和长寿命真正有实际用处的纳米器件。因此,最近几年,纳米焊接相关的研究工作开始受到了研究人员的重视,成为纳米研究中一个新兴的研究分支。主要的研究工作包括纳米焊料的制备,纳米焊接技术的开发,纳米焊接机理(如同质、异质材料间浸润及扩散机制)等。它是人们研发和制造许多纷繁复杂的多功能纳米电子传感器和器件的基础和关键技术保障。从某种意义上说,它的研究和进一步发展,能真正推动纳米研究全面地从纳米材料的研究提升到纳米科技的层次。
目前,已有几种纳米焊接技术,如聚焦离子束焊接、高能电子束辐照 、超声波辐射、激光焊接以及纳米电学焊接技术,被研究出来焊接单个微/纳米单体。其中,前三种焊接技术由其技术本身决定了其局限性。聚焦离子束焊接中离子束注入要焊接的纳米母体或纳米图案中时会引起材料改性,如物相、成分结构等性质改变;高能电子束辐照焊接技术目前只能是在透射电子显微镜下进行且焊接速度慢、存在大量的无定形碳污染,暂时只能用于科学研究;超声波辐射焊接技术无法做到微/纳区域定位。因此,在可见的将来,这三种焊接技术很难能真正用于纳米科技工业生产。激光焊接技术焊接速度快,很容易实现自动化,生产效率极高。但是,就目前的技术水平,激光光斑目前通常至少是微米尺度,激光能量会影响纳米焊接点以外的辐照区域,引起纳米器件发生变形或功能失效,严重影响它的实用化。
纳米电学焊接技术是将电流引入造成焊接部位纳米区域熔化而将纳米母体或纳米图案等焊接到一起。目前主要有两种工艺。一种是将电流通过纳米焊接母体或纳米结构等,但这种方法在用于小于100纳米的金属线时有很大的问题,由于这些小纳米尺度材料活性高、表面张力大等原因,在纳米焊点熔化的同时纳米结构也被熔断,无法焊接到一起。同时只能焊接能导电的纳米焊接母体或纳米结构。另一种是,将纳米焊料输送至纳米焊接部位,然后将电流通过并只熔化纳米焊料。由于电流只通过纳米焊料,不通过纳米焊接母体或纳米结构,因此不会损伤或污染纳米焊接母体或纳米结构,能即时进行焊接质量检查和焊料残渣清理,整个过程非常快速、简单、干净。同时,焊点牢靠、结实,纳米焊料可因纳米焊接母体随意选择,纳米焊接母体或纳米结构无需导电,能广泛应用于同质、异质材料焊接。输送纳米焊料的方法主要是使用电子显微镜原位纳米机器人,因此能精确定位。随着纳米机器人的进一步发展,这一焊接技术非常有可能真正成为能用于实际纳米工业生产的焊接技术。
纳米焊料的制备和焊接技术是纳米研究能提升到纳米科技水平,并真正能用于大规模地投入实际应用的根本和关键所在,是目前纳米研究必然要发展的研究领域。它能将通过不同的物理、化学或生物等办法制备出各种各样的单个纳米材料或纳米器件单元就能用纳米机器人组装成人们所期望的结构或图案,并进一步使用各种纳米焊接技术将它们转变为真正意义上的多功能纳米器件、传感器或装置,成几何级的数量扩展半导体技术和化学/生物自组装技术制备不了的特种多功能纳米器件、传感器或装置。随着这一技术的发展和成熟,将能为全世界广大无法使用或接触半导体微/纳加工实验室的研究人员提供一条低投入却能制备更广泛类型的多功能纳米器件、传感器组装的途径。同时,由于这一技术使用扫描电镜或透射电镜为眼睛,在真空环境下,能实时、原位、动态地将整个纳米焊料熔化、与纳米焊接母体润湿、覆盖、扩散和凝固的过程全程一览无遗地展现在人们的眼前,并能对各个过程进行即时的形貌、结构、成分、元素分布性质的分析测试,能够帮助人们直接、直观地了解和掌握纳米焊接机理和机制。这对于我国用于外太空空间站建设和太空飞行工具应急修补等的真空焊接技术有着重要的意义。
因此,继续研究使用电子显微镜原位纳米机器人为工具的纳米焊料具有极其重要的意义和紧迫性。一方面,纳米焊料要具备传统焊料的基本要求如低的熔化温度,优良的力学性能、可焊性、润湿性和稳定性。而另一方面,所制备的纳米焊料要与被焊纳米材料尺寸匹配,即能在纳米尺度进行焊接且不损毁纳米件。但就目前技术而言,符合上述要求的纳米焊料研究很少。
目前报道的文献来看,最常见的纳米焊料由金属纳米粒子组成,包括复合焊料和纯纳米焊料:复合焊料是在传统粒径为微米级的焊料中加入一定量的纳米粒子,使焊料的力学及物理性能改善;纯纳米焊料的粒径全部是纳米级。这种由金属纳米粒子组成的纳米焊料制备方法有两类:一种是自上至下加工方法,包括机械粉碎、电火花爆炸等方法;另一种是自下至上加工方法,包括气相沉积法、沉淀法、溶胶凝胶法、徽乳液法。最后通过低温烧结制得纳米焊料。但这种焊料只能用于微米尺度,不能用于纳米尺度进行焊接。因此,并不是真正的“纳米焊料”。
例如中国发明专利申请200680022890.X公开的“电迁移抗性和顺应导线互连、纳米焊料成分、由其制成的系统以及组装焊接封装的方法”所公开的纳米金属微粒成分包括具有大约50纳米或者更小的微粒大小的第一金属。导线互连与回流纳米焊料接触,并且具有与回流纳米焊料相同的金属或合金成分。还公开了采用回流纳米焊料成分的微电子封装。一种组装微电子封装的方法包括制备导线互连模板。计算系统包括与导线互连耦合的纳米焊料成分。
发明内容    
本发明提供用于微/纳米焊接的一维锡银二元纳米焊料及其制备方法,本发明还公开该焊料的焊接工艺。
用于微/纳米焊接的一维锡银二元纳米焊料,一维纳米焊料是含Sn的直径为3纳米~400纳米的合金纳米线,所述的一维纳米焊料的成份为SnyAg100-y的合金纳米线,其中100>Y>0,其最佳成分为99>Y≥50。
本发明所述的用于微/纳米焊接的一维锡银二元纳米焊料的制备方法,首先用孔径为3~400纳米、厚度为20纳米~150微米的微孔材料为模板,在与所制备的焊料成份相应的金属离子电解液中通过电化学方法在模板的纳米孔内沉积相应的金属线或合金线,然后用可溶解模板材料而不能溶解处于模板材料纳米孔内的合金的溶液将模板材料溶解,使位于模板纳米孔中的金属纳米线或合金纳米线释放出来分散到溶液中,再通过清洗和过滤除掉体系中的各种盐成分后,将金属纳米线或合金纳米线分散到去离子水中备用。
所述的模板为阳极氧化铝。在进行电化学沉积作业前先用0.01~1摩尔每升的磷酸除去阳极氧化铝模板表面的障壁层,然后在模板表面沉积一层铜或银或金或铂或其它的任意导电金属作为电极导电层;进行电沉积作业时,在两电极体系中以阳极氧化铝模板为阴极,用石墨电极为阳极,在三电极体系中以阳极氧化铝模板为工作电极,用铂或金或石墨电极为对电极,任何标准电极作为参考电极,溶解模板的溶液为的氢氧化钠或氯化铜水溶液,例如;溶解模板的溶液可以用1摩尔每升(mol/L)或2mol/L的氢氧化钠,或者用5 mol/L氯化铜水溶液,当然也可以使用其他浓度的氢氧化钠溶液或其它浓度的氯化铜水溶液。
所述的模板为聚碳酸脂,电沉积作业前应先在模板表面沉积一层铜或银或金或铂或其它的任意导电金属作为电极导电层,进行电沉积作业时,在两电极体系中以聚碳酸脂模板为阴极,用石墨电极为阳极,在三电极体系中以聚碳酸脂模板为工作电极,用铂或金或石墨电极为对电极,任何标准电极作为参考电极,溶解模板的溶液为氯仿或其他可溶解聚碳酸脂的有机溶液,例如次甲基氯或甲叉二氯或亚甲基氯或四氯化碳或三氯乙烯或四氢呋喃等。
所述的用于微/纳米尺度焊接的一维锡银二元纳米的焊接工艺:将一维纳米焊料用纳米控制器提取,放置于需要焊接部位;纳米控制器紧密连接于一维纳米焊料两端,接通电源,一维纳米焊料电学熔解;焊接部位冷却,接成整体。
上述的焊料制备方法中在模板上沉积电板导电层的方法可以是电镀,也可以是蒸镀,或者真空溅射,或者采用其他已知的办法。
本发明焊料的合金体系具有:熔点低,电导率、热导率好,毒性低,使用时无需惰性气体保护,与多数焊接母体浸润性和扩散性好,焊接后焊接部位具有很高的抗氧化性,且导电和导热性能优良,几乎可以永久保持的优点。而且本发明的焊料直径保证了在微米和纳米尺度的焊接要求,但在微米尺度或纳米尺度的焊接成为现实。
本发明的制备方法可以制备出直径为数纳米至数纳米合金焊料,可保证所制备的焊料直径在微米和纳米尺度要求,而这一点是现有技术所无法实现的。
附图说明    
附图1为本发明的一维Sn78Ag22纳米线焊料形貌;
附图2为本发明的一维Sn50Au50 纳米线焊料形貌;
附图3为本发明的一维锡金纳米线焊料能量散射谱;
附图4为本发明的一维Sn18Ag2 Cu80纳米线焊料形貌;
附图5为本发明的一维Sn18Ag2 Cu80纳米线焊料成份研究能量散射谱;
附图6为使用本发明的制备的150纳米直径的Sn99Au1纳米线焊料焊接50纳米直径金纳米线组成的“人”字形纳米图案过程;
附图7为使用本发明的制备的纳米焊料焊接同质材料后的纳米焊接质量检测;
附图8为本发明的一维金属纳米线——纯锡纳米线焊料形貌;
附图9为本发明的一维金属纳米线——纯金纳米线焊料形貌;
附图10为本发明的一维Sn96.5Ag3.5纳米线焊料形貌。
具体实施方式
以下结合附图,对本发明的技术方案作进一步阐述。
附图1(a)为用自制的多孔阳极氧化铝模板合成的Sn78Ag22 纳米线焊料扫描电镜(SEM)形貌图,纳米线直径为50纳米,长度约为50微米;(b) 用商用聚碳酸酯模板合成的Sn78Ag22 纳米线焊料扫描电镜(SEM)形貌图,纳米线直径为80纳米,长度约为10微米;(c)单根Sn78Ag22 纳米线焊料透射电镜 (TEM)形貌图;(d) 多根Sn78Ag22 纳米线焊料扫描透射电镜(STEM)形貌图。
附图2为本发明的一维Sn50Au50 纳米线焊料形貌:(a)用自制的多孔阳极氧化铝模板合成的Sn50Au50 纳米线焊料扫描电镜(SEM)形貌图,纳米线直径为45纳米,长度约为15微米。(b) 用商用聚碳酸酯模板合成的Sn30Au70 纳米线焊料透射电镜(TEM)形貌图,纳米线直径为80纳米,长度约为10微米。
附图3为本发明的一维锡金纳米线焊料能量散射谱:(a)定量分析结果为Sn:Au=50:50焊料谱图;(b)定量分析结果为Sn:Au=30:70焊料谱图;(c)定量分析结果为Sn:Au=95:5焊料谱图;(d)定量分析结果为Sn:Au=90:10焊料谱图。
附图4为本发明的一维Sn18Ag2 Cu80纳米线焊料形貌:(a)用商用聚碳酸酯模板合成的Sn18Ag2 Cu80纳米线焊料扫描电镜(SEM)形貌图,纳米线直径为80纳米,长度约为10微米。(b)用自制的多孔阳极氧化铝模板合成的Sn50Au50 纳米线焊料透射电镜(SEM)形貌图,纳米线直径为70纳米,长度约为7微米。
附图5为本发明的一维Sn18Ag2 Cu80纳米线焊料成份研究能量散射谱,定量分析结果为Sn:Ag:Cu=18:2:80。
附图6为使用本发明的制备的150纳米直径的Sn99Au1纳米线焊料焊接50纳米直径金纳米线组成的“人”字形纳米图案过程:(a)使用纳米操控器提取55纳米金纳米线、组装未连成一体的“人”字形纳米图案扫描电镜(SEM)图;(b)纳米控制器提取单根150纳米Sn99Au1纳米线焊料放置于待焊接部位,并将纳米探针紧密搁置于一维纳米焊料两端SEM图;(c)连通电源,使Sn99Au1纳米线焊料通过120%最大承受电流而快速电学熔解,熔融纳米焊料冷却凝固后将分立的“人”字焊接成高导电性整体SEM图。
附图7为使用本发明的制备的纳米焊料焊接同质材料后的纳米焊接质量检测:(a),(b)同质母体金纳米线焊接到一起;(c),(d),(e)实时、原位焊接点焊接质量力学强度检测;(f)透射电子显微镜纳米焊接点微/纳结构检测。
附图8为纯锡纳米线焊料形貌,(a):扫描电镜照片;(b):扫描透射电子显微镜照片;(c):x射线电子能量色散谱测定结果,显示为纯锡成份。
附图9为纯金纳米线焊料形貌,(a):扫描电镜照片;(b):透射电子显微镜照片;(c):x射线电子能量色散谱测定结果,显示为纯金成份;(d):金纳米线作为焊料放置于排布好的纳米图案待焊接部位;(e):通电后待焊接部位被焊接到一起的扫描电镜照片。
附图10为Sn96.5Ag3.5纳米线焊料形貌,(a):扫描电镜照片;(b):透射电子显微镜照片;(c):x射线电子能量色散谱测定结果,显示为Sn96.5Ag3.5成份。
实施例1—Sn78Ag22纳米线焊料的制备
1a)模板的选用:采用孔径为3~400纳米,厚度为10纳米~150微米的阳极氧化铝为模板,这一氧化铝可使用商用产品,如果购置商用多孔氧化铝有困难可以自行制备,具体制备方法在现有技术中有报道。
1b)电镀液的配制:0.18 mol/L甲基磺酸亚锡 + 0.001mol/L 碘化银 + 0.60 mol/L 焦磷酸钾 + 2.0 mol/L 碘化钾 + 0.4 mol/L 三乙醇胺 +  5 g/L 抗坏血酸+  1g/L 对苯二酚。
1c)电化学沉积:
使用已经渡好电极(电极可以是任何如铜、银、金、铂等任何导电金属)的聚碳酸酯模板或多孔阳极氧化铝模板(已经去掉障壁层)为阴极,石墨电极为阳极,在-14V沉积电位下沉积45分钟,制备锡银成份配比为78:22的Sn78Ag22合金纳米线焊料。
最终产物的锡含量可通过改变甲基磺酸亚锡和碘化银相对浓度, 或改变电化学沉积电位(或电流密度)来实现。纳米线长度可通过电化学沉积时间改变。
1d)制品的收集:
将电镀形成的其孔洞内含有锡基纳米线的聚碳酸酯模板用氯仿溶解,锡基纳米线自动分散到氯仿中。进一步使用小于所制纳米线直径的多孔阳极氧化铝膜过滤装置过滤、清洗掉溶解掉的聚碳酸酯,清洗好的锡基纳米线可离散到硅片等基底上固态保留存放、或再次分散到纯氯仿中保留存放,用于下一步纳米焊接使用。
使用阳极氧化铝模板制备的锡基纳米线采用 0.1mol/L 到5mol/L 氯化铜水溶液溶解12 小时,待阳极氧化铝模板溶解,使用小于所制纳米线直径的多孔聚碳酸酯膜过滤装置过滤、清洗掉氯化铜和铝酸盐,清洗好的锡基纳米线可离散到硅片等基底上固态保留存放、或再次分散到纯氯仿中保留存放,用于下一步纳米焊接使用。
锡基纳米线分散到水溶液后,在具体使用中可视样品所需量,取30 微升左右溶液分散到硅片。在1cm×1cm 面积的硅片约有几十万到几百万根纳米线,可由需要而控制纳米线分散数量。
1e)制品的表征
制备的Sn78Ag22 纳米线焊料的形貌,晶体结构和化学成分/组分利用扫描电子显微镜(SEM)(日立S - 4800,日本)和高分辨透射电子显微镜(HRTEM)(TecnaiTM G2 F30,FEI,USA)的多种功能进行了测量表征。图1展示的是有代表性的Sn78Ag22 纳米线焊料形貌研究结果。图1中的纳米线使用自制的阳极氧化铝模板合成,其中阳极氧化铝模板被彻底清理,Sn78Ag22 纳米线长在金电极衬底上,金衬底上每一个亮点都是一个纳米线生长点。图1a中纳米线直径为50纳米,长度约为50微米。纳米线直径、长度尺度均匀。图1b显示的是已经分散到硅片上的Sn78Ag22 纳米线,纳米线用商用聚碳酸酯模板制备而成,纳米线直径为80纳米,长度约为10微米。图1c显示的是单根Sn78Ag22 纳米线焊料透射电镜 (TEM)形貌图。图1d是多根Sn78Ag22 纳米线焊料扫描透射电镜(STEM)形貌图。从图中可以看出纳米线直径、长度尺寸均匀,但纳米线呈现圆锥形,顶端处直径80纳米,底端处直径170纳米,体现了聚碳酸酯模板孔洞本身形状。
 
实施例2—SnxAuy纳米线焊料的制备
2a)模板的选用:
同上
2b)电镀液的配制:
两种电镀液可以使用:
电镀液1: 100 g/L 三柠檬酸铵 + 5 g/L 氯化金 + 9 g/L 氯化锡 + 60 g/L 亚硫酸钠 + 10 g/L 明胶 + 5 g/L 抗坏血酸
电镀液2:0.5 mol/L 氯化锡+ 5 g/L氯化金 + 10 g/L 明胶 + 5 g/L 抗坏血酸 + 0.01 mol/L 盐酸
2c)电化学沉积:
使用商用电化学工作站,采用三电极体系,使用已经渡好电极(电极可以是任何如铜、银、金、铂等任何导电金属)的聚碳酸酯模板或多孔阳极氧化铝模板(已经去掉障壁层)为工作电极,Ag/AgCl或Hg/HgCl2电极为参考电极,铂电极为对电极,相比参考电极-1800mV沉积电位,使用上述两种电镀液之一,沉积45分钟或1小时,制备锡金成份配比为50:50的Sn50Au50合金纳米线焊料。终产物的锡含量可通过改变氯化锡和氯化金相对浓度,或改变电化学沉积电位(或电流密度)来实现。纳米线长度可通过电化学沉积时间改变。
2d)制品的收集:
同上述锡银纳米线焊料收集方式一样。
2e)制品的表征
图2展示通过上述三电极体系制备出的锡金纳米线焊料形貌研究结果。图2a是自制的多孔阳极氧化铝模板合成的纳米线焊料扫描电镜(SEM)形貌图,直径为45纳米,长度约为15微米。成份研究结果显示锡金比例为50:50(如3a所示)。图2b是用商用聚碳酸酯模板合成的纳米线焊料透射电镜形貌图,直接为80纳米,长度约为10微米。成份研究结果显示锡金比例为70:30(如图3b所示)。与此同时,也制备了其他成份配比的锡金纳米线焊料,图3c所示为锡金比例为95:5纳米线焊料能量散射谱实验结果,图3d所示为锡金比例为90:10纳米线焊料能量散射谱实验结果。元素分析结果进一步采用电子能量损失谱研究技术得到了证实。
实施例3—Sn18Ag2 Cu80纳米线焊料的制备
3a)模板的选用:
同上
3b)电镀液的配制:
0.18 mol/L甲基磺酸亚锡 + 0.001 mol/L 碘化银 + 0.5 mol/L 硝酸铜+ 0.60 mol/L 焦磷酸钾 + 2.0 mol/L 碘化钾 + 0.4 mol/L 三乙醇胺 +  5 g/L 抗环血酸 +  1 g/L 对苯二酚。
3c)电化学沉积:
使用商用电化学工作站,采用三电极体系,使用已经渡好电极(电极可以是任何如铜、银、金、铂等任何导电金属)的聚碳酸酯模板或多孔阳极氧化铝模板(已经去掉障壁层)为工作电极,Ag/AgCl或Hg/HgCl2电极为参考电极,铂电极为对电极,相比参考电极-1800mV沉积电位,使用上述两种电镀液之一,沉积45分钟或1小时,制备锡银铜金成份配比为18:2:80的Sn18Ag2Cu80合金纳米线焊料。终产物的锡银铜含量可通过改变甲基磺酸亚锡、碘化银和硝酸铜之间相对浓度,或改变电化学沉积电位(或电流密度)来实现。纳米线长度可通过电化学沉积时间改变。
3d)制品的收集:
同上述锡银铜纳米线焊料收集方式一样。
3e)制品的表征
图4通过上述三电极体系制备出的锡金纳米线焊料形貌研究结果。图4a是用商用聚碳酸酯模板合成的纳米线焊料扫描电镜(SEM)形貌图,直径为80纳米,长度约为10微米。图4b是用自制的多孔阳极氧化铝模板合成的纳米线焊料透射电镜(TEM)形貌图,直径为70纳米,长度约为7微米。图5成份研究结果显示锡银铜元素原子数之比为18:2:80。
一维纳米焊料用于实际纳米空间焊接实例
实例1:实际同质焊接
本发明中制备的一维纳米焊料已经实际用于纳米空间纳米图案、原型电子器件的焊接。图6所示使用150纳米直径的Sn99Au1纳米线焊料焊接50纳米直径金纳米线组成的“人”字形纳米图案过程。分散在硅片上的两根55纳米金纳米线被纳米操控器夹取,在干净的硅片上组装成未连接成整体的“人”字型图案(如图6a所示)。本发明中制备的长约1.5微米、直径150纳米专用一维Sn99Au1纳米线焊料随后被纳米控制器提取,放置于需要焊接部位。两个纳米控制器纳米探针紧密连接于一维纳米焊料两端(图6b所示),接通电源,使Sn99Au1纳米线焊料通过120%最大承受电流而快速电学熔解,熔融纳米焊料冷却凝固后如图6c所示将分立的“人”字焊接成高导电性整体。
本发明中制备的一维纳米焊料也实际用于异质纳米线焊接。
焊接质量可以立即使用纳米控制器进行实时、原位、图像化检测。
焊接质量也可以通过原位力学测量进行检测。图7展示的是同质母体金纳米线焊接到一起后,立即使用纳米控制器进行纳米焊点原位力学性质测量及焊接点转移到透射电子显微镜中进一步进行细致为微/纳结构检测的实例。测量结果显示图7中金纳米线的焊接点力学拉伸强度大于110MPa, 杨氏模量大于75GPa,微/纳结构研究显示焊接点已经彻底熔为一体,形成孪晶。
此种是通过电子显微镜原位纳米操纵器(或称,纳米机器人)将一维纳米焊料输送至微/纳米焊接部位,然后将电流通过并只熔化纳米焊料将母材焊接到一起,由于电流只通过纳米焊料,不通过微/纳米焊接母体或微/纳米结构,因此不会损伤或污染微/纳米焊接母体或微/纳米结构。也能即时进行焊接质量检查和焊料残渣清理,整个过程非常快速、简单、干净。同时,焊点牢靠、结实,纳米焊料可因微/纳米焊接母体随意选择,微/纳米焊接母体或纳米结构无需导电,能广泛应用于同质、异质材料焊接。除上述展示的两个实际实施例子,本发明中制备的不同成份、组份的一维纳米焊料锡、锡金、锡银和锡银铜已经通过这中纳米控制器技术在纳米空间上成功地实现了金、铂、铜、镍镉合金、钴铂多层、镍铁多层纳米线不同种的纳米线焊接成特种多功能纳米传感器和电子器件,并将它们焊接到集成电路板电极上。
但是,本发明的焊料不只限于这三种组份的纳米焊料,可以使用任何一维锡基纳米焊料。焊接母体不只限于这六种母体,可以是任何微/纳米尺度的单质、合金或多层金属、电路板电极。

用于微/纳米焊接的一维锡银二元纳米焊料.pdf_第1页
第1页 / 共14页
用于微/纳米焊接的一维锡银二元纳米焊料.pdf_第2页
第2页 / 共14页
用于微/纳米焊接的一维锡银二元纳米焊料.pdf_第3页
第3页 / 共14页
点击查看更多>>
资源描述

《用于微/纳米焊接的一维锡银二元纳米焊料.pdf》由会员分享,可在线阅读,更多相关《用于微/纳米焊接的一维锡银二元纳米焊料.pdf(14页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 103406685 A (43)申请公布日 2013.11.27 CN 103406685 A *CN103406685A* (21)申请号 201310249805.5 (22)申请日 2012.05.16 PCT/CN2011/001845 2011.11.02 CN 201210150049.6 2012.05.16 B23K 35/24(2006.01) B23K 35/40(2006.01) B23K 1/00(2006.01) (71)申请人 兰州大学 地址 730000 甘肃省兰州市天水南路 222 号 (72)发明人 彭勇 张宏 贝芙莉尹格申 托尼卡力。

2、斯 (74)专利代理机构 江阴市永兴专利事务所 ( 普 通合伙 ) 32240 代理人 达晓玲 施光亚 (54) 发明名称 用于微 / 纳米焊接的一维锡银二元纳米焊料 (57) 摘要 本发明涉及焊料材料领域, 尤其是涉及用于 微 / 纳米焊接的一维锡银二元纳米焊料。本发明 还公开该焊料的焊接工艺。用于微 / 纳米焊接的 一维锡银二元纳米焊料, 一维纳米焊料是含 Sn 的 直径为 3 纳米 400 纳米的合金纳米线, 所述的一 维纳米焊料的成份为 SnyAg100-y的合金纳米线, 其 中 100Y0, 其最佳成分为 99Y 50。本发明焊 料的合金体系具有 : 熔点低, 电导率、 热导率好, 。

3、毒性低, 使用时无需惰性气体保护, 与多数焊接母 体浸润性和扩散性好。 (66)本国优先权数据 (62)分案原申请数据 (51)Int.Cl. 权利要求书 1 页 说明书 8 页 附图 4 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书1页 说明书8页 附图4页 (10)申请公布号 CN 103406685 A CN 103406685 A *CN103406685A* 1/1 页 2 1. 用于微 / 纳米焊接的一维锡银二元纳米焊料, 其特征是 : 一维纳米焊料是含 Sn 的直 径为 3 纳米 400 纳米的合金纳米线, 所述的一维纳米焊料的成份为 SnyAg10。

4、0-y的合金纳米 线, 其中 100Y0。 2. 权利要求 1 所述的用于微 / 纳米焊接的一维锡银二元纳米焊料, 其特征是 : 99Y 50。 3. 权利要求 1 或 2 所述的用于微 / 纳米焊接的一维锡银二元纳米焊料的制备方法, 其特征在于 : 首先用孔径为 3400 纳米、 厚度为 10 纳米 150 微米的微孔材料为模板, 在与 所制备的焊料成份相应的金属离子电解液中通过电化学方法在模板的纳米孔内沉积相应 的金属线或合金线, 然后用可溶解模板材料而不能溶解处于模板材料纳米孔内的合金的溶 液将模板材料溶解, 使位于模板纳米孔中的金属纳米线或合金纳米线释放出来分散到溶液 中, 再通过清洗。

5、和过滤除掉体系中的各种盐成分后, 将金属纳米线或合金纳米线分散到去 离子水中。 4. 权利要求 3 所述的用于微 / 纳米焊接的一维锡银二元纳米焊料的制备方法, 其特征 在于 : 所述的模板为阳极氧化铝, 进行电化学沉积作业前先去除阳极氧化铝模板表面的障 壁层, 并在模板表面沉积一层铜或银或金或铂或其它的任意导电金属作为电极导电层 ; 在 进行电沉积作业时, 在两电极体系中以阳极氧化铝模板为阴极, 用石墨电极为阳极, 在三电 极体系中以阳极氧化铝模板为工作电极, 用铂或金或石墨电极为对电极, 任何标准电极作 为参考电极 ; 溶解模板的溶液为氢氧化钠或氯化铜水溶液。 5. 权利要求 3 所述的用。

6、于微 / 纳米焊接的一维锡银二元纳米焊料的制备方法, 其特征 在于 : 所述的模板为聚碳酸脂, 进行电化学沉积作业前先在模板表面沉积一层铜或银或金 或铂或其它的任意导电金属作为电极导电层, 进行电沉积作业时, 在两电极体系中以聚碳 酸脂模板为阴极, 用石墨电极为阳极, 在三电极体系中以聚碳酸脂模板为工作电极, 用铂或 金或石墨电极为对电极, 任何标准电极作为参考电极 ; 溶解模板的溶液为氯仿或其他可溶 解聚碳酸脂的有机溶液。 6. 权利要求 1 或 2 所述的用于微 / 纳米焊接的一维锡银二元纳米焊料的焊接工艺, 其 特征在于 : 将一维纳米焊料用纳米控制器提取, 放置于需要焊接部位 ; 纳米。

7、控制器紧密连 接于一维纳米焊料两端, 接通电源, 一维纳米焊料电学熔解 ; 焊接部位冷却, 接成整体。 权 利 要 求 书 CN 103406685 A 2 1/8 页 3 用于微 / 纳米焊接的一维锡银二元纳米焊料 0001 本发明属于申请号为 201210150049.6 的分案申请, 原申请的申请日为 2012 年 5 月 16 日, 发明名称为用于微 / 纳米尺度焊接的一维纳米焊料及其制备方法。 0002 技术领域 本发明涉及焊料材料领域, 尤其是涉及用于微 / 纳米焊接的一维锡银二元纳米焊料。 0003 背景技术 随着目前纳米材料研究的深入发展, 人们已经能够轻易通过各种物理、 化学。

8、或生物等 办法制备出千千万万种纳米材料, 然而利用现代焊接技术却无法直接在纳米尺度上将这些 制备的单个纳米材料或纳米器件单元焊接到一起, 连接成各种具有特种功能及作用的纳米 电子器件、 传感器、 装置、 设备和工具等。原因是现代焊接技术中焊接工艺所用焊接工具和 焊料远大于纳米材料尺寸, 无法彻底覆盖纳米焊接母体, 尺寸上完全也无法匹配。目前, 现 代焊接技术, 能在纳米空间将纳米尺度的单体材料或器件单元等焊接到一起的各种纳米焊 接技术还严重缺乏。 这也是为什么到今天纳米科技并没有如人们在十年前所预期的大规模 地投入实际应用的一个根本原因。 0004 现阶段许多纳米科技研究只是简单地使用如扫描探。

9、针显微镜技术、 由底到上的生 长技术将单个或阵列纳米材料放到一起, 这与焊接而成牢靠结实能长期有效的联结点是有 本质区别的。简单地将纳米材料放到一起并不能形成可靠、 稳定和长寿命真正有实际用处 的纳米器件。因此, 最近几年, 纳米焊接相关的研究工作开始受到了研究人员的重视, 成为 纳米研究中一个新兴的研究分支。主要的研究工作包括纳米焊料的制备, 纳米焊接技术的 开发, 纳米焊接机理 (如同质、 异质材料间浸润及扩散机制) 等。它是人们研发和制造许多纷 繁复杂的多功能纳米电子传感器和器件的基础和关键技术保障。从某种意义上说, 它的研 究和进一步发展, 能真正推动纳米研究全面地从纳米材料的研究提升。

10、到纳米科技的层次。 0005 目前, 已有几种纳米焊接技术, 如聚焦离子束焊接、 高能电子束辐照 、 超声波辐 射、 激光焊接以及纳米电学焊接技术, 被研究出来焊接单个微 / 纳米单体。其中, 前三种焊 接技术由其技术本身决定了其局限性。 聚焦离子束焊接中离子束注入要焊接的纳米母体或 纳米图案中时会引起材料改性, 如物相、 成分结构等性质改变 ; 高能电子束辐照焊接技术 目前只能是在透射电子显微镜下进行且焊接速度慢、 存在大量的无定形碳污染, 暂时只能 用于科学研究 ; 超声波辐射焊接技术无法做到微 / 纳区域定位。因此, 在可见的将来, 这三 种焊接技术很难能真正用于纳米科技工业生产。激光焊。

11、接技术焊接速度快, 很容易实现自 动化, 生产效率极高。 但是, 就目前的技术水平, 激光光斑目前通常至少是微米尺度, 激光能 量会影响纳米焊接点以外的辐照区域, 引起纳米器件发生变形或功能失效, 严重影响它的 实用化。 0006 纳米电学焊接技术是将电流引入造成焊接部位纳米区域熔化而将纳米母体或纳 米图案等焊接到一起。目前主要有两种工艺。一种是将电流通过纳米焊接母体或纳米结构 等, 但这种方法在用于小于 100 纳米的金属线时有很大的问题, 由于这些小纳米尺度材料 活性高、 表面张力大等原因, 在纳米焊点熔化的同时纳米结构也被熔断, 无法焊接到一起。 同时只能焊接能导电的纳米焊接母体或纳米结。

12、构。另一种是, 将纳米焊料输送至纳米焊接 说 明 书 CN 103406685 A 3 2/8 页 4 部位, 然后将电流通过并只熔化纳米焊料。 由于电流只通过纳米焊料, 不通过纳米焊接母体 或纳米结构, 因此不会损伤或污染纳米焊接母体或纳米结构, 能即时进行焊接质量检查和 焊料残渣清理, 整个过程非常快速、 简单、 干净。 同时, 焊点牢靠、 结实, 纳米焊料可因纳米焊 接母体随意选择, 纳米焊接母体或纳米结构无需导电, 能广泛应用于同质、 异质材料焊接。 输送纳米焊料的方法主要是使用电子显微镜原位纳米机器人, 因此能精确定位。随着纳米 机器人的进一步发展, 这一焊接技术非常有可能真正成为能。

13、用于实际纳米工业生产的焊接 技术。 0007 纳米焊料的制备和焊接技术是纳米研究能提升到纳米科技水平, 并真正能用于大 规模地投入实际应用的根本和关键所在, 是目前纳米研究必然要发展的研究领域。它能将 通过不同的物理、 化学或生物等办法制备出各种各样的单个纳米材料或纳米器件单元就能 用纳米机器人组装成人们所期望的结构或图案, 并进一步使用各种纳米焊接技术将它们转 变为真正意义上的多功能纳米器件、 传感器或装置, 成几何级的数量扩展半导体技术和化 学 / 生物自组装技术制备不了的特种多功能纳米器件、 传感器或装置。随着这一技术的发 展和成熟, 将能为全世界广大无法使用或接触半导体微 / 纳加工实。

14、验室的研究人员提供一 条低投入却能制备更广泛类型的多功能纳米器件、 传感器组装的途径。 同时, 由于这一技术 使用扫描电镜或透射电镜为眼睛, 在真空环境下, 能实时、 原位、 动态地将整个纳米焊料熔 化、 与纳米焊接母体润湿、 覆盖、 扩散和凝固的过程全程一览无遗地展现在人们的眼前, 并 能对各个过程进行即时的形貌、 结构、 成分、 元素分布性质的分析测试, 能够帮助人们直接、 直观地了解和掌握纳米焊接机理和机制。 这对于我国用于外太空空间站建设和太空飞行工 具应急修补等的真空焊接技术有着重要的意义。 0008 因此, 继续研究使用电子显微镜原位纳米机器人为工具的纳米焊料具有极其重要 的意义和。

15、紧迫性。 一方面, 纳米焊料要具备传统焊料的基本要求如低的熔化温度, 优良的力 学性能、 可焊性、 润湿性和稳定性。而另一方面, 所制备的纳米焊料要与被焊纳米材料尺寸 匹配, 即能在纳米尺度进行焊接且不损毁纳米件。 但就目前技术而言, 符合上述要求的纳米 焊料研究很少。 0009 目前报道的文献来看, 最常见的纳米焊料由金属纳米粒子组成, 包括复合焊料和 纯纳米焊料 : 复合焊料是在传统粒径为微米级的焊料中加入一定量的纳米粒子, 使焊料的 力学及物理性能改善 ; 纯纳米焊料的粒径全部是纳米级。这种由金属纳米粒子组成的纳米 焊料制备方法有两类 : 一种是自上至下加工方法, 包括机械粉碎、 电火花。

16、爆炸等方法 ; 另一 种是自下至上加工方法, 包括气相沉积法、 沉淀法、 溶胶凝胶法、 徽乳液法。 最后通过低温烧 结制得纳米焊料。但这种焊料只能用于微米尺度, 不能用于纳米尺度进行焊接。因此, 并不 是真正的 “纳米焊料” 。 0010 例如中国发明专利申请 200680022890.X 公开的 “电迁移抗性和顺应导线互连、 纳 米焊料成分、 由其制成的系统以及组装焊接封装的方法” 所公开的纳米金属微粒成分包括 具有大约 50 纳米或者更小的微粒大小的第一金属。导线互连与回流纳米焊料接触, 并且具 有与回流纳米焊料相同的金属或合金成分。还公开了采用回流纳米焊料成分的微电子封 装。一种组装微电。

17、子封装的方法包括制备导线互连模板。计算系统包括与导线互连耦合的 纳米焊料成分。 0011 发明内容 说 明 书 CN 103406685 A 4 3/8 页 5 本发明提供用于微 / 纳米焊接的一维锡银二元纳米焊料及其制备方法, 本发明还公开 该焊料的焊接工艺。 0012 用于微 / 纳米焊接的一维锡银二元纳米焊料, 一维纳米焊料是含 Sn 的直径为 3 纳米 400 纳米的合金纳米线, 所述的一维纳米焊料的成份为 SnyAg100-y的合金纳米线, 其中 100Y0, 其最佳成分为 99Y 50。 0013 本发明所述的用于微 / 纳米焊接的一维锡银二元纳米焊料的制备方法, 首先用孔 径为 。

18、3400 纳米、 厚度为 20 纳米 150 微米的微孔材料为模板, 在与所制备的焊料成份相应 的金属离子电解液中通过电化学方法在模板的纳米孔内沉积相应的金属线或合金线, 然后 用可溶解模板材料而不能溶解处于模板材料纳米孔内的合金的溶液将模板材料溶解, 使位 于模板纳米孔中的金属纳米线或合金纳米线释放出来分散到溶液中, 再通过清洗和过滤除 掉体系中的各种盐成分后, 将金属纳米线或合金纳米线分散到去离子水中备用。 0014 所述的模板为阳极氧化铝。在进行电化学沉积作业前先用 0.011 摩尔每升的磷 酸除去阳极氧化铝模板表面的障壁层, 然后在模板表面沉积一层铜或银或金或铂或其它的 任意导电金属作。

19、为电极导电层 ; 进行电沉积作业时, 在两电极体系中以阳极氧化铝模板为 阴极, 用石墨电极为阳极, 在三电极体系中以阳极氧化铝模板为工作电极, 用铂或金或石墨 电极为对电极, 任何标准电极作为参考电极, 溶解模板的溶液为的氢氧化钠或氯化铜水溶 液, 例如 ; 溶解模板的溶液可以用1摩尔每升(mol/L)或2mol/L的氢氧化钠, 或者用5 mol/ L 氯化铜水溶液, 当然也可以使用其他浓度的氢氧化钠溶液或其它浓度的氯化铜水溶液。 0015 所述的模板为聚碳酸脂, 电沉积作业前应先在模板表面沉积一层铜或银或金或铂 或其它的任意导电金属作为电极导电层, 进行电沉积作业时, 在两电极体系中以聚碳酸。

20、脂 模板为阴极, 用石墨电极为阳极, 在三电极体系中以聚碳酸脂模板为工作电极, 用铂或金或 石墨电极为对电极, 任何标准电极作为参考电极, 溶解模板的溶液为氯仿或其他可溶解聚 碳酸脂的有机溶液, 例如次甲基氯或甲叉二氯或亚甲基氯或四氯化碳或三氯乙烯或四氢呋 喃等。 0016 所述的用于微 / 纳米尺度焊接的一维锡银二元纳米的焊接工艺 : 将一维纳米焊料 用纳米控制器提取, 放置于需要焊接部位 ; 纳米控制器紧密连接于一维纳米焊料两端, 接通 电源, 一维纳米焊料电学熔解 ; 焊接部位冷却, 接成整体。 0017 上述的焊料制备方法中在模板上沉积电板导电层的方法可以是电镀, 也可以是蒸 镀, 或。

21、者真空溅射, 或者采用其他已知的办法。 0018 本发明焊料的合金体系具有 : 熔点低, 电导率、 热导率好, 毒性低, 使用时无需惰性 气体保护, 与多数焊接母体浸润性和扩散性好, 焊接后焊接部位具有很高的抗氧化性, 且导 电和导热性能优良, 几乎可以永久保持的优点。而且本发明的焊料直径保证了在微米和纳 米尺度的焊接要求, 但在微米尺度或纳米尺度的焊接成为现实。 0019 本发明的制备方法可以制备出直径为数纳米至数纳米合金焊料, 可保证所制备的 焊料直径在微米和纳米尺度要求, 而这一点是现有技术所无法实现的。 0020 附图说明 附图 1 为本发明的一维 Sn78Ag22纳米线焊料形貌 ; 。

22、附图 2 为本发明的一维 Sn50Au50 纳米线焊料形貌 ; 附图 3 为本发明的一维锡金纳米线焊料能量散射谱 ; 说 明 书 CN 103406685 A 5 4/8 页 6 附图 4 为本发明的一维 Sn18Ag2 Cu80纳米线焊料形貌 ; 附图 5 为本发明的一维 Sn18Ag2 Cu80纳米线焊料成份研究能量散射谱 ; 附图 6 为使用本发明的制备的 150 纳米直径的 Sn99Au1纳米线焊料焊接 50 纳米直径金 纳米线组成的 “人” 字形纳米图案过程 ; 附图 7 为使用本发明的制备的纳米焊料焊接同质材料后的纳米焊接质量检测 ; 附图 8 为本发明的一维金属纳米线纯锡纳米线焊。

23、料形貌 ; 附图 9 为本发明的一维金属纳米线纯金纳米线焊料形貌 ; 附图 10 为本发明的一维 Sn96.5Ag3.5纳米线焊料形貌。 具体实施方式 0021 以下结合附图, 对本发明的技术方案作进一步阐述。 0022 附图 1(a) 为用自制的多孔阳极氧化铝模板合成的 Sn78Ag22 纳米线焊料扫描电镜 (SEM) 形貌图, 纳米线直径为 50 纳米, 长度约为 50 微米 ; (b) 用商用聚碳酸酯模板合成的 Sn78Ag22 纳米线焊料扫描电镜 (SEM) 形貌图, 纳米线直径为 80 纳米, 长度约为 10 微米 ; (c) 单根 Sn78Ag22 纳米线焊料透射电镜 (TEM) 。

24、形貌图 ; (d) 多根 Sn78Ag22 纳米线焊料扫描透射 电镜 (STEM) 形貌图。 0023 附图 2 为本发明的一维 Sn50Au50 纳米线焊料形貌 :(a) 用自制的多孔阳极氧化铝 模板合成的 Sn50Au50 纳米线焊料扫描电镜 (SEM) 形貌图, 纳米线直径为 45 纳米, 长度约为 15 微米。(b) 用商用聚碳酸酯模板合成的 Sn30Au70 纳米线焊料透射电镜 (TEM) 形貌图, 纳 米线直径为 80 纳米, 长度约为 10 微米。 0024 附图 3 为本发明的一维锡金纳米线焊料能量散射谱 :(a)定量分析结果为 Sn:Au=50:50 焊料谱图 ;(b) 定量。

25、分析结果为 Sn:Au=30:70 焊料谱图 ;(c) 定量分析结果为 Sn:Au=95:5 焊料谱图 ;(d) 定量分析结果为 Sn:Au=90:10 焊料谱图。 0025 附图 4 为本发明的一维 Sn18Ag2 Cu80纳米线焊料形貌 :(a) 用商用聚碳酸酯模板合 成的 Sn18Ag2 Cu80纳米线焊料扫描电镜 (SEM) 形貌图, 纳米线直径为 80 纳米, 长度约为 10 微米。(b) 用自制的多孔阳极氧化铝模板合成的 Sn50Au50 纳米线焊料透射电镜 (SEM) 形貌 图, 纳米线直径为 70 纳米, 长度约为 7 微米。 0026 附图 5 为本发明的一维 Sn18Ag2。

26、 Cu80纳米线焊料成份研究能量散射谱 , 定量分析 结果为 Sn:Ag:Cu=18:2:80。 0027 附图 6 为使用本发明的制备的 150 纳米直径的 Sn99Au1纳米线焊料焊接 50 纳米直 径金纳米线组成的 “人” 字形纳米图案过程 :(a) 使用纳米操控器提取 55 纳米金纳米线、 组 装未连成一体的 “人” 字形纳米图案扫描电镜 (SEM) 图 ;(b) 纳米控制器提取单根 150 纳米 Sn99Au1 纳米线焊料放置于待焊接部位, 并将纳米探针紧密搁置于一维纳米焊料两端 SEM 图 ;(c) 连通电源, 使 Sn99Au1 纳米线焊料通过 120% 最大承受电流而快速电学熔。

27、解, 熔融纳 米焊料冷却凝固后将分立的 “人” 字焊接成高导电性整体 SEM 图。 0028 附图 7 为使用本发明的制备的纳米焊料焊接同质材料后的纳米焊接质量检测 : (a) ,(b) 同质母体金纳米线焊接到一起 ;(c) ,(d) ,(e) 实时、 原位焊接点焊接质量力学强度 检测 ;(f) 透射电子显微镜纳米焊接点微 / 纳结构检测。 0029 附图 8 为纯锡纳米线焊料形貌,(a) : 扫描电镜照片 ;(b) : 扫描透射电子显微镜照 说 明 书 CN 103406685 A 6 5/8 页 7 片 ;(c) : x 射线电子能量色散谱测定结果, 显示为纯锡成份。 0030 附图 9 。

28、为纯金纳米线焊料形貌,(a) : 扫描电镜照片 ;(b) : 透射电子显微镜照片 ; (c) : x 射线电子能量色散谱测定结果, 显示为纯金成份 ;(d) : 金纳米线作为焊料放置于排布 好的纳米图案待焊接部位 ;(e) : 通电后待焊接部位被焊接到一起的扫描电镜照片。 0031 附图 10 为 Sn96.5Ag3.5 纳米线焊料形貌,(a) : 扫描电镜照片 ;(b) : 透射电子显微 镜照片 ;(c) : x 射线电子能量色散谱测定结果, 显示为 Sn96.5Ag3.5 成份。 0032 实施例 1Sn78Ag22纳米线焊料的制备 1a) 模板的选用 : 采用孔径为 3400 纳米, 厚。

29、度为 10 纳米 150 微米的阳极氧化铝为模 板, 这一氧化铝可使用商用产品, 如果购置商用多孔氧化铝有困难可以自行制备, 具体制备 方法在现有技术中有报道。 0033 1b) 电镀液的配制 : 0.18 mol/L 甲基磺酸亚锡 + 0.001mol/L 碘化银 + 0.60 mol/L 焦磷酸钾 + 2.0 mol/L 碘化钾 + 0.4 mol/L 三乙醇胺 + 5 g/L 抗坏血酸+ 1g/ L 对苯二酚。 0034 1c) 电化学沉积 : 使用已经渡好电极 (电极可以是任何如铜、 银、 金、 铂等任何导电金属) 的聚碳酸酯模板 或多孔阳极氧化铝模板 (已经去掉障壁层) 为阴极, 石。

30、墨电极为阳极, 在 -14V 沉积电位下沉 积 45 分钟, 制备锡银成份配比为 78:22 的 Sn78Ag22合金纳米线焊料。 0035 最终产物的锡含量可通过改变甲基磺酸亚锡和碘化银相对浓度, 或改变电化学 沉积电位 (或电流密度) 来实现。纳米线长度可通过电化学沉积时间改变。 0036 1d) 制品的收集 : 将电镀形成的其孔洞内含有锡基纳米线的聚碳酸酯模板用氯仿溶解, 锡基纳米线自动 分散到氯仿中。进一步使用小于所制纳米线直径的多孔阳极氧化铝膜过滤装置过滤、 清洗 掉溶解掉的聚碳酸酯, 清洗好的锡基纳米线可离散到硅片等基底上固态保留存放、 或再次 分散到纯氯仿中保留存放, 用于下一步。

31、纳米焊接使用。 0037 使用阳极氧化铝模板制备的锡基纳米线采用 0.1mol/L 到 5mol/L 氯化铜水溶液 溶解 12 小时, 待阳极氧化铝模板溶解, 使用小于所制纳米线直径的多孔聚碳酸酯膜过滤装 置过滤、 清洗掉氯化铜和铝酸盐, 清洗好的锡基纳米线可离散到硅片等基底上固态保留存 放、 或再次分散到纯氯仿中保留存放, 用于下一步纳米焊接使用。 0038 锡基纳米线分散到水溶液后, 在具体使用中可视样品所需量, 取 30 微升左右溶液 分散到硅片。 在1cm1cm 面积的硅片约有几十万到几百万根纳米线, 可由需要而控制纳米 线分散数量。 0039 1e) 制品的表征 制备的 Sn78Ag。

32、22 纳米线焊料的形貌, 晶体结构和化学成分 / 组分利用扫描电子显微镜 (SEM) (日立 S - 4800, 日本) 和高分辨透射电子显微镜 (HRTEM) (TecnaiTM G2 F30, FEI, USA) 的多种功能进行了测量表征。图 1 展示的是有代表性的 Sn78Ag22 纳米线焊料形貌研究 结果。图 1 中的纳米线使用自制的阳极氧化铝模板合成, 其中阳极氧化铝模板被彻底清理, Sn78Ag22 纳米线长在金电极衬底上, 金衬底上每一个亮点都是一个纳米线生长点。图 1a 中 纳米线直径为 50 纳米, 长度约为 50 微米。纳米线直径、 长度尺度均匀。图 1b 显示的是已 经分。

33、散到硅片上的 Sn78Ag22 纳米线, 纳米线用商用聚碳酸酯模板制备而成, 纳米线直径为 说 明 书 CN 103406685 A 7 6/8 页 8 80 纳米, 长度约为 10 微米。图 1c 显示的是单根 Sn78Ag22 纳米线焊料透射电镜 (TEM) 形貌 图。图 1d 是多根 Sn78Ag22 纳米线焊料扫描透射电镜 (STEM) 形貌图。从图中可以看出纳米 线直径、 长度尺寸均匀, 但纳米线呈现圆锥形, 顶端处直径80纳米, 底端处直径170纳米, 体 现了聚碳酸酯模板孔洞本身形状。 0040 实施例 2SnxAuy纳米线焊料的制备 2a) 模板的选用 : 同上 2b) 电镀液。

34、的配制 : 两种电镀液可以使用 : 电镀液 1: 100 g/L 三柠檬酸铵 + 5 g/L 氯化金 + 9 g/L 氯化锡 + 60 g/L 亚硫酸 钠 + 10 g/L 明胶 + 5 g/L 抗坏血酸 电镀液 2 : 0.5 mol/L 氯化锡 + 5 g/L 氯化金 + 10 g/L 明胶 + 5 g/L 抗坏血酸 + 0.01 mol/L 盐酸 2c) 电化学沉积 : 使用商用电化学工作站, 采用三电极体系, 使用已经渡好电极 (电极可以是任何如铜、 银、 金、 铂等任何导电金属) 的聚碳酸酯模板或多孔阳极氧化铝模板 (已经去掉障壁层) 为工 作电极, Ag/AgCl 或 Hg/HgC。

35、l2电极为参考电极, 铂电极为对电极, 相比参考电极 -1800mV 沉 积电位, 使用上述两种电镀液之一, 沉积 45 分钟或 1 小时, 制备锡金成份配比为 50:50 的 Sn50Au50合金纳米线焊料。终产物的锡含量可通过改变氯化锡和氯化金相对浓度, 或改变电 化学沉积电位 (或电流密度) 来实现。纳米线长度可通过电化学沉积时间改变。 0041 2d) 制品的收集 : 同上述锡银纳米线焊料收集方式一样。 0042 2e) 制品的表征 图 2 展示通过上述三电极体系制备出的锡金纳米线焊料形貌研究结果。图 2a 是自制 的多孔阳极氧化铝模板合成的纳米线焊料扫描电镜 (SEM) 形貌图, 直。

36、径为 45 纳米, 长度约 为 15 微米。成份研究结果显示锡金比例为 50:50(如 3a 所示) 。图 2b 是用商用聚碳酸酯 模板合成的纳米线焊料透射电镜形貌图, 直接为 80 纳米, 长度约为 10 微米。成份研究结果 显示锡金比例为 70:30 (如图 3b 所示) 。与此同时, 也制备了其他成份配比的锡金纳米线焊 料, 图 3c 所示为锡金比例为 95:5 纳米线焊料能量散射谱实验结果, 图 3d 所示为锡金比例 为 90:10 纳米线焊料能量散射谱实验结果。元素分析结果进一步采用电子能量损失谱研究 技术得到了证实。 0043 实施例 3Sn18Ag2 Cu80纳米线焊料的制备 3。

37、a) 模板的选用 : 同上 3b) 电镀液的配制 : 0.18 mol/L甲基磺酸亚锡 + 0.001 mol/L 碘化银 + 0.5 mol/L 硝酸铜+ 0.60 mol/ L 焦磷酸钾 + 2.0 mol/L 碘化钾 + 0.4 mol/L 三乙醇胺 + 5 g/L 抗环血酸 + 1 g/L 对苯二酚。 说 明 书 CN 103406685 A 8 7/8 页 9 0044 3c) 电化学沉积 : 使用商用电化学工作站, 采用三电极体系, 使用已经渡好电极 (电极可以是任何如铜、 银、 金、 铂等任何导电金属) 的聚碳酸酯模板或多孔阳极氧化铝模板 (已经去掉障壁层) 为 工作电极, Ag。

38、/AgCl 或 Hg/HgCl2电极为参考电极, 铂电极为对电极, 相比参考电极 -1800mV 沉积电位, 使用上述两种电镀液之一, 沉积 45 分钟或 1 小时, 制备锡银铜金成份配比为 18:2:80的Sn18Ag2Cu80合金纳米线焊料。 终产物的锡银铜含量可通过改变甲基磺酸亚锡、 碘 化银和硝酸铜之间相对浓度, 或改变电化学沉积电位 (或电流密度) 来实现。纳米线长度可 通过电化学沉积时间改变。 0045 3d) 制品的收集 : 同上述锡银铜纳米线焊料收集方式一样。 0046 3e) 制品的表征 图 4 通过上述三电极体系制备出的锡金纳米线焊料形貌研究结果。图 4a 是用商用聚 碳酸。

39、酯模板合成的纳米线焊料扫描电镜 (SEM) 形貌图, 直径为 80 纳米, 长度约为 10 微米。 图4b是用自制的多孔阳极氧化铝模板合成的纳米线焊料透射电镜(TEM)形貌图, 直径为70 纳米, 长度约为 7 微米。图 5 成份研究结果显示锡银铜元素原子数之比为 18:2:80。 0047 一维纳米焊料用于实际纳米空间焊接实例 实例 1 : 实际同质焊接 本发明中制备的一维纳米焊料已经实际用于纳米空间纳米图案、 原型电子器件的焊 接。图 6 所示使用 150 纳米直径的 Sn99Au1纳米线焊料焊接 50 纳米直径金纳米线组成的 “人” 字形纳米图案过程。分散在硅片上的两根 55 纳米金纳米。

40、线被纳米操控器夹取, 在干净 的硅片上组装成未连接成整体的 “人” 字型图案 (如图 6a 所示) 。本发明中制备的长约 1.5 微米、 直径 150 纳米专用一维 Sn99Au1纳米线焊料随后被纳米控制器提取, 放置于需要焊接 部位。两个纳米控制器纳米探针紧密连接于一维纳米焊料两端 (图 6b 所示) , 接通电源, 使 Sn99Au1纳米线焊料通过 120% 最大承受电流而快速电学熔解, 熔融纳米焊料冷却凝固后如 图 6c 所示将分立的 “人” 字焊接成高导电性整体。 0048 本发明中制备的一维纳米焊料也实际用于异质纳米线焊接。 0049 焊接质量可以立即使用纳米控制器进行实时、 原位、。

41、 图像化检测。 0050 焊接质量也可以通过原位力学测量进行检测。图 7 展示的是同质母体金纳米线焊 接到一起后, 立即使用纳米控制器进行纳米焊点原位力学性质测量及焊接点转移到透射电 子显微镜中进一步进行细致为微 / 纳结构检测的实例。测量结果显示图 7 中金纳米线的焊 接点力学拉伸强度大于 110MPa, 杨氏模量大于 75GPa, 微 / 纳结构研究显示焊接点已经彻 底熔为一体, 形成孪晶。 0051 此种是通过电子显微镜原位纳米操纵器 (或称, 纳米机器人) 将一维纳米焊料输送 至微 / 纳米焊接部位, 然后将电流通过并只熔化纳米焊料将母材焊接到一起, 由于电流只 通过纳米焊料, 不通过。

42、微 / 纳米焊接母体或微 / 纳米结构, 因此不会损伤或污染微 / 纳米焊 接母体或微 / 纳米结构。也能即时进行焊接质量检查和焊料残渣清理, 整个过程非常快速、 简单、 干净。同时, 焊点牢靠、 结实, 纳米焊料可因微 / 纳米焊接母体随意选择, 微 / 纳米焊 接母体或纳米结构无需导电, 能广泛应用于同质、 异质材料焊接。 除上述展示的两个实际实 施例子, 本发明中制备的不同成份、 组份的一维纳米焊料锡、 锡金、 锡银和锡银铜已经通过 说 明 书 CN 103406685 A 9 8/8 页 10 这中纳米控制器技术在纳米空间上成功地实现了金、 铂、 铜、 镍镉合金、 钴铂多层、 镍铁多层。

43、 纳米线不同种的纳米线焊接成特种多功能纳米传感器和电子器件, 并将它们焊接到集成电 路板电极上。 0052 但是, 本发明的焊料不只限于这三种组份的纳米焊料, 可以使用任何一维锡基纳 米焊料。焊接母体不只限于这六种母体, 可以是任何微 / 纳米尺度的单质、 合金或多层金 属、 电路板电极。 说 明 书 CN 103406685 A 10 1/4 页 11 图 1 图 2 图 3 图 4 说 明 书 附 图 CN 103406685 A 11 2/4 页 12 图 5 图 6 图 7 说 明 书 附 图 CN 103406685 A 12 3/4 页 13 图 8 图 9 说 明 书 附 图 CN 103406685 A 13 4/4 页 14 图 10 说 明 书 附 图 CN 103406685 A 14 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 机床;其他类目中不包括的金属加工


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1