用EGTA配体修饰的聚合物膜 背景技术
在现代技术中用于回收和/或分离特定的二价金属离子的有效方法是很重要的,比如(a)从含有Mg2+和/或其它离子的源溶液中分离Ca2+(b)从含有Zn2+和/或其它离子的源溶液中分离Cd2+。把这些特定的金属离子从含有中强酸到强酸和可溶性地络合剂或者螯合剂的溶液中除去尤其困难,比如含有卤离子,卤离子对目标金属离子(desired metal ions)有很强的亲合性。从其它金属离子浓度较高、而上述二价金属离子本身浓度较低的溶液中除去上述二价金属离子也是很困难的。因此,确实需要一种在某些二价金属离子浓度较低的情况下,特别是在溶液中含有酸和其它络合剂的情况下,能够选择性浓缩这些二价金属离子的方法。
在现有技术中有一些已知的方法用来从溶液中回收二价金属阳离子。然而各种各样的条件,包括其它二价阳离子的存在、其它二价阳离子的浓度很高、和其它螯合剂的存在,经常会使特定的金属阳离子的去除和/或分离复杂化。众所周知,根据离子的大小、供体原子相关的性质以及其它已知的选择性特征,作为溶质存在于溶剂中的配体可以和作为溶质存在于同一溶剂中的特定离子或者离子群(groups of ions)选择性地形成强键。
乙二醇-双-(β-胺基乙基醚)-N,N,N’,N’-四乙酸和(乙二胺)四乙酸,一般分别称为EGTA和EDTA,它们都是可以作为溶质来络合二价离子的配体。但是,EGTA对较大的二价金属离子的选择性要比EDTA强。参见Critical Stability Constants,Volume 1:Amino Acids,A.E.Martell & R.M.Smith,Plenum Press,N.Y.&London,1974。因此,在用于络合较大的二价金属离子的时候EGTA是一种重要的配体。
实际情况是研究者以前不能把EGTA引入到相分离体系中去。这一点是很重要的,因为EGTA作为溶质存在于溶液中,仅仅简单地和被选离子络合,但是对它们的分离却没有任何意义。具体地说,以前EGTA从来没有被成功地共价结合到膜支撑体上。照这样,结合EGTA的膜从来没有在相分离过程中被使用,用来从溶液中除去、分离和浓缩离子半径较大的离子或者目标二价离子,特别是在目标离子(desired ions)与浓度比它高得多的比较小的离子和/或大小相近的离子共存的溶液中使用。
因而,提供一种组合物和方法用来在溶液中,甚至是在目标离子浓度很低的溶液中,从其它离子中除去、分离和/或浓缩某些目标二价金属离子是有用的,比如(a)从Mg2+中分离Ca2+和/或(b)从Zn2+中分离Cd2+。
发明概述
本发明描述了一种含有共价结合到膜上的EGTA配体的新型组合物。本发明也描述了用于除去、分离和/或浓缩某些目标二价金属离子的方法,包括(a)从含有Mg2+和/或其它离子的源溶液中分离Ca2+(b)从含有Zn2+和/或其它离子的源溶液中分离Cd2+。实际上,当这些离子在溶液中的浓度从很低到很高时,即Ca2+和/或Cd2+的浓度从ppb级到g/l级时,也可以除去这些离子(Ca2+和/或Cd2+)。
用结合了EGTA配体的膜与目标离子络合可以实现目标离子的浓缩。分离可以在分离装置中实现,例如膜滤筒(membranecartridge),源溶液从该膜滤筒中流过。这个过程可以使目标离子跟附着在膜上的EGTA配体络合。将接收液(receiving liquid)从分离装置中流过,可以使金属离子和EGTA配体得到分离(体积要比流经柱的源溶液的体积小的多),这样可以从接收液中除去并且浓缩目标离子。接收液或者回收液与目标离子形成的络合物要比EGTA与目标离子的络合物更强,或者,它暂时与EGTA配体形成的相互作用要比目标金属离子与EGTA配体的相互作用更强,因此,目标金属离子就可以定量地从配体中剥离下来,以浓缩的形式存在于接收液中。可以使用现有技术中已知的各种方法来从接收液中回收目标离子。
发明详述
本发明提供了一种使用附着在膜上的EGTA配体从溶液中除去和/或分离特定二价金属离子的组合物和方法,二价金属离子包括以较低的浓度存在的Ca2+和/或Cd2+。本发明特别适合于(a)从含有Mg2+和/或者其它离子的源溶液中分离Ca2+,以及(b)从含有Zn2+和/或者其它离子的源溶液中分离Cd2+。本发明可以在适度的酸性溶液中实施,例如在pH值约大于3.0的溶液中。此外,尽管配体的四个羧酸基中的一个用来使配体附着在膜支撑体上,但是本发明的目标选择性和相互作用的强度还是出人意料的高。
本发明要求配体共价结合在膜上,膜作为EGTA配体的支撑体。具体的说,本发明的组合物包括一个共价结合到膜上的EGTA配体,如下面式1所述:
M-B-L
式1
其中M是衍生出的有亲水表面并有极性官能团的任何膜或者复合膜,L是一个EGTA配体,B是连接配体(L)和膜(M)表面的共价键。典型的,EGTA配体(L)通过配体前体XL的反应结合到膜表面,在配体前体XL中X为与在膜表面上的活化极性基团反应的官能团,从而形成共价键B。典型的B键选自由下列基团组成的组:酰氨基(-NHC(O)-),酯基(-C(O)O-),硫酯基(-C(O)S),羰基(-C(O)-),醚基(-O-),硫醚基(-S-),磺酸基(-S(O)2O-),和磺胺基(-SO2NH-),虽然一般优选酰氨基。
更具体的说,膜(M)可以本身具有亲水性、部分亲水性或者是一种以多孔聚合物膜作为基体,在基体上附着有不可溶的交联亲水涂层的复合物。本身具有亲水性或者部分亲水性、并且包含适合与配体(L)形成共价键的残基(moieties)的膜特别有用。这些膜包括聚酰胺例如尼龙,以及纤维素类物质例如纤维素、再生纤维素、醋酸纤维素以及硝化纤维素。如果使用的膜不含有反应性基团,那么膜就无法被合适的修饰或者衍生。
复合膜也是优选的。复合膜含有多孔聚合物或者共聚物的膜核心(membrane core),并且有不溶性的涂层附着在膜上。基体和涂层通过交联、接枝和其它一些公知的过程结合在一起。适合形成膜核心基体的典型聚合物包括聚四氟乙烯(“TEFLON”),聚氟化偏乙烯(PVDF)等;聚烯烃例如聚乙烯,超高分子量聚乙烯(UPE),聚丙烯,聚甲基戊烯等;聚苯乙烯或者取代聚苯乙烯;聚砜类物质例如聚砜、聚醚砜等;聚酯类物质包括聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯等;聚丙烯酸酯和聚碳酸酯;聚醚例如全氟代聚醚;以及乙烯聚合物例如聚氯乙烯和聚丙烯腈。共聚物也可以用来形成聚合物膜,例如丁二烯和苯乙烯的共聚物,氟化乙烯-丙烯共聚物,乙烯-氯三氟乙烯共聚物等。优选的膜是包含有羧基的亲水性超高分子量聚乙烯(UPE),例如美国专利No.4,618,533、No.5,618,433和No.5,547,760所述的那样。
膜的选择要同时得到选定的本体性质和选定的表面性质。对于天然的亲水性膜来说,选定的本体性质和表面性质是由形成膜的聚合物来提供的。对于复合膜来说,选定的本体性质是由膜基体来提供的,而选定的表面性质是由涂层来提供的。
复合膜是将单体直接沉积在基体表面,包括孔的内表面,由交联的单体原位沉积而形成。交联的单体在多孔基体上的沉积,是由直接涂覆实现的,不需要也不利用介质来绑定(bind)化学残基。用于涂层聚合物的任何一种单体都可以使用,只要它能够进行自由基聚合并且可以交联。对进行聚合的单体的唯一要求是它可以覆盖多孔膜的整个表面,也就是为表面提供可与配体反应的官能团,并且有足够的亲水性可以使配体有效地附着在表面上。一般来说,多孔基体的平均孔径在约0.001μm到10μm之间,更一般地是在约0.1μm到5.0μm之间。复合膜通过合适的方法形成,例如美国专利No.4,618,533中所公开的那样,这里通过引证将其全部内容合并于本文。简单地说,这个过程包括用合适的溶剂洗涤多孔膜基体,润湿基体的整个表面。然后基体被浸泡在含有可自由基聚合单体、聚合引发剂和交联剂的混合物的溶液中,反应条件要使得单体可以进行自由基聚合并且交联聚合物可以附着在多孔基体上。被覆盖的聚合物膜的表面包含有亲水的或者极性取代基,这种取代基能够被活化和配体进行反应并且把配体共价结合到膜表面上。
按美国专利4,618,533制备的复合膜,包括表面的羧酸残基。其它合适的残基包括羟基、磺酸、环氧化物、伯胺和衍生的苄基基团,例如上面引用的聚合物。
简单地说,采用沉淀晶体技术制备复合膜,包括用合适的溶剂洗涤多孔膜基体,使基体的整个表面润湿。然后将基体浸泡在含有将要沉淀的化合物的溶液当中。除去溶液,用一种化合物处理基体使得晶体沉淀并固定在基体上。在使用前要对膜进行洗涤、干燥。
对复合膜来说,一般认为核心膜材料并不影响衍生膜的性能,在组成上核心膜材料仅仅被它自身被覆盖或者沉积一种含有合适的反应基团的不溶性聚合物层的能力所限制。这就提供了一种可以和水或者其它水性溶液很好地反应的亲水层。最后的结果是:当配体附着在亲水膜表面或者具有亲水表面的复合膜表面上的时候,所给定的任何配体分子的基本性质都不会随着配体附着在膜表面上的过程或者膜表面本身的性质而改变。
类似于式1中的M-B-部分的结构式以前在美国专利5,547,760和美国专利5,618,433中曾经描述过,这里通过引证将它们合并于本文。这些膜和附着机理对于实施本发明的本领域技术人员具有指导意义。然而值得强调的是,本发明重点并不在于式1中M-B-部分的发现。相反地,本发明重点在于发现当通过共价键(B)附着在膜(M)上的时候,EGTA配体(L)有益的离子绑定能力。
如式1所示,共价结合在膜上的EGTA配体,其特征是它对目标二价金属离子的高选择性和去除、分离目标二价金属离子,例如存在于不同的源溶液中从浓度很低到浓度很高的Ca2+和/或Cd2+,包括还含有其它二价金属离子的源溶液。本发明特别适合于用在目标离子和浓度更高的其它离子共存,并且不希望除去这些其它离子的源溶液中。其它离子包括H+,Mg2+和Zn2+。
本发明还提供了利用这里公开的结合到膜上的EGTA,从含有浓度更高的其它金属离子的溶液中除去目标二价金属离子的方法。这些方法可以以任何方式实施,只要它可以使溶液中需要除去的离子与附着在膜上的EGTA配体进行接触。接触过程优选在一个接触装置中进行,这个装置包括一个壳体,例如滤筒,滤筒内含有本发明的组合物,使含有目标离子的溶液从滤筒中流过和本发明的组合物相接触。尽管可以使用其它形状的膜,例如象平板状、层叠盘状或者中空纤维状,但是优选使用有褶皱形状的膜。而且有多种接触装置可以用来替代滤筒,例如但不限于盒子(cassette)、注射器(syringe)、小格子(unit)、小罐(canister)、多孔板(multi-well plate)或者过滤器座(filter holder)。选择性除去和浓缩目标离子的过程是以从含有目标离子的大量溶液中定量络合目标离子的能力为标志的,即使目标离子的浓度很低。
通过流经含有增溶剂的小体积的接收相(receiving phase),可以把目标离子从连有EGTA配体的膜上进行回收。增溶剂不必有选择性,只要它对目标二价金属离子的络合能力比EGTA配体强就可以了。或者,增溶剂中含一种离子,它可以以暂时与EGTA配体形成比目标金属离子更强的相互作用。这样就可以使目标金属离子定量的以浓缩的形式从连有EGTA配体的膜上剥离,转移到接收液中。通过蒸发、沉淀和其它的公知方法可以很容易地从这样的接收液中回收目标金属离子。
本专利应用于想要从溶液中除去/分离上述的二价金属离子的场合。一个实施例是:从富含Cu,Ni,Zn,Ag,Pb和/或Hg的工艺物料流或者工业废水中分离出ppb级的Cd2+或者其它二价金属。这样是因为现有的技术不令人满意或者因为需要一种更经济的方法。例如,Cd2+经常以很低的浓度存在溶液中,而溶液中往往还有其它二价金属离子,并且浓度要高得多。因此,因为杂质的关系,从这样的溶液中除去Cd2+对环保是很重要的。此外,从其它非目标离子中定量和/或除去Cd2+或者Ca2+离子也是可以实施的。特别是,当目标离子(Cd2+和/或Ca2+)从很低浓度(ppb)到很高浓度(g/l)存在时,甚至于在富含Cu,Ni,Zn,Ag,Pb和/或Hg存在的工艺物料流中,除去的过程都是可以实施的。
所有的这些功能和其它的部分都可通过采用本发明的组合物和方法得以实现。现在本发明通过下面的例子来进行说明,而这些例子不想以任何方式对本发明进行限制。所有引用的参考材料都被通过在此引证而全部合并于本文。
实施例
下面所阐述的这些例子都是目前所知的本发明的优选实施例。可是,在本发明公开范围之内的其它一些实施例也可以实现。在某些实施例中,所给出的反应式是通式,要明确每一种反应物、反应步骤、反应条件和所得产物可能需要参考每一个例子的具体内容。此外,在下面的结构式中用“MEM”来表示膜基体。
实施例1 羧基膜
取50ml蒸馏水,通过加入MES(一水合4-吗啉乙磺酸)调节pH值到5.1。在溶液中加入4张涂有丙烯酸涂层的UPE(超高分子量聚乙烯,来源于Millipore Corporation,Bedford,MA,商品名为GuardianJ,EtchgardJ,和RinsegardJ)膜(半径为2cm)和0.7g的1-(3-二甲基氨丙基)-3-乙基碳二酰亚胺的氢氯化物(EDC)。溶液搅拌15分钟,把膜转移到含有2g 2,2’-(乙二氧基)二(乙胺)的50ml水中。24小时后,用水洗涤膜(MEM)。制备的产物如下面式2所示:
式2
把1.0g的乙二醇-双-(β-胺基乙基醚)-N,N,N’,N’-四乙酸(Sigma)(EGTA)溶解在50ml水中。加入一定量的2N氢氧化钠溶液调节溶液的pH值到4.36。接着加入0.4g的1-(3-二甲基氨丙基)-3-乙基碳二酰亚胺的氢氯化物。搅拌10分钟后加入实施例1中制备好的膜。待膜与溶液过夜接触之后,用水洗涤膜,并且干燥。制备的产物如下面的式3所示:
式3
实施例2 酯基膜
在室温下,将2张涂有丙烯酸涂层的带有乙氧羰基官能团的UPE膜和10ml五乙烯六胺加入到100ml的蒸馏水中。24个小时后,用水洗涤膜。制备的产物如下面式4所示:
式4
把1.0g的乙二醇-双-(β-胺基乙基醚)-N,N,N’,N’-四乙酸(Sigma)(EGTA)溶解在50ml水中。加入一定量的2N氢氧化钠溶液调节溶液的pH值到4.36。接着加入0.4g的1-(3-二甲基氨丙基)-3-乙基碳二酰亚胺的氢氯化物。搅拌5分钟后加入实施例1中制备好的膜。待膜与溶液过夜接触之后,用水洗涤膜,并且干燥。其中一种可能的制备产物如下式5所示:
式5
虽然上面所示的式5是一种在膜上附着有6个EGTA配体的产品,但是这并不是上述过程可能产生的唯一产物。仅要求至少有一个EGTA配体附着在膜上。而且,每一个EGTA配体都可以附着在具有接受EGTA配体能力的六个胺基氮中的任何一个上。
尽管本发明是参考特定的优选实施例来进行描述的,但是本领域的技术人员应该明白,只要不脱离本发明的精神可以对本发明进行各种修正、改变、删除和替换。