陶瓷材料和包含该材料的光学器件 【技术领域】
本发明涉及光学器件,更具体地说,它涉及一种应用于光通信器件的陶瓷材料以及涉及一种光学器件。
背景技术
在使用含波长在红外线区的光进行光通信领域中,大量红外线透射率大的石英玻璃用于波导,代表性的是光纤,在预定状态下用于进行光传导。
在这个领域内,大量的光学器件需要包括石英玻璃作为制备材料。代表性的光学器件包括光连接器、光衰减器、平面光路(PLC),和阵列波导(AWG)。根据用途和目的,这些光学器件的制备材料,除了石英玻璃外,还选自金属、半金属、树脂和陶瓷(包括玻璃和结晶玻璃)。
这些材料用于毗邻于波导的波导-毗邻元件,其包含石英玻璃,也就是说,材料毗邻于波导器件例如光纤、平面光路和阵列波导的包覆层。特别地,这些材料用于光连接器或者光衰减器的顶端套圈(ferrule),以及用于平面光路、阵列波导等的基片。在这里使用的毗邻这个术语也用于表达一种状态,即一个物体邻近于另一个包含层的物体,例如,除了两物体直接相连的状态外,还包括它们之间的粘合剂。
在常规光学器件中,因为石英玻璃用来传导光,波导-毗邻元件没有必要具有光学功能。然而,因为希望得到具有高性能的光学器件,光在包含石英玻璃的波导的轻微泄漏的影响是非常大的。也就是说,从波导核心部分泄漏出来的光会在包覆层中传导,造成与信号光发生干涉,这可能造成设备性能的恶化。在这种情况下,非常重要地目的是防止在包覆层部分(包覆层模式)传导的光造成对核心部分(核心模式)传导的信号光的干涉。因此,高性能的光学器件用的波导-毗连元件,为了达到上述目标必须具有一些光学功能。
在光学器件中,波导-毗连元件的性能有时对来自于光学器件的光信号的波导特性和传导特性有影响。为了光学器件具有预定的性能,下面的特性是特别重要的:例如,在光连接器和光学衰减器中使用的顶端套圈的机械特性,在PLCs和AWGs中使用的基片的热学特性等。就是说,波导-毗连元件需要具有高的刚性,以反抗外力,防止波导的变形,以及具有接近于石英玻璃的热膨胀系数来防止由于热应力导致的器件特性恶化。
如图1所示,为了防止由于波导21泄漏出的泄漏光22产生的干涉,波导-毗连元件20需要抑制在波导元件23与波导-毗连元件20之间界面24上光的反射。当波导元件23和波导-毗连元件20之间界面24具有一个大的反射率时,反射光25返回到波导21,产生与信号光26的干涉。一般地,因为光反射是因为在两种物质之间折射率不同形成了界面,波导-毗连元件20需要折射率靠近波导元件23的折射率。
另一方面,当来自波导21的泄漏光22并不被波导元件23和波导-毗连元件20之间的界面24反射时,因此进入波导-毗连元件20时,就会在波导-毗连元件20中传导入射光27,同时通过空气-边缘之间的界面28反射返回到波导21中。在这种情况下,需要充分地衰减在波导-毗连元件20中的入射光27以便不返回波导元件23。因而,波导-毗连元件20应该包括一种光衰减系数大的材料。
【发明内容】
本发明目的是提供一种陶瓷材料,其能够充分衰减波导元件的泄漏光以及防止与信号光的干涉,和提供包含这种材料的光学器件。
发明人已经发现陶瓷材料与其它材料相比,具有较小的热膨胀系数和较高的硬度,适用于波导-毗连元件。而且,发明人已经清楚波导的光泄漏行为和材料特性之间的关系。发明人因此通过使用陶瓷材料用于波导-毗连元件获得预期的目的,其中陶瓷材料有小的热膨胀系数,石英玻璃和陶瓷材料相对折射率之差的绝对值较小,以及大的光衰减系数。于是,发明人提出了这个发明。
根据本发明的一个方面,这里提供了一种陶瓷材料,其热膨胀系数小于50×10-7/℃,在1550nm波长处石英玻璃与陶瓷材料的相对折射率之差的绝对值为0.2或更小,以及光衰减系数为0.3dB/cm或更大。
可以计划陶瓷材料由结晶玻璃制成。
可以计划陶瓷材料包括SiO2、Al2O3和Li2O,以质量百分数为基准,总含量为45%或更多。
可以计划热膨胀系数小于40×10-7/℃。
可以计划光衰减系数是0.5dB/cm或更大。
根据本发明的另一个方面,提供了一种光学器件,其包括任一种上述的陶瓷材料。
当用于光学器件中的波导-毗连元件与波导元件相毗连时,陶瓷材料有效地吸收波导泄漏的光并削弱它。可以防止包层模式和核芯模式之间的干涉。因此,陶瓷材料能极好地提高光学器件如固定衰减器的性能。
附图简述
图1是表示波导泄漏光现象的草图。
图2是固定衰减器的侧视剖面图,包括根据本发明的陶瓷材料。
【具体实施方式】
根据本发明的实施方案,将进行关于陶瓷材料的描述。
在该陶瓷材料中,热膨胀系数测定小于50×10-7/℃。在1550nm波长处石英玻璃与陶瓷材料的相对折射率之差的绝对值测定为0.2或更小,以及光衰减系数测定为0.3dB/cm或更大。
本描述涉及光学器件,每一个光学器件都包含石英玻璃的波导元件和与波导元件毗连的由陶瓷材料制备的波导-毗连元件。
因为陶瓷材料的热膨胀系数小于50×10-7/℃,在波导元件和波导-毗连元件之间产生的热应力小。于是,陶瓷材料可用于光学器件。在波导元件和波导-毗连元件之间产生的热应力取决于两种材料的厚度和长度,以及与这些尺寸成比例变大。当波导-毗连元件的热膨胀系数小于石英玻璃热膨胀系数的十倍时,光学器件的主要特性在实际应用中并不会受到影响。优选的是确定陶瓷材料的热膨胀系数小于40×10-7/℃。
因为在1550nm波长处,石英玻璃和陶瓷材料之间的相对折射率差的绝对值是0.2或更小,波导元件和波导-毗连元件之间的界面具有小的红外线反射。于是,波导元件的泄漏光并不被波导元件和波导-毗连元件之间的界面反射,几乎所有的光进入了波导-毗连元件。于是,没有被反射的光返回到波导元件,产生与信号光的干涉。更确切地说,石英玻璃和陶瓷材料之间的相对折射率差的绝对值是0.2或更小的状况,意味着石英玻璃和波导-毗连元件之间的相对折射率差小。于是,波导元件和波导-毗连元件之间界面的反射能力在大范围的入射角内是非常地小的,在其它区域的反射率也显著地降低。
一般来说,折射率的差用相对折射率差的绝对值(D)来表示,定义如下式:
D=[(n1-n2)/n1],
其中n1代表波导元件的包覆层部分的折射率,n2代表波导-毗连元件的折射率。因为红外光用于光通信,在这里使用1550nm处波长的折射率。
陶瓷材料中,在波长为1550nm处光衰减系数是0.3dB/cm或更大。于是,在波导元件和波导-毗连元件之间界面处没有被反射而进入波导-毗连元件的光被充分地衰减,因而并没有返回到波导元件中。优选地光衰减系数测定为0.5dB/cm或更大。
波导-毗连元件的光衰减系数L按下式表示:
L=10log(I0/I),
其中,当光通过含厚度为1cm的波导-毗连元件透射时,I0/I代表入射光强度I0与透射光强度I的比率。
衰减光的量依赖于波导-毗连元件的尺寸和光学器件的尺寸和结构,光衰减系数大的材料会有效地衰减光。因为光衰减系数依赖于光波,在这里使用1550nm波长的光衰减系数。
具有上述特性的陶瓷材料优选是结晶玻璃,不同玻璃相共同存在的分相玻璃,或烧结陶瓷。结晶玻璃因为下面原因是特别优选的。通过选择沉淀的晶体可以在宽范围内控制热膨胀系数。接近石英玻璃折射率的折射率可以赋予给结晶玻璃,其具有类玻璃的特性。光衰减系数同样也可以通过调节含量,沉淀晶体的粒径和折射率来控制。
对于上述的结晶玻璃,优选的是包含Li2O-Al2O3-SiO2,MgO-Al2O3-SiO2,或ZnO-Al2O3-SiO2的结晶玻璃,特别优选的是含Li2O、Al2O3和SiO2总质量含量为45%或更多的Li2O-Al2O3-SiO2结晶玻璃。具体地,以质量百分数为基准,组成的典型范围是40-73%的SiO2,15-30%的Al2O3,1.5-6%的Li2O,余量最多为35%,根据需要,剩余的为TiO2、ZrO2、P2O5、MgO、ZnO、BaO、Na2O、K2O、CaO、SrO、B2O3、Sb2O3、SnO和As2O3。β-锂辉石固溶体、β-石英固溶体、沉淀β-锂辉石和β-锂霞石中的至少一种沉淀为主晶体。
在MgO-Al2O3-SiO2结晶玻璃中,沉淀β-石英固溶体,堇青石,或尖晶石作为主晶体。在ZnO-Al2O3-SiO2结晶玻璃中,沉淀β-石英固溶体、锌尖晶石或锌透锂长石作为主晶体。
对于分相玻璃,包含B2O3-Al2O3-SiO2、Na2O-Al2O3-SiO2、或P2O5-SiO2的玻璃是优选的。对于烧结陶瓷,包括Al2O3、Li2O-Al2O3-SiO2、MgO-Al2O3-SiO2或ZnO-Al2O3-SiO2的陶瓷是优选的。
固定衰减器的波导-毗连元件必须包括一种圆柱状材料,其关于外径和内径的尺寸精度在±0.5um内。于是,结晶玻璃是优选的,因为可以获得高的尺寸精度。具体地,以质量百分数为基准,含有60-70%的SiO2、16-25%的Al2O3、1.5-3%的Li2O、0.5-2.5%的MgO、1.3-4.5%的TiO2、0.5-3%的ZrO2、2-6.5%的TiO2+ZrO2、1-5.5%的K2O、0-7%的ZnO、和0-3%的BaO。在结晶玻璃中,β-锂辉石固溶体或β-石英固溶体按30-70体积%沉淀。对于结晶玻璃,热-拉加工方法是可应用的,可以达到上述的加工精度。
现在以下面的实施例为基准描述陶瓷材料。
表1表示实施例1-5的组合物,表2表示实施例6-8的组合物。表3表示实施例1-5的特性,表4表示实施例6-8和对比例9-10的特性。
表1 (质量百分数%) 实施例 1 2 3 4 5 SiO2 65 68 64 50 65 Al2O3 18 16.5 22 27 15 Li2O 2.5 2.5 4 - - MgO 1 2 0.5 12 - ZnO 3 1 - - 20 K2O 4 2.5 1 - - TiO2 3 3 2 11 - ZrO2 2 2 3 - - BaO 1.5 2.5 - - - Na2O - - 1.5 - - P2O5 - - 2 - - 主晶相β-锂辉石 固溶体 β-石英 固溶体 β-锂辉石 固溶体 堇青石锌-透锂长石
表2(质量百分数%) 实施例 6 7 8 SiO2 67 69 50 Al2O3 9 12 30 Li2O - 1 - B2O3 3 3 - ZnO 3 1 - Na2O 18 14 - MgO - - 20
表3 实施例 1 2 3 4 5 主要组分 Li2O-Al2O3- SiO2 Li2O-Al2O3- SiO2 Li2O-Al2O3- SiO2 MgO- Al2O3- SiO2 ZnO- Al2O3- SiO2 主晶相 β-锂辉石 固溶体 β-石英 固溶体 β-锂辉石 固溶体 堇青石 锌-透锂 长石 热膨胀 系数 (×10-7/℃) 25 18 22 35 45 D O.04 0.08 0.05 0.12 0.14 θ(°) 73 66 71 60 57 R(%) 10.0 19.0 13.2 25.7 28.5 L(dB/cm) 1.0 4.1 5.6 5.6 5.6 P(dB) 0.2 0.4 0.3 0.5 0.5
表4 实施例 对比例 6 7 8 9 10 主要组分 Na2O- Al2O3-SiO2 Na2O- Al2O3-SiO2 MgO-Al2O3- SiO2 ZrO2 B2O3-Al2O3- SiO2 主晶相 - - 堇青石 ZrO2 - 热膨胀 系数 (×10-7/℃) 32 48 20 80 58 D O.03 0.04 0.15 0.38 0.03 θ(°) 78 73 55 18 78 R(%) 7.1 10.0 29.8 48.0 7.1 L(dB/cm) 0.6 0.8 6.5 >7 0.02 P(dB) 0.3 0.4 0.4 1.2 1.0
为了制备实施例1-5的陶瓷材料,原料进行混合得到表1和表2所示的组合物。每一组合物在1500℃熔化10小时形成玻璃。玻璃在1000℃加热3小时以进行结晶。陶瓷材料的主结晶相列于表3和表4。
为了制备实施例6和7的陶瓷材料,包含Na2O-Al2O3-SiO2分相玻璃,原料进行混合得到表2所示的组合物。每一组合物在1500℃熔化10小时形成玻璃。玻璃在750℃加热3小时形成以进行分相。
通过把混合的原料在1400℃烧结10小时,包含制备MgO-Al2O3-SiO2烧结陶瓷的实施例8的陶瓷材料。
顶端套圈用商品ZrO2烧结陶瓷用作对比例9的陶瓷材料,顶端套圈用商品B2O3-Al2O3-SiO2玻璃用作对比例10的陶瓷材料。
表3和4表示陶瓷材料的下列特性:热膨胀系数α、相对折射率差的绝对值D、入射光(1550nm)从石英玻璃到陶瓷材料的反射率小于3%的最大入射角θ,在入射角为80°的反射率R,以及光衰减系数L。当θ大而R小时,反射率在宽入射角范围内小。当θ和R随光的偏振方向而变化时,使用最大值。
用膨胀仪在-40℃-100℃温度范围内测量热膨胀系数α。折射率用折射计的最小偏差档测量。θ和R根据折射的斯涅尔定律和菲涅耳方程来计算。
使用包含金属离子-掺杂的石英玻璃纤维的固定衰减器来评价光学器件的特性。
关于图2,描述固定衰减器。
关于波导-毗连元件,圆柱体11是选自上述任一种陶瓷材料制造的。圆柱体11的内径为0.126mm,外径为2.5mm和长度为22mm。关于波导元件,把一种25dB-衰减的金属离子掺杂石英玻离纤维13插入到圆柱体11的穿孔12中。石英玻璃纤维13的外径为0.125mm,并用一种环氧树脂粘合剂固定在圆柱体11上。两端进行镜面抛光,形成凸起的面来完成固定衰减器10。
单模石英玻璃光学纤维通过SC-型光连接器连接到固定衰减器10的每一端。使波长为1550±50nm的光照射到一端,固定衰减器对每一波长的衰减稳定性用光谱分析仪进行评价。也就是说,观察波长衰减的循环波动性,记录在具有最大振幅波动的最大和最小值之间的差值P(衰减的波动范围)。结果列于表3和4中。因为衰减的波动范围P小,所以波导泄漏的光和信号光之间的干涉也小,也就是说,器件具有高的性能。
表3和4表明,因为实施例的陶瓷材料的热膨胀系数均是48×10-7/℃或更小,所以光学器件的特性并不改变很多,而且都互相接近。因为实施例的陶瓷材料的D值是0.15或更小,θ值是55°或更大,以及R值是29.8%或更小。而且,因为陶瓷材料的L值均为0.6dB/cm或更大,衰减的波动范围P是0.5dB或更小。因而,实施例的陶瓷材料适合于包括在固定衰减器中的波导-毗连元件。
相反,对比例9的陶瓷材料的L值是7dB/cm或更大。因为D值是0.38,这个值是较大的,所以界面的反射率大。衰减波动范围P大,为1.2dB。对比例10的陶瓷材料的D值小,因此提供了优选的θ和R值。然而,因为L值是小,为0.02dB/cm,所以衰减的波动范围P大,为1.0dB。
工业实用性
根据本发明的陶瓷材料,因为上述描述的特性,可应用于光连接器、光衰减器、平面光路(PLC)和阵列波导(AWG)的波导-毗连元件。