热风流量调整阀体及其制造方法 【技术领域】
本发明涉及为了控制流体的流量的调整阀。
背景技术
例如,作为从炼铁用高炉的风口向高炉喷吹1200℃以上的热风气体时的流量调整阀,可以使用通过增减流路的截面方向的面积来调整开口度的阀门。除此以外,在焚烧炉、化工设备、热交换器、以及燃气涡轮机等也可以使用同样的流量调整阀。该调整阀是在绝热耐火材料等构成的套管的流体流路内由阀片的转动或开闭来调整流路的开口度而进行流量控制的。由于是这样的结构,调整阀除了承受高温以外,长时间暴露在高压、高速的流体中,同时为了调整流量在使阀体转动或开闭时承受很高的负荷。此外,暴露于热风流路的部分与绝热耐火材料等的内部支持暴露部分的部分的温度差很大、加之长时间受到不规则的振动,其使用环境极其苛刻。因此,作为流量调整阀体的材质,金属不耐用,所以正在研讨陶瓷的适用性。
在实公平2-32944号公报中曾经提出由氮化硅质、硅铝氧氮质、碳化硅质、氧化锆质、氧化铝质或者莫来石质等陶瓷将阀片与轴成形为一体的阀体。另外,在特开平9-42472号公报中曾经提出以1200℃下弯曲强度在30kg/mm2以上的陶瓷使阀片与轴部形成为一体、并通过热装将金属轴安装在轴部的端部的阀体结构,作为陶瓷公开了氮化硅系以及碳化硅系地致密质陶瓷。
尽管正在尝试适用这样的耐热性和抗弯强度优异的陶瓷,但是在用于例如炼铁用高炉风口的热风流量调整阀等时,并没有解决有关寿命短、短期间内损坏这一耐久性的基本问题。
目前为止,氮化硅质烧结体的断裂韧性良好,但是高温强度、耐热冲击性、耐热疲劳性以及硬度较低。例如,添加氧化钇和氧化铝的系列能够得到耐热冲击性优异的烧结体,但耐热性、韧性、高温下的机械强度有时较差。为了谋求改善高温下的特性的目的,特开昭56-059674号公报所公开的使烧结体中生成黄长石矿物相(Y2O3·Si3N4化合物)的氮化硅烧结体、以及特开昭62-202864号公报所公开的添加氧化锆+氧化钇+氧化硅,曾经尝试过使烧结体中析出氧化锆的氮化硅烧结体,看到对高温强度的提高等的效果。还有,特开昭62-246865号公报所公开的含有稀土氧化物、氧化锆的烧结体中于晶界相存在J相(Si2N2O·2Y2O3化合物)固溶体的氮化硅烧结体也曾经作过尝试,看到对耐热性、抗氧化性、以及静疲劳特性的提高的效果。此外,以使高温强度特性进一步提高为目的,在特开平03-153574号公报中曾经公开作为硅铝氧氮的烧结辅助剂添加HfO2、作为晶界相使其生成Y2Hf2O7的α’-β’硅铝氧氮陶瓷。
但是,上述材料尽管高温瞬时断裂强度优异、能够保持高温强度,但是韧性以及抗氧化强度却没有飞跃性地改善,因此在更加苛刻的使用环境下尤其在高温燃烧火焰中用于产生粒子的冲击等的结构部件时,存有缺乏可靠性等问题,妨碍实用化。因此要求高温强度的提高之外,还提高抗氧化性、耐热冲击性以及提高韧性的材料。
流量调整阀在这样的使用环境下,不仅要求耐热性和高温强度,对于在高温流体中含有的粉尘和耐火材料的剥离颗粒等的粉粒体引起的粒子冲击损伤和抗氧化性、热疲劳特性、对旋转驱动或开闭时的扭转以及风量波动时等的振动的机械耐久性、对操作时的抗破损性等的物理-化学稳定性和机械稳定性等,都要求优异的性能,希望提供如此具有优异特性的材质的流量调整阀体。
因此,本发明的目的在于:解决上述以往的热风流量调整阀的问题,提供物理-化学稳定性、热稳定性以及机械稳定性良好的具有长期耐久性的热风流量调整阀体及其制造方法。
【发明内容】
本发明者为了解决上述问题,对有关构成氮化硅质陶瓷烧结体的结晶相进行了潜心研讨,结果发现,在由上述β-Si3N4相、Si2N2O相以及Y2Si2O7相的3种结晶相构成的场合,可以得到作为流量调整阀体具有优异特性的烧结体,最终完成了本发明。
即,本发明如下所述。
(1)一种热风流量调整阀体,其特征在于:该热风流量调整阀体实质上由β-Si3N4相、Si2N2O相以及Y2Si2O7相构成的氮化硅质烧结体经成形加工而制成。
(2)根据(1)所记载的流量调整阀体,上述氮化硅质烧结体的组成是,0.1~3质量%的Si2N2O相、4.9~12质量%的Y2Si2O7相以及剩余部分为β-Si3N4相。
(3)根据(1)或(2)的任何一项所记载的热风流量调整阀体,上述氮化硅质烧结体的相对密度在95%以上。
(4)一种热风流量调整阀体的制造方法,其特征在于:对氧化钇(Y2O3)3~10质量%、氧化硅(SiO2)1~5质量%以及剩余部分是氮化硅(Si3N4)所组成的混合粉末成形并对该成形体在氮气保护气氛中于1700~2000℃的温度范围进行烧结,采用以下的(a)~(c)中至少一种手段,使氮化硅质烧结体中生成作为晶界相的Si2N2O相以及Y2Si2O7相,对该氮化硅质烧结体进行成形加工。
(a)在烧结的降温过程中降温速度设定在5℃/分以下。
(b)在烧结的降温过程中于1350~1650℃的温度范围保持2小时以上。
(c)烧结后在氮气保护气氛中于1350~1650℃的温度范围保持2小时以上、进行再加热处理。
【附图说明】
图1是本发明的实施例的热风流量调整阀体的示意图。
图2是表示本发明的实施例的热风流量调整阀体的设置状况的示意图。
【具体实施方式】
以下详细说明本发明。
本发明者对从前使用的热风流量调整阀体潜心分析其损耗状况的结果发现,在高温高压的气体流体以高速流动的场合,对于抗氧化性较差的材料其表面形成耐磨损性较差的氧化层,该氧化层容易磨损和消耗。又发现,在磨损部位的周围看到很多的碎屑和裂纹等缺损。这些缺损伴随热疲劳与流体中粒子冲撞的机械冲击而生成和发展,直至热风流量调整阀体的损坏。这些磨损和缺损,在热风流量调整阀体的材质上抗氧化性能较差、韧性与耐热冲击性的性能较低的场合尤其能明显地看到。因此,为了长时间稳定地使用流量调整阀,有必要同时使耐磨损性和耐缺损性提高,所以使用抗氧化性和耐热冲击性优异的高韧性材质的陶瓷是必不可少的。氮化硅质烧结体与以氧化铝和氧化锆为主成分的陶瓷烧结体不同,在耐热性优异的同时,能够保持高温下的机械强度,因此作为高温高压环境下使用的热风流量调整阀体的材质是最合适的。
在此,为了使这些特性同时提高,制作由各种结晶相构成的氮化硅质烧结体,评估其特性。以往的具有低熔点玻璃相的氮化硅烧结体,于高温下的抗氧化性以及耐热冲击性较差。经特性评估的结果发现,由β-Si3N4相以及作为晶界相的Si2N2O相和Y2Si2O7相所构成的致密的陶瓷烧结体具有优异的特性。尤其是成形加工由β-Si3N4相、Si2N2O相以及Y2Si2O7相所构成的氮化硅质烧结体所制得的流量调整阀体,具有抗氧化性和耐热冲击性优异、提高在使用环境下起因于阀体中产生的温度梯度的静疲劳特性以及提高伴随休风时的急冷引起的抗热应力破坏特性等的特征。为了使作为晶界相的Si2N2O相和Y2Si2O7相晶体化,至少进行以下其中之一的处理,即:或者在烧结的降温过程中以5℃/分以下的降温速度冷却,或者在降温过程中于1350~1650℃进行保持2小时以上的热处理,再或者烧结后于氮气保护气氛中在1350~1650℃进行保持2小时以上的再加热处理。在降温过程中使Si2N2O相和Y2Si2O7相析出的场合的降温速度在5℃/分以下较为理想,在2℃/分以下更为理想。在降温速度高于5℃/分的场合,Si2N2O相和Y2Si2O7相不能充分地生成。又,在降温过程中的保持温度以及再加热处理时的保持温度不足1350℃或超过1650℃的场合,Si2N2O相和Y2Si2O7相同样也都不能充分地生成。另外,在各自保持时间不足2小时的场合,Si2N2O相和Y2Si2O7相都不生成。Si2N2O相和Y2Si2O7其质量比分别不足0.1%、4.9%时,烧结体中的气孔率升高,不理想;在分别超过3%、12%时,β-Si3N4晶粒不能充分地相互缠结(交织),强度和韧性降低,也不理想。又,关于Si2N2O相和Y2Si2O7相,在Si2N2O相的质量比不足全体的0.1%时有利于机械强度的效果较少;在超过3%时β-Si3N4晶粒不能充分地相互缠结,强度和韧性降低,因此不理想。同样,在Y2Si2O7的质量比不足全体的4.9%时,Si3N4的α→β相转变时的液相减少,不能圆满地进行相变;在超过12%时β-Si3N4晶粒不能充分地相互缠结,强度和韧性降低,因此不理想。根据本发明得到的氮化硅质烧结体,其β-Si3N4的平均晶粒直径约为1~3μm、平均晶粒的长度与宽度之比为较高的1.5~10左右、而且β-Si3N4的柱状晶呈现相互缠结的组织、并在在晶界处析出高熔点的Si2N2O相和Y2Si2O7相,因此在高温下保持高强度的同时还具有较高的韧性、在1400℃大气中抗弯强度具有500MPa以上的高强度,并且韧性值KIC具有5MPam1/2的高强度,因此能够很好地用于要求高温环境下的特性的流量调整阀。在此,Si2N2O相具有与粉末X射线衍射法鉴定的Si2N2O晶体同样类型的X射线衍射图案,是Si3N4与SiO2组成的化合物中在高温氧化性气氛下最稳定的化合物。同样,Y2Si2O7结晶相具有与粉末X射线衍射法鉴定的Y2Si2O7晶体同样类型的X射线衍射图案,是Y2O3与SiO2组成的化合物中在高温氧化性气氛下最稳定的化合物。又,β-Si3N4晶体相具有与粉末衍射标准联合委员会(JCPDS)图表33-1160表示的β-Si3N4晶体同样类型的X射线衍射图案。再者,上述β-Si3N4相、Si2N2O相以及Y2Si2O7相所构成的氮化硅质烧结体的相对密度对于理论密度在95%以上较为理想。相对密度不足95%时,容易呈现热稳定性与机械稳定性不够充分、失去长期耐久性的提高效果的危险性要增高。
于本发明使用的氮化硅粉末,从烧结性这一点来看,具有α型的晶体结构的Si3N4粉末较为适宜,但是也可使用含有β型或者非晶Si3N4粉末。为了在烧结时得到充分高的密度,平均颗粒直径在1μm以下的细颗粒较为理想。氮化硅是共价键性较强的物质,在多数情况下单独烧结困难,因此通常为了致密化起见,添加烧结助剂。在本发明中,作为烧结辅助剂使用氧化硅、氧化钇。在此业已知道,在烧结Si3N4时氧化钇在其熔体中具有促进从α-Si3N4相向β-Si3N4相的结晶相转变的功能,并且通过助长β-Si3N4的柱状晶相的长大使高温强度以及韧性提高。其各自的添加量,氧化硅在1~5质量%、氧化钇在3~10质量%为宜。在氧化硅不足1质量%的场合,烧结升温时的液相生成温度提高,不能得到充分致密的烧结体,也不能形成Si2N2O相以及Y2Si2O7相;在超过5质量%时不能形成Y2Si2O7相,而是形成熔点较低的SiO2相,高温下的机械强度降低,因此并不理想。在氧化钇的添加量少于3质量%时熔体的形成不充分,相对密度不足95%,不能实现致密化;在氧化钇的添加量超过10质量%时,不能形成Y2Si2O7相,而是形成熔点较低的Y2SiO5相,所得到的烧结体在高温下的机械强度和抗氧化性降低。为了得到氧化硅和氧化钇都是均质且高密度的烧结体,平均颗粒直径在2μm以下的细颗粒较为理想。作为烧结辅助剂使用的这些原料粉末是比较便宜,在水中的混合工序不会变质的稳定的陶瓷粉末。
作为烧结方法,在含有氮气的保护气氛中可以使用例如无加压烧结法、气体加压烧结法、热等静压烧结法、以及热压烧结法等各种烧结法,并将这些烧结方法作多种组合也可以。在含有氮气的保护气氛中烧结是为了抑制在烧结中Si3N4的分解。
Si3N4在1个大气压力的氮气中于约1850℃以上发生分解,因此在1850℃以上进行烧结的场合,应该将氮气压力设定在烧结温度下的Si3N4的临界分解压力以上。此外,在制造大型厚壁形状的流量调整阀体的场合,为了谋求充分的致密化,更优选于无加压烧结后再于氮气保护气氛中进行热等静压烧结。作为无加压以及热等静压烧结的条件,其烧结温度在1700~2000℃为宜。
在不足1700℃时则不能得到致密的烧结体,不能制成高韧性的烧结体。另一方面,在超过2000℃的高温下β-Si3N4晶粒粗化,引起强度降低,不能得到高硬度和耐热冲击性。保温时间不足8小时则不能充分地实现致密化。
另外,本发明的热风流量调整阀体,不限于炼铁用的高炉,在焚烧炉、化工设备、热交换器、以及燃气涡轮机等要求高耐热性和/或高耐蚀性的各种领域的流量调整阀上都可以使用。
此外,本发明的热风流量调整阀体,不限于图1所示的形状,只要是可能调整流量的形状的阀体都可以。
实施例
其次,结合实施例与比较例说明本发明。
(实施例1~3)
在氮化硅(Si3N4)粉末(α化率97%以上,纯度99.7%、平均颗粒直径0.3μm)中添加表1所示规定量(质量%)的氧化钇(Y2O3)粉末(平均颗粒直径1.5μm)、以及氧化硅粉末(平均颗粒直径0.3μm),作为分散介质使用精制水或丙酮,在内侧衬有碳化硅陶瓷的球磨机内混合搅拌24小时。相对于100g陶瓷全粉末原料,精制水或丙酮的添加量为120g。
其次,将得到的粉末成形后进行烧结。作为成形条件,以冷等静压加压150MPa,成形为250mm×700mm×厚65mm的平板,将其进行坯料加工,得到与阀体直径φ220mm×厚度28mm的外周部成对置配置的2根具有等长轴部直径φ55mm×长220mm的形状的成型体。作为烧结条件,在氮气流通的状态以表1记载的温度进行保温8小时的无加压烧结,降温时在1500℃同样以表1记载的保温时间与降温速度进行炉冷。对于实施例3,进行降温时放冷后再次加热到1500℃,按表1所记载的进行保温。如图1所示那样,作为阀体3,从得到的烧结体对直径φ160mm×厚20mm的阀片2的外周部对置配置的直径φ40mm×长170mm的2根等长轴部1进行磨削加工,供热风气体的通风中的耐久试验用。
从得到的烧结体切取各种形状的试片,评估机械特性。根据JISR1601在大气室温以及1400℃测定抗弯强度。由压入载荷98N以维氏硬度测定其硬度。关于韧性,根据JIS R1607的SEPB法在室温下测定断裂韧性值KIC。
另外,作为耐热冲击性,将弯曲试片在大气中加热至规定温度后于水中急冷,以抗弯强度开始劣化的急冷温度差ΔT进行评估。烧结体的密度由阿基米德法以相对密度进行测定。关于各种结晶相的比率,根据预先从X射线衍射峰高度求得的检量线求出,示于表1。
将得到的各烧结体的各种特性示于表2。作为热风气体通风试验,是以气体成分为空气+氧气3%、气体压力0.3MPa、气体温度1200℃、风口通风速度120m/秒的条件下进行。如图2所示那样,阀体3在绝热耐火材料4形成的高温气体通路5中对通风方向倾斜45°角(相当于阀门半开)而固定,通风2个月后用投影型显微镜测定阀体外周部发生的磨痕的深度h。又,磨痕周围有无损伤、碎屑深度、以及裂纹深度等由荧光探伤法以及断面抛光面的光学显微镜的观察进行评估。
(比较例4~5)
比较例4~5是使用与实施例1~3同样的原料,同样由精制水或丙酮进行调制,分别为因降温时的烧结条件不适其相对密度在95%以下的场合(比较例4)、以及因烧结辅助剂(Y2O3)的添加比例不适其相对密度在95%以下的场合(比较例5)的各比较例。其结果一并示于表1。
此外,对这些比较例的材料也以实施例1~3同样的条件进行通风试验,其结果示于表2。
表1 No Si3N4 (质量 %) Y2O3(质量%) SiO2(质量%) 分散 介质 烧结 温度 (℃) 1500℃的 保温时间、 降温速度X射线衍射观察的结晶相(组成由峰高度的检量线求得)实施例 1 95.8 3.0 1.2精制水1800 24小时、降温 2℃/分 β-Si3N4:94%、Si2N2O: 0.4%、Y2Si2O7:5.6% 2 91.5 6.0 2.5精制水1810 24小时、降温 10℃/分 β-Si3N4:91%、Si2N2O: 0.5%、Y2Si2O7:8.5% 3 86.0 9.0 5.0丙酮1820 再加热24小时、 放冷=20℃/分 β-Si3N4:85.5%、Si2N2O: 2.5%、Y2Si2O7:12.0%比较例 4 90.0 8.0 2.0精制水1780 无保温 β-Si3N4:88%、 玻璃相:12% 5 81.5 12.0 6.5丙酮1800 12小时、降温 2℃/分 β-Si3N4:82%、 Y2SiO5:18%
表2 No 相对 密度 (%)抗弯强度(MPa) 维氏 硬度 98N 韧性 KIC (MPam1/2) 耐热冲 击性 ΔT(℃) 磨痕的 深度 (μm)有无细 裂痕 缺损 经过2个月后 的状态 室温 1400℃ 实施例 1 98.0 780 550 1430 6.2 1100 15 无 无变化 2 98.7 880 680 1510 7.1 950 20 无 无变化 3 99.1 750 660 1410 8.2 1150 15 无 无变化 比较例 4 93.9 790 360 1310 5.9 600 (80) (多) 2周后轴破损 5 94.5 720 280 1300 5.0 450 (120) (多) 3周后阀破坏
※比较例4~5的磨痕和细裂纹缺损,作为参考值表示出直到破损为止的值。
正如表2所示,根据本发明的实施例,磨痕深度在非常小的20μm以下,并且在任何场合都没有在磨痕的周围发现裂纹-碎屑的缺损,其耐磨性和耐缺损性都很出色;但是比较例的各个阀体与本发明的实施例相比较,直到发生破损和破断为止的短时间的磨痕深度在很大的80μm以上,而且发生细裂纹等缺损,可以确认其耐磨性和耐缺损性不充分。
如上所述,本发明由β-Si3N4相、Si2N2O相以及Y2Si2O7相构成的氮化硅质陶瓷烧结体经成形加工而得的热风流量调整阀体,其热稳定性以及机械稳定性良好,具有长期耐久性,因此是高温高压环境下长期可靠性非常优异的热风流量调整阀体。而且,如作为从炼铁用高炉风口喷吹热风气体的流量调整等的阀门,如使用本发明的具有热风流量调整阀体的流量调整阀时,可供长时间热风等流体的流量调整用。不限于炼铁用高炉,在焚烧炉、化工设备、热交换器、以及燃气涡轮机等的稳定操作使生产率提高的同时,大大地有利于压缩材料费用。