生物质重油加氢提质催化剂及其制备方法和应用.pdf

上传人:62****3 文档编号:4734358 上传时间:2018-11-03 格式:PDF 页数:7 大小:344.14KB
返回 下载 相关 举报
摘要
申请专利号:

CN201110369583.1

申请日:

2011.11.18

公开号:

CN103120939A

公开日:

2013.05.29

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):B01J 23/58申请日:20111118|||公开

IPC分类号:

B01J23/58; C10G3/00

主分类号:

B01J23/58

申请人:

中国科学院兰州化学物理研究所

发明人:

李实军; 王健康; 闫亮; 陈晓明; 李静

地址:

730000 甘肃省兰州市城关区天水中路18号

优先权:

专利代理机构:

兰州中科华西专利代理有限公司 62002

代理人:

方晓佳

PDF下载: PDF下载
内容摘要

本发明公开了一种生物质重油催化加氢提质催化剂及其制备方法和应用。该催化剂组成为:以含量1%~6%钯、0.5%~3%铂、1%~4%铑、0.1%~2.5%钌贵金属中的一种或两种为加氢活性组分,多壁碳纳米管-SBA-15组合物为载体,含量0.1%~0.8%碱金属和0.2%~1%碱土金属为助剂。本发明利用多壁碳纳米管强的吸附性及对金属粒子的高分散性和SBA-15分子筛大孔道结构,制备的催化剂具有金属分散度高,孔径大,活性高,起活速度快等特点且制备方法简单。该催化剂用于生物质油重组分加氢提质,在高压釜中进行转化油品中的非烃化合物和不饱和烃实验,提高其热值,降低粘度,增强其实用性。

权利要求书

权利要求书一种生物质重油加氢提质催化剂,其特征在于:以催化剂重量百分比为基准,活性组分含量:钯1%~6%、铂0.5%~3%、铑1%~4%、钌0.1%~2.5%;助剂含量:碱金属0.1%~0.8%、碱土金属0.2%~1%;催化剂载体为多壁碳纳米管MWNTs‑SBA‑15组合物。
根据权利要求1所述的催化剂,其特征在于:MWNTs占催化剂重量的7%~15%。
根据权利要求1所述的催化剂,其特征在于:催化剂载体MWNTs具有比表面积260m2/g~340m2/g、管外径17.2nm~24.5nm、孔容0.3cm3/g~0.6cm3/g、长径比400~600∶1,纯度96wt%,重金属及盐含量小于0.1wt%。
根据权利要求1或2所述的催化剂,其特征在于:催化剂载体为含Co的MWNTs,Co金属占MWNTs重量百分比为1%~2%,Co金属粒子粒径为20nm~28nm。
根据权利要求1所述的催化剂,其特征在于:该催化剂的助剂选用碱金属钠、钾中的一种和碱土金属镁、钙中的一种。
根据权利要求1所述催化剂的制备方法,其特征在于:将已经进行酸化纯化处理过的MWNTs在超声波作用下分散在含有阴离子表面活性剂的乙醇‑丙酮溶液中,静置12小时,过滤,干燥,得到修饰的碳纳米管;将修饰的碳纳米管和SBA‑15一起研磨成粉状,置于含有贵金属的水溶性盐溶液中进行浸渍,干燥,研磨成粉状,再置于含有碱金属、碱土金属的水溶性盐溶液进行浸渍,干燥,粉碎成35目~50目;在N2保护下高温焙烧,在管式炉中用混合气(VH2∶VAr=2∶1)还原,程序升温还原,在氩气保护下自然冷却到室温。其特征在于:阴离子表面活性剂在乙醇‑丙酮溶液中质量百分比含量为2.0%~3.5%;乙醇‑丙酮体积比为9∶1;焙烧温度为300℃~500℃,焙烧时间2~4小时;还原时程序升温为10℃/分钟升到180℃,保持30分钟,再以5℃/分钟升到200℃~300℃保持2~5小时。
根据权利要求6所述的方法,其特征在于:阴离子表面活性剂选用十二烷基苯磺酸钠或十二烷基苯硫酸钠。
根据权利要求1所述的催化剂,其特征在于:催化剂的比表面积200m2/g~350m2/g,金属颗粒平均颗粒2.1nm~3.2nm,孔径22.4nm~29.5nm,孔容0.9cm3/g~1.6cm3/g。
根据权利要求1所述生物质重油加氢提质催化剂的应用,其特征在于催化反应条件为:反应温度100℃~180℃,氢气压力2.0MPa~5.0MPa,反应时间1~3小时。

说明书

说明书生物质重油加氢提质催化剂及其制备方法和应用
技术领域
本发明属催化剂技术领域,具体涉及一种生物质重油加氢提质固体催化剂及其制备方法和应用。
背景技术
生物质被喻为即时利用的绿色煤炭,具有产量巨大、可储存、碳循环,挥发分和炭活性高,N、S含量低(含N量0.5%~3%,含S量0.1%~1.5%)、灰分低(0.1%~3%),燃烧过程CO2净排放量近似于零等特点。而生物质是目前被认为唯一能直接转化为液体燃料的可再生能源,将可再生的生物质资源转化为洁净的高品位液体燃料部分替代石油,可降低对有限石油资源的依赖,减少污染,改善环境,保护生态,因此国外对生物质技术的研发投入快速增加,把高效利用生物质能调整为本国能源发展战略的优先地位,但我国生物质开发利用处在初期阶段,投入不足,比较成本高,自主研发能力弱,绝大多数生物质没有被合理利用。
直接热解出的生物质油为深棕色或深黑色液体,呈粘稠状并带有刺激性的焦味。碳含量一般为60%左右,氧含量为20%~40%,氢含量6%左右,硫、氮含量极低,而石油中碳含量83%~87%、氢含量11%~14%,其余为硫(0.06%~0.8%)、氮(0.02%~1.7%)、氧(0.08%~1.82%)及微量金属元素(镍、钒、铁等)。其中,乙酸含量一般在26%,总羧值达30%以上,具有很高的酸值,腐蚀性强;氧含量高达20%~40%,导致生物质油热值低;含水量达20%;还存在粘度大、稳定性差等缺点,而且不同原料、不同热解工艺制备出的生物质油其组成有很大差别,限制了其实用性。
生物质油不同于化石油的特性为其品质的提升和实际应用带来了困难。国内外生物油提质方法主要有催化加氢、催化裂解、添加溶剂、乳化及催化酯化等。催化加氢法基于石油化工已广泛应用的催化加氢工艺,被认为是一条可行的途径。催化加氢的关键在于高效催化剂的开发,一般使用多相催化剂,在固定床上进行。以γ‑Al2O3为载体的Ru、Pt、Ni‑Mo、Co‑Mo、Ni‑W等固体催化剂具有一定活性,加氢精制后有机层产物氧含量、酸值和水含量均有所降低,在一定程度上可以提高生物质油的品位,但存在加氢压力和温度较高,催化剂易失活、成本高,产物粘度增加,条件较苛刻,操作复杂,设备投资成本高,聚合、结焦严重等问题,开发低温高效催化剂是亟待解决的问题。
发明内容
本发明的目的在于提供一种生物质重油加氢提质催化剂及其制备方法和应用。
本发明主要涉及生物质油提质方面的研究,首先将生物质油切分为轻组分和重组分,我们重点研究重组分的提质改性。生物质油中醛、酮、酸及其衍生物是造成生物油不稳定和燃烧性能降低的主要因素,借鉴石油化工加氢脱氧(HDO)技术,通过催化加氢将其转化为烷烃、醇或脂等,提高稳定性,能显著降低氧含量和腐蚀性,提高能量密度和降低粘度,得到与石化油性质接近的生物质油,方便储存和运输,达到内燃机燃料油标准。本发明针对目前加氢催化剂需要在高温高压条件下加氢的缺点,高温将导致生物油中部分组分聚合反应和生物油焦化,致使生物油粘度增高和催化剂失活快等问题。本发明旨在制备出适合生物质重油组分低温加氢高效催化剂,降低设备投资和运行成本,经加氢提质后的生物质油性能可与目前化石油相比拟,增强其实用性,实现部分替代化石燃料的目标。
本发明所述催化剂及载体制备过程为:将已经进行酸化纯化处理过的MWNTs在超声波作用下分散在含有阴离子表面活性剂的乙醇‑丙酮(V乙醇∶V丙酮9∶1)溶液中,静置12小时,过滤,干燥,得到修饰的碳纳米管;将修饰的碳纳米管和SBA‑15一起研磨成粉状,置于含有贵金属的水溶性盐溶液中进行浸渍,干燥,研磨成粉状,再置于含有碱金属、碱土金属的水溶性盐溶液进行浸渍,干燥,粉碎成35目~50目;在N2保护下高温焙烧,在管式炉中用混合气(VH2∶VAr=2∶1)还原,程序升温还原,在氩气保护下自然冷却到室温。其特征在于:阴离子表面活性剂在乙醇‑丙酮溶液中质量百分比含量为2.0%~3.5%;乙醇‑丙酮体积比为9∶1;焙烧温度为300℃~500℃,焙烧时间2~4小时;还原时程序升温为10℃/分钟升到180℃,保持30分钟,再以5℃/分钟升到200℃~300℃保持2~5小时。
本发明所述催化剂以催化剂重量百分比为基准,活性组分含量:钯1%~6%、铂0.5%~3%、铑1%~4%、钌0.1%~2.5%;助剂含量:碱金属0.1%~0.8%、碱土金属0.2%~1%;催化剂载体为多壁碳纳米管MWNTs‑SBA‑15组合物。
本发明所述催化剂载体中MWNTs占催化剂重量的7%~15%,最佳重量百分比为5%~10%。
本发明所述催化剂载体包含的MWNTs具有比表面积260m2/g~340m2/g、管外径17.2nm~24.5nm、孔容cm3/g 0.3~0.6cm3/g、长径比400~600∶1,纯度96wt%,重金属及盐含量小于0.1wt%的特性。
本发明所述催化剂载体为含Co的MWNTs,Co金属占MWNTs重量百分比为1%~2%,Co金属粒子粒径为20nm~28nm。
本发明所述催化剂的助剂选用碱金属钠、钾中的一种和碱土金属镁、钙中的一种,优选钾和镁。
本发明所述催化剂选择高担载量贵金属的原因是为了获得较长的催化寿命。
本发明中碳纳米管酸化纯化处理技术按照已经报道的方法进行,在碳纳米管表面或管端加上C=O‑COOH或‑OH基团,纯度达96wt%,重金属及盐含量小于0.1wt%。
本发明所述催化剂制备过程中阴离子表面活性剂选用十二烷基苯磺酸钠或十二烷基苯硫酸钠。
本发明制备的催化剂样品参数为:比表面积200m2/g~350m2/g,金属颗粒平均颗粒2.1nm~3.2nm,孔径22.4nm~29.5nm,孔容0.9cm3/g~1.6cm3/g。
本发明所述固体催化剂用于生物质油重组分加氢提质研究,具体提质过程为:将催化剂和生物重油按质量比1∶30~50比例投入高压釜中,用氢气置换多次,在100℃~180℃,氢气压力2.0MPa~5.0MPa,搅拌速度800rpm~1200rpm条件下反应1~3小时。反应结束后将反应物过滤,分离催化剂和因聚合、焦化反应产生的大分子物质,滤液用GC‑MS分析。
具体实施方式
按照已经报道的方法对碳纳米管进行酸化纯化处理,在碳纳米管表面或管端加上C=O‑COOH或‑OH基团,纯度达96wt%,重金属及盐含量小于0.1wt%,Co金属含量1%~2%。
实施例1 4%Pd‑2%Pt‑0.3%K‑0.5Mg/MWNTs‑SBA‑15催化剂的制备
准确称取0.45克已酸化纯化处理的MWNTs混合在含十二烷基苯磺酸钠2wt%的乙醇‑丙酮(V乙醇∶V丙酮=9∶1)溶液中,超声波作用2小时后静置12小时,过滤,80℃~90℃干燥6小时,得到修饰的碳纳米管0.4克。
将0.4克修饰的碳纳米管和8.9克SBA‑15混合均匀后研磨成粉状,置于含Pd金属0.4克,Pt金属0.2克的盐酸盐溶液中浸渍12小时,90℃~100℃干燥12小时,研磨成粉状,再置于含有碱金属K0.03克、碱土金属Mg0.05克的水溶性硝酸盐溶液中浸渍8小时,90℃~100℃干燥12小时,研磨成40目~50目。
将上述粉状物在N2保护下,450℃焙烧2小时,在管式炉中用混合气(VH2∶VAr=2∶1)还原,以程序升温10℃/分钟升到180℃,保持30分钟,再以5℃/分钟升到200℃保持3小时,Ar气氛保护下冷却到室温,即得目标催化剂A。
实施例2  4%Pd‑2%Rh‑0.5%K‑0.3Mg/MWNTs‑SBA‑15催化剂的制备
准确称取0.65克已酸化纯化处理的MWNTs混合在含十二烷基苯磺酸钠3wt%的乙醇‑丙酮(V乙醇∶V丙酮=9∶1)溶液中,超声波作用3小时后静置12小时,过滤,80℃~90℃干燥6小时,得到修饰的碳纳米管0.6克。
将0.6克修饰的碳纳米管和8.7克SBA‑15混合均匀后研磨成粉状,置于含Pd金属0.4克,Rh金属0.2克的盐酸盐溶液中浸渍12小时,90℃~100℃干燥12小时,研磨成粉状,再置于含有碱金属K0.05克、碱土金属Mg0.03克的水溶性硝酸盐溶液中浸渍12小时,90℃~100℃干燥12小时,研磨成40目~50目。
将上述粉状物在N2保护下,500℃焙烧2小时,在管式炉中用混合气(VH2∶VAr=2∶1)还原,以程序升温10℃/分钟升到180℃,保持30分钟,再以5℃/分钟升到250℃保持3小时,Ar气氛保护下冷却到室温,即得目标催化剂B。实施例3  3%Pd‑2%Ru‑0.5%K‑0.6Mg/MWNTs‑SBA‑15催化剂的制备
准确称取0.65克已酸化纯化处理的MWNTs混合在含十二烷基苯磺酸钠3wt%的乙醇‑丙酮(V乙醇∶V丙酮=9∶1)溶液中,超声波作用4小时后静置12小时,过滤,80℃~90℃干燥12小时,得到修饰的碳纳米管0.6克。
将0.6克修饰的碳纳米管和8.8克SBA‑15混合均匀后研磨成粉状,置于含Pd金属0.3克,Ru金属0.2克的盐酸盐溶液中浸渍12小时,90℃~100℃干燥12小时,研磨成粉状,再置于含有碱金属K0.05克、碱土金属Mg0.06克的水溶性硝酸盐溶液中浸渍12小时,90℃~100℃干燥12小时,研磨成40目~50目。
将上述粉状物在N2保护下,500℃焙烧3小时,在管式炉中用混合气(VH2∶VAr=2∶1)还原,以程序升温10℃/分钟升到180℃,保持30分钟,再以5℃/分钟升到250℃保持2小时,Ar气氛保护下冷却到室温,即得目标催化剂C。
实施例4  3%Pd‑1%Pt‑2%Rh‑0.6%Na‑0.5Ca/MWNTs‑SBA‑15催化剂的制备
准确称取0.87克已酸化纯化处理的MWNTs混合在含十二烷基苯硫酸钠2wt%的乙醇‑丙酮(V乙醇∶V丙酮=9∶1)溶液中,超声波作用4小时后静置12小时,过滤,80℃~90℃干燥12小时,得到修饰的碳纳米管0.8克。
将0.8克修饰的碳纳米管和8.5克SBA‑15混合均匀后研磨成粉状,置于含Pd金属0.3克,Pt金属0.1克,Ru金属0.2克的盐酸盐溶液中浸渍12小时,90℃~100℃干燥12小时,研磨成粉状,再置于含有碱金属Na0.06克、碱土金属Ca0.05克的水溶性盐溶液中浸渍8小时,90℃~100℃干燥12小时,研磨成40目~50目。
将上述粉状物在N2保护下,450℃焙烧3小时,在管式炉中用混合气(VH2∶VAr=2∶1)还原,以程序升温10℃/分钟升到180℃,保持30分钟,再以5℃/分钟升到250℃保持2小时,Ar气氛保护下冷却到室温,即得目标催化剂D。
实施例5  4%Pd‑2%Rh‑1%Ru‑0.6%K‑0.8Ca/MWNTs‑SBA‑15催化剂的制备
准确称取0.87克已酸化纯化处理的MWNTs混合在含十二烷基苯硫酸钠2wt%的乙醇‑丙酮(V乙醇∶V丙酮=9∶1)溶液中,超声波作用4小时后静置12小时,过滤,80℃~90℃干燥12小时,得到修饰的碳纳米管0.8克。
将0.8克修饰的碳纳米管和8.4克SBA‑15混合均匀后研磨成粉状,置于含Pd金属0.4克,Rh金属0.2克,Ru金属0.1克的盐酸盐溶液中浸渍12小时,90℃~100℃干燥12小时,研磨成粉状,再置于含有碱金属K0.06克、碱土金属Ca0.08克的水溶性盐溶液中浸渍8小时,90℃~100℃干燥12小时,研磨成40目~50目。
将上述粉状物在N2保护下,500℃焙烧3小时,在管式炉中用混合气(VH2∶VAr=2∶1)还原,以程序升温10℃/分钟升到180℃,保持30分钟,再以5℃/分钟升到250℃保持2小时,Ar气氛保护下冷却到室温,即得目标催化剂E。
实施例6  4%Pd‑1%Pt‑2%Rh‑0.7%K‑0.8Mg/MWNTs‑SBA‑15催化剂的制备
准确称取0.87克已酸化纯化处理的MWNTs混合在含十二烷基苯磺酸钠3.5wt%的乙醇溶液中,超声波作用4小时后静置12小时,过滤,80℃~90℃干燥12小时,得到修饰的碳纳米管0.8克。
将0.8克修饰的碳纳米管和8.4克SBA‑15混合均匀后研磨成粉状,置于含Pd金属0.4克,Pt金属0.1克,Rh金属0.2克的盐酸盐溶液中浸渍12小时,90℃~100℃干燥12小时,研磨成粉状,再置于含有碱金属K0.07克、碱土金属Mg0.08克的水溶性盐溶液中浸渍12小时,90℃~100℃干燥12小时,研磨成40目~50目。
将上述粉状物在N2保护下,450℃焙烧3小时,在管式炉中用混合气(VH2∶VAr=2∶1)还原,以程序升温10℃/分钟升到180℃,保持30分钟,再以5℃/分钟升到250℃保持2小时,Ar气氛保护下冷却到室温,即得目标催化剂F。
实施例7  A催化剂应用于生物质重油加氢提质
准确称取A催化剂3.0克,100克生物质重油与高压釜中,密闭后用氢气置换多次,在120℃,氢气压力4.5MPa,搅拌速度1000rpm条件下反应2小时,冷却到50℃时开釜,倾出反应物后过滤,分离催化剂和因聚合、焦化反应产生的大分子物质。滤液经蒸馏分为轻重组分,轻组分占生物质重油质量的30.2%,轻组分经GC‑MS分析,结果表明,提质后生物重油中烯烃被彻底加氢成烷烃类稳定物,部分环类化合物开环为直链饱和烃。
实施例8   B催化剂应用于生物质重油加氢提质
准确称取B催化剂4.0克,150克生物质重油与高压釜中,密闭后用氢气置换多次,在120℃,氢气压力4.0MPa,搅拌速度1000rpm条件下反应1小时,冷却到50℃时开釜,倾出反应物后过滤,分离催化剂和因聚合、焦化反应产生的大分子物质。滤液经蒸馏分为轻重组分,轻组分占生物质重油质量的44.3%,轻组分经GC‑MS分析,结果表明,提质后生物重油中烯烃被彻底加氢成烷烃类稳定物,部分环类化合物开环为直链饱和烃。
实施例9  C催化剂应用于生物质重油加氢提质
准确称取C催化剂4.0克,180克生物质重油与高压釜中,密闭后用氢气置换多次,在160℃,氢气压力4.0MPa,搅拌速度1000rpm条件下反应3小时,冷却到50℃时开釜,倾出反应物后过滤,分离催化剂和因聚合、焦化反应产生的大分子物质。滤液经蒸馏分为轻重组分,轻组分占生物质重油质量的28.7%,轻组分经GC‑MS分析,结果表明,提质后生物重油中烯烃被彻底加氢成烷烃类稳定物,部分环类化合物开环为直链饱和烃。
实施例10  D催化剂应用于生物质重油加氢提质
准确称取D催化剂3.0克,100克生物质重油与高压釜中,密闭后用氢气置换多次,在140℃,氢气压力4.5MPa,搅拌速度1000rpm条件下反应2小时,冷却到50℃时开釜,倾出反应物后过滤,分离催化剂和因聚合、焦化反应产生的大分子物质。滤液经蒸馏分为轻重组分,轻组分占生物质重油质量的33.7%,轻组分经GC‑MS分析,结果表明,提质后生物重油中烯烃被彻底加氢成烷烃类稳定物,部分环类化合物开环为直链饱和烃。
实施例11  D催化剂应用于生物质重油加氢提质
准确称取D催化剂3.0克,120克生物质重油与高压釜中,密闭后用氢气置换多次,在150℃,氢气压力4.0MPa,搅拌速度1000rpm条件下反应2小时,冷却到50℃时开釜,倾出反应物后过滤,分离催化剂和因聚合、焦化反应产生的大分子物质。滤液经蒸馏分为轻重组分,轻组分占生物质重油质量的40.5%,轻组分经GC‑MS分析,结果表明,提质后生物重油中烯烃被彻底加氢成烷烃类稳定物,部分环类化合物开环为直链饱和烃。
实施例12  E催化剂应用于生物质重油加氢提质
准确称取E催化剂3.0克,120克生物质重油与高压釜中,密闭后用氢气置换多次,在150℃,氢气压力4.0MPa,搅拌速度1000rpm条件下反应1.5小时,冷却到50℃时开釜,倾出反应物后过滤,分离催化剂和因聚合、焦化反应产生的大分子物质。滤液经蒸馏分为轻重组分,轻组分占生物质重油质量的47.6%,轻组分经GC‑MS分析,结果表明,提质后生物重油中烯烃被彻底加氢成烷烃类稳定物,部分环类化合物开环为直链饱和烃。

生物质重油加氢提质催化剂及其制备方法和应用.pdf_第1页
第1页 / 共7页
生物质重油加氢提质催化剂及其制备方法和应用.pdf_第2页
第2页 / 共7页
生物质重油加氢提质催化剂及其制备方法和应用.pdf_第3页
第3页 / 共7页
点击查看更多>>
资源描述

《生物质重油加氢提质催化剂及其制备方法和应用.pdf》由会员分享,可在线阅读,更多相关《生物质重油加氢提质催化剂及其制备方法和应用.pdf(7页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 103120939 A (43)申请公布日 2013.05.29 CN 103120939 A *CN103120939A* (21)申请号 201110369583.1 (22)申请日 2011.11.18 B01J 23/58(2006.01) C10G 3/00(2006.01) (71)申请人 中国科学院兰州化学物理研究所 地址 730000 甘肃省兰州市城关区天水中路 18 号 (72)发明人 李实军 王健康 闫亮 陈晓明 李静 (74)专利代理机构 兰州中科华西专利代理有限 公司 62002 代理人 方晓佳 (54) 发明名称 生物质重油加氢提质催化剂及其。

2、制备方法和 应用 (57) 摘要 本发明公开了一种生物质重油催化加氢提质 催化剂及其制备方法和应用。该催化剂组成为 : 以含量 1 6钯、 0.5 3铂、 1 4 铑、 0.1 2.5钌贵金属中的一种或两种为加 氢活性组分, 多壁碳纳米管 -SBA-15 组合物为载 体, 含量0.10.8碱金属和0.21碱土 金属为助剂。本发明利用多壁碳纳米管强的吸附 性及对金属粒子的高分散性和 SBA-15 分子筛大 孔道结构, 制备的催化剂具有金属分散度高, 孔径 大, 活性高, 起活速度快等特点且制备方法简单。 该催化剂用于生物质油重组分加氢提质, 在高压 釜中进行转化油品中的非烃化合物和不饱和烃实 验。

3、, 提高其热值, 降低粘度, 增强其实用性。 (51)Int.Cl. 权利要求书 1 页 说明书 5 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书1页 说明书5页 (10)申请公布号 CN 103120939 A CN 103120939 A *CN103120939A* 1/1 页 2 1. 一种生物质重油加氢提质催化剂, 其特征在于 : 以催化剂重量百分比为基准, 活性 组分含量 : 钯 1 6、 铂 0.5 3、 铑 1 4、 钌 0.1 2.5 ; 助剂含量 : 碱金 属 0.1 0.8、 碱土金属 0.2 1 ; 催化剂载体为多壁碳纳米管 MWNTs-S。

4、BA-15 组合 物。 2. 根据权利要求 1 所述的催化剂, 其特征在于 : MWNTs 占催化剂重量的 7 15。 3.根据权利要求1所述的催化剂, 其特征在于 : 催化剂载体MWNTs具有比表面积260m2/ g 340m2/g、 管外径 17.2nm 24.5nm、 孔容 0.3cm3/g 0.6cm3/g、 长径比 400 600 1, 纯度 96wt, 重金属及盐含量小于 0.1wt。 4. 根据权利要求 1 或 2 所述的催化剂, 其特征在于 : 催化剂载体为含 Co 的 MWNTs, Co 金属占 MWNTs 重量百分比为 1 2, Co 金属粒子粒径为 20nm 28nm。 。

5、5. 根据权利要求 1 所述的催化剂, 其特征在于 : 该催化剂的助剂选用碱金属钠、 钾中的 一种和碱土金属镁、 钙中的一种。 6. 根据权利要求 1 所述催化剂的制备方法, 其特征在于 : 将已经进行酸化纯化处理过 的 MWNTs 在超声波作用下分散在含有阴离子表面活性剂的乙醇 - 丙酮溶液中, 静置 12 小 时, 过滤, 干燥, 得到修饰的碳纳米管 ; 将修饰的碳纳米管和 SBA-15 一起研磨成粉状, 置于 含有贵金属的水溶性盐溶液中进行浸渍, 干燥, 研磨成粉状, 再置于含有碱金属、 碱土金属 的水溶性盐溶液进行浸渍, 干燥, 粉碎成 35 目 50 目 ; 在 N2保护下高温焙烧,。

6、 在管式炉中 用混合气 (VH2 VAr 2 1) 还原, 程序升温还原, 在氩气保护下自然冷却到室温。其特征 在于 : 阴离子表面活性剂在乙醇 - 丙酮溶液中质量百分比含量为 2.0 3.5 ; 乙醇 - 丙 酮体积比为 9 1 ; 焙烧温度为 300 500, 焙烧时间 2 4 小时 ; 还原时程序升温为 10 / 分钟升到 180, 保持 30 分钟, 再以 5 / 分钟升到 200 300保持 2 5 小时。 7. 根据权利要求 6 所述的方法, 其特征在于 : 阴离子表面活性剂选用十二烷基苯磺酸 钠或十二烷基苯硫酸钠。 8.根据权利要求1所述的催化剂, 其特征在于 : 催化剂的比表面。

7、积200m2/g350m2/g, 金属颗粒平均颗粒 2.1nm 3.2nm, 孔径 22.4nm 29.5nm, 孔容 0.9cm3/g 1.6cm3/g。 9. 根据权利要求 1 所述生物质重油加氢提质催化剂的应用, 其特征在于催化反应条件 为 : 反应温度 100 180, 氢气压力 2.0MPa 5.0MPa, 反应时间 1 3 小时。 权 利 要 求 书 CN 103120939 A 2 1/5 页 3 生物质重油加氢提质催化剂及其制备方法和应用 技术领域 0001 本发明属催化剂技术领域, 具体涉及一种生物质重油加氢提质固体催化剂及其制 备方法和应用。 背景技术 0002 生物质被喻。

8、为即时利用的绿色煤炭, 具有产量巨大、 可储存、 碳循环, 挥发分和炭 活性高, N、 S 含量低 ( 含 N 量 0.5 3, 含 S 量 0.1 1.5 )、 灰分低 (0.1 3 ), 燃烧过程 CO2净排放量近似于零等特点。而生物质是目前被认为唯一能直接转化为液体燃 料的可再生能源, 将可再生的生物质资源转化为洁净的高品位液体燃料部分替代石油, 可 降低对有限石油资源的依赖, 减少污染, 改善环境, 保护生态, 因此国外对生物质技术的研 发投入快速增加, 把高效利用生物质能调整为本国能源发展战略的优先地位, 但我国生物 质开发利用处在初期阶段, 投入不足, 比较成本高, 自主研发能力弱。

9、, 绝大多数生物质没有 被合理利用。 0003 直接热解出的生物质油为深棕色或深黑色液体, 呈粘稠状并带有刺激性的焦味。 碳含量一般为 60左右, 氧含量为 20 40, 氢含量 6左右, 硫、 氮含量极低, 而石油 中碳含量 83 87、 氢含量 11 14, 其余为硫 (0.06 0.8 )、 氮 (0.02 1.7 )、 氧 (0.08 1.82 ) 及微量金属元素 ( 镍、 钒、 铁等 )。其中, 乙酸含量一般在 26, 总羧值达 30以上, 具有很高的酸值, 腐蚀性强 ; 氧含量高达 20 40, 导致生物 质油热值低 ; 含水量达 20; 还存在粘度大、 稳定性差等缺点, 而且不同。

10、原料、 不同热解工艺 制备出的生物质油其组成有很大差别, 限制了其实用性。 0004 生物质油不同于化石油的特性为其品质的提升和实际应用带来了困难。国内外 生物油提质方法主要有催化加氢、 催化裂解、 添加溶剂、 乳化及催化酯化等。催化加氢法基 于石油化工已广泛应用的催化加氢工艺, 被认为是一条可行的途径。催化加氢的关键在于 高效催化剂的开发, 一般使用多相催化剂, 在固定床上进行。以 -Al2O3为载体的 Ru、 Pt、 Ni-Mo、 Co-Mo、 Ni-W 等固体催化剂具有一定活性, 加氢精制后有机层产物氧含量、 酸值和水 含量均有所降低, 在一定程度上可以提高生物质油的品位, 但存在加氢压。

11、力和温度较高, 催 化剂易失活、 成本高, 产物粘度增加, 条件较苛刻, 操作复杂, 设备投资成本高, 聚合、 结焦严 重等问题, 开发低温高效催化剂是亟待解决的问题。 发明内容 0005 本发明的目的在于提供一种生物质重油加氢提质催化剂及其制备方法和应用。 0006 本发明主要涉及生物质油提质方面的研究, 首先将生物质油切分为轻组分和重组 分, 我们重点研究重组分的提质改性。生物质油中醛、 酮、 酸及其衍生物是造成生物油不稳 定和燃烧性能降低的主要因素, 借鉴石油化工加氢脱氧 (HDO) 技术, 通过催化加氢将其转 化为烷烃、 醇或脂等, 提高稳定性, 能显著降低氧含量和腐蚀性, 提高能量密。

12、度和降低粘度, 得到与石化油性质接近的生物质油, 方便储存和运输, 达到内燃机燃料油标准。 本发明针对 说 明 书 CN 103120939 A 3 2/5 页 4 目前加氢催化剂需要在高温高压条件下加氢的缺点, 高温将导致生物油中部分组分聚合反 应和生物油焦化, 致使生物油粘度增高和催化剂失活快等问题。本发明旨在制备出适合生 物质重油组分低温加氢高效催化剂, 降低设备投资和运行成本, 经加氢提质后的生物质油 性能可与目前化石油相比拟, 增强其实用性, 实现部分替代化石燃料的目标。 0007 本发明所述催化剂及载体制备过程为 : 将已经进行酸化纯化处理过的 MWNTs 在 超声波作用下分散在含。

13、有阴离子表面活性剂的乙醇 - 丙酮 (V乙醇 V丙酮9 1) 溶液中, 静 置 12 小时, 过滤, 干燥, 得到修饰的碳纳米管 ; 将修饰的碳纳米管和 SBA-15 一起研磨成粉 状, 置于含有贵金属的水溶性盐溶液中进行浸渍, 干燥, 研磨成粉状, 再置于含有碱金属、 碱 土金属的水溶性盐溶液进行浸渍, 干燥, 粉碎成 35 目 50 目 ; 在 N2保护下高温焙烧, 在管 式炉中用混合气 (VH2 VAr 2 1) 还原, 程序升温还原, 在氩气保护下自然冷却到室温。 其特征在于 : 阴离子表面活性剂在乙醇 - 丙酮溶液中质量百分比含量为 2.0 3.5 ; 乙 醇 - 丙酮体积比为 9 。

14、1 ; 焙烧温度为 300 500, 焙烧时间 2 4 小时 ; 还原时程序升 温为 10 / 分钟升到 180, 保持 30 分钟, 再以 5 / 分钟升到 200 300保持 2 5 小时。 0008 本发明所述催化剂以催化剂重量百分比为基准, 活性组分含量 : 钯 1 6、 铂 0.5 3、 铑 1 4、 钌 0.1 2.5 ; 助剂含量 : 碱金属 0.1 0.8、 碱土金属 0.2 1 ; 催化剂载体为多壁碳纳米管 MWNTs-SBA-15 组合物。 0009 本发明所述催化剂载体中 MWNTs 占催化剂重量的 7 15, 最佳重量百分比为 5 10。 0010 本发明所述催化剂载体。

15、包含的 MWNTs 具有比表面积 260m2/g 340m2/g、 管外径 17.2nm 24.5nm、 孔容 cm3/g 0.3 0.6cm3/g、 长径比 400 600 1, 纯度 96wt, 重金 属及盐含量小于 0.1wt的特性。 0011 本发明所述催化剂载体为含 Co 的 MWNTs, Co 金属占 MWNTs 重量百分比为 1 2, Co 金属粒子粒径为 20nm 28nm。 0012 本发明所述催化剂的助剂选用碱金属钠、 钾中的一种和碱土金属镁、 钙中的一种, 优选钾和镁。 0013 本发明所述催化剂选择高担载量贵金属的原因是为了获得较长的催化寿命。 0014 本发明中碳纳米。

16、管酸化纯化处理技术按照已经报道的方法进行, 在碳纳米管表面 或管端加上 C O-COOH 或 -OH 基团, 纯度达 96wt, 重金属及盐含量小于 0.1wt。 0015 本发明所述催化剂制备过程中阴离子表面活性剂选用十二烷基苯磺酸钠或十二 烷基苯硫酸钠。 0016 本发明制备的催化剂样品参数为 : 比表面积 200m2/g 350m2/g, 金属颗粒平均颗 粒 2.1nm 3.2nm, 孔径 22.4nm 29.5nm, 孔容 0.9cm3/g 1.6cm3/g。 0017 本发明所述固体催化剂用于生物质油重组分加氢提质研究, 具体提质过程为 : 将 催化剂和生物重油按质量比 1 30 5。

17、0 比例投入高压釜中, 用氢气置换多次, 在 100 180, 氢气压力2.0MPa5.0MPa, 搅拌速度800rpm1200rpm条件下反应13小时。 反 应结束后将反应物过滤, 分离催化剂和因聚合、 焦化反应产生的大分子物质, 滤液用 GC-MS 分析。 说 明 书 CN 103120939 A 4 3/5 页 5 具体实施方式 0018 按照已经报道的方法对碳纳米管进行酸化纯化处理, 在碳纳米管表面或管端加上 C O-COOH 或 -OH 基团, 纯度达 96wt, 重金属及盐含量小于 0.1wt, Co 金属含量 1 2。 0019 实施例 1 4 Pd-2 Pt-0.3 K-0.5。

18、Mg/MWNTs-SBA-15 催化剂的制备 0020 准确称取 0.45 克已酸化纯化处理的 MWNTs 混合在含十二烷基苯磺酸钠 2wt的 乙醇 - 丙酮 (V乙醇 V丙酮 9 1) 溶液中, 超声波作用 2 小时后静置 12 小时, 过滤, 80 90干燥 6 小时, 得到修饰的碳纳米管 0.4 克。 0021 将 0.4 克修饰的碳纳米管和 8.9 克 SBA-15 混合均匀后研磨成粉状, 置于含 Pd 金 属 0.4 克, Pt 金属 0.2 克的盐酸盐溶液中浸渍 12 小时, 90 100干燥 12 小时, 研磨成 粉状, 再置于含有碱金属 K0.03 克、 碱土金属 Mg0.05。

19、 克的水溶性硝酸盐溶液中浸渍 8 小时, 90 100干燥 12 小时, 研磨成 40 目 50 目。 0022 将上述粉状物在 N2保护下, 450焙烧 2 小时, 在管式炉中用混合气 (VH2 VAr 2 1) 还原, 以程序升温 10 / 分钟升到 180, 保持 30 分钟, 再以 5 / 分钟升到 200 保持 3 小时, Ar 气氛保护下冷却到室温, 即得目标催化剂 A。 0023 实施例 2 4 Pd-2 Rh-0.5 K-0.3Mg/MWNTs-SBA-15 催化剂的制备 0024 准确称取 0.65 克已酸化纯化处理的 MWNTs 混合在含十二烷基苯磺酸钠 3wt的 乙醇 -。

20、 丙酮 (V乙醇 V丙酮 9 1) 溶液中, 超声波作用 3 小时后静置 12 小时, 过滤, 80 90干燥 6 小时, 得到修饰的碳纳米管 0.6 克。 0025 将0.6克修饰的碳纳米管和8.7克SBA-15混合均匀后研磨成粉状, 置于含Pd金属 0.4 克, Rh 金属 0.2 克的盐酸盐溶液中浸渍 12 小时, 90 100干燥 12 小时, 研磨成粉 状, 再置于含有碱金属 K0.05 克、 碱土金属 Mg0.03 克的水溶性硝酸盐溶液中浸渍 12 小时, 90 100干燥 12 小时, 研磨成 40 目 50 目。 0026 将上述粉状物在 N2保护下, 500焙烧 2 小时, 。

21、在管式炉中用混合气 (VH2 VAr 21)还原, 以程序升温10/分钟升到180, 保持30分钟, 再以5/分钟升到250保 持 3 小时, Ar 气氛保护下冷却到室温, 即得目标催化剂 B。实施例 3 3 Pd-2 Ru-0.5 K-0.6Mg/MWNTs-SBA-15 催化剂的制备 0027 准确称取 0.65 克已酸化纯化处理的 MWNTs 混合在含十二烷基苯磺酸钠 3wt的 乙醇 - 丙酮 (V乙醇 V丙酮 9 1) 溶液中, 超声波作用 4 小时后静置 12 小时, 过滤, 80 90干燥 12 小时, 得到修饰的碳纳米管 0.6 克。 0028 将0.6克修饰的碳纳米管和8.8克。

22、SBA-15混合均匀后研磨成粉状, 置于含Pd金属 0.3 克, Ru 金属 0.2 克的盐酸盐溶液中浸渍 12 小时, 90 100干燥 12 小时, 研磨成粉 状, 再置于含有碱金属 K0.05 克、 碱土金属 Mg0.06 克的水溶性硝酸盐溶液中浸渍 12 小时, 90 100干燥 12 小时, 研磨成 40 目 50 目。 0029 将上述粉状物在 N2保护下, 500焙烧 3 小时, 在管式炉中用混合气 (VH2 VAr 2 1) 还原, 以程序升温 10 / 分钟升到 180, 保持 30 分钟, 再以 5 / 分钟升到 250 保持 2 小时, Ar 气氛保护下冷却到室温, 即得。

23、目标催化剂 C。 0030 实施例 4 3 Pd-1 Pt-2 Rh-0.6 Na-0.5Ca/MWNTs-SBA-15 催化剂的制备 0031 准确称取 0.87 克已酸化纯化处理的 MWNTs 混合在含十二烷基苯硫酸钠 2wt的 说 明 书 CN 103120939 A 5 4/5 页 6 乙醇 - 丙酮 (V乙醇 V丙酮 9 1) 溶液中, 超声波作用 4 小时后静置 12 小时, 过滤, 80 90干燥 12 小时, 得到修饰的碳纳米管 0.8 克。 0032 将 0.8 克修饰的碳纳米管和 8.5 克 SBA-15 混合均匀后研磨成粉状, 置于含 Pd 金 属 0.3 克, Pt 金。

24、属 0.1 克, Ru 金属 0.2 克的盐酸盐溶液中浸渍 12 小时, 90 100干燥 12 小时, 研磨成粉状, 再置于含有碱金属 Na0.06 克、 碱土金属 Ca0.05 克的水溶性盐溶液中 浸渍 8 小时, 90 100干燥 12 小时, 研磨成 40 目 50 目。 0033 将上述粉状物在 N2保护下, 450焙烧 3 小时, 在管式炉中用混合气 (VH2 VAr 2 1) 还原, 以程序升温 10 / 分钟升到 180, 保持 30 分钟, 再以 5 / 分钟升到 250 保持 2 小时, Ar 气氛保护下冷却到室温, 即得目标催化剂 D。 0034 实施例 5 4 Pd-2。

25、 Rh-1 Ru-0.6 K-0.8Ca/MWNTs-SBA-15 催化剂的制备 0035 准确称取 0.87 克已酸化纯化处理的 MWNTs 混合在含十二烷基苯硫酸钠 2wt的 乙醇 - 丙酮 (V乙醇 V丙酮 9 1) 溶液中, 超声波作用 4 小时后静置 12 小时, 过滤, 80 90干燥 12 小时, 得到修饰的碳纳米管 0.8 克。 0036 将 0.8 克修饰的碳纳米管和 8.4 克 SBA-15 混合均匀后研磨成粉状, 置于含 Pd 金 属 0.4 克, Rh 金属 0.2 克, Ru 金属 0.1 克的盐酸盐溶液中浸渍 12 小时, 90 100干燥 12小时, 研磨成粉状,。

26、 再置于含有碱金属K0.06克、 碱土金属Ca0.08克的水溶性盐溶液中浸 渍 8 小时, 90 100干燥 12 小时, 研磨成 40 目 50 目。 0037 将上述粉状物在 N2保护下, 500焙烧 3 小时, 在管式炉中用混合气 (VH2 VAr 2 1) 还原, 以程序升温 10 / 分钟升到 180, 保持 30 分钟, 再以 5 / 分钟升到 250 保持 2 小时, Ar 气氛保护下冷却到室温, 即得目标催化剂 E。 0038 实施例 6 4 Pd-1 Pt-2 Rh-0.7 K-0.8Mg/MWNTs-SBA-15 催化剂的制备 0039 准确称取0.87克已酸化纯化处理的M。

27、WNTs混合在含十二烷基苯磺酸钠3.5wt的 乙醇溶液中, 超声波作用4小时后静置12小时, 过滤, 8090干燥12小时, 得到修饰的 碳纳米管 0.8 克。 0040 将 0.8 克修饰的碳纳米管和 8.4 克 SBA-15 混合均匀后研磨成粉状, 置于含 Pd 金 属 0.4 克, Pt 金属 0.1 克, Rh 金属 0.2 克的盐酸盐溶液中浸渍 12 小时, 90 100干燥 12小时, 研磨成粉状, 再置于含有碱金属K0.07克、 碱土金属Mg0.08克的水溶性盐溶液中浸 渍 12 小时, 90 100干燥 12 小时, 研磨成 40 目 50 目。 0041 将上述粉状物在 N2。

28、保护下, 450焙烧 3 小时, 在管式炉中用混合气 (VH2 VAr 2 1) 还原, 以程序升温 10 / 分钟升到 180, 保持 30 分钟, 再以 5 / 分钟升到 250 保持 2 小时, Ar 气氛保护下冷却到室温, 即得目标催化剂 F。 0042 实施例 7 A 催化剂应用于生物质重油加氢提质 0043 准确称取A催化剂3.0克, 100克生物质重油与高压釜中, 密闭后用氢气置换多次, 在120, 氢气压力4.5MPa, 搅拌速度1000rpm条件下反应2小时, 冷却到50时开釜, 倾出 反应物后过滤, 分离催化剂和因聚合、 焦化反应产生的大分子物质。 滤液经蒸馏分为轻重组 分。

29、, 轻组分占生物质重油质量的 30.2, 轻组分经 GC-MS 分析, 结果表明, 提质后生物重油 中烯烃被彻底加氢成烷烃类稳定物, 部分环类化合物开环为直链饱和烃。 0044 实施例 8 B 催化剂应用于生物质重油加氢提质 0045 准确称取B催化剂4.0克, 150克生物质重油与高压釜中, 密闭后用氢气置换多次, 说 明 书 CN 103120939 A 6 5/5 页 7 在120, 氢气压力4.0MPa, 搅拌速度1000rpm条件下反应1小时, 冷却到50时开釜, 倾出 反应物后过滤, 分离催化剂和因聚合、 焦化反应产生的大分子物质。 滤液经蒸馏分为轻重组 分, 轻组分占生物质重油质。

30、量的 44.3, 轻组分经 GC-MS 分析, 结果表明, 提质后生物重油 中烯烃被彻底加氢成烷烃类稳定物, 部分环类化合物开环为直链饱和烃。 0046 实施例 9 C 催化剂应用于生物质重油加氢提质 0047 准确称取C催化剂4.0克, 180克生物质重油与高压釜中, 密闭后用氢气置换多次, 在160, 氢气压力4.0MPa, 搅拌速度1000rpm条件下反应3小时, 冷却到50时开釜, 倾出 反应物后过滤, 分离催化剂和因聚合、 焦化反应产生的大分子物质。 滤液经蒸馏分为轻重组 分, 轻组分占生物质重油质量的 28.7, 轻组分经 GC-MS 分析, 结果表明, 提质后生物重油 中烯烃被彻。

31、底加氢成烷烃类稳定物, 部分环类化合物开环为直链饱和烃。 0048 实施例 10 D 催化剂应用于生物质重油加氢提质 0049 准确称取D催化剂3.0克, 100克生物质重油与高压釜中, 密闭后用氢气置换多次, 在140, 氢气压力4.5MPa, 搅拌速度1000rpm条件下反应2小时, 冷却到50时开釜, 倾出 反应物后过滤, 分离催化剂和因聚合、 焦化反应产生的大分子物质。 滤液经蒸馏分为轻重组 分, 轻组分占生物质重油质量的 33.7, 轻组分经 GC-MS 分析, 结果表明, 提质后生物重油 中烯烃被彻底加氢成烷烃类稳定物, 部分环类化合物开环为直链饱和烃。 0050 实施例 11 D。

32、 催化剂应用于生物质重油加氢提质 0051 准确称取D催化剂3.0克, 120克生物质重油与高压釜中, 密闭后用氢气置换多次, 在150, 氢气压力4.0MPa, 搅拌速度1000rpm条件下反应2小时, 冷却到50时开釜, 倾出 反应物后过滤, 分离催化剂和因聚合、 焦化反应产生的大分子物质。 滤液经蒸馏分为轻重组 分, 轻组分占生物质重油质量的 40.5, 轻组分经 GC-MS 分析, 结果表明, 提质后生物重油 中烯烃被彻底加氢成烷烃类稳定物, 部分环类化合物开环为直链饱和烃。 0052 实施例 12 E 催化剂应用于生物质重油加氢提质 0053 准确称取E催化剂3.0克, 120克生物质重油与高压釜中, 密闭后用氢气置换多次, 在150, 氢气压力4.0MPa, 搅拌速度1000rpm条件下反应1.5小时, 冷却到50时开釜, 倾 出反应物后过滤, 分离催化剂和因聚合、 焦化反应产生的大分子物质。 滤液经蒸馏分为轻重 组分, 轻组分占生物质重油质量的 47.6, 轻组分经 GC-MS 分析, 结果表明, 提质后生物重 油中烯烃被彻底加氢成烷烃类稳定物, 部分环类化合物开环为直链饱和烃。 说 明 书 CN 103120939 A 7 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 一般的物理或化学的方法或装置


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1