一种超声血流信号质量实时分析方法.pdf

上传人:Y0****01 文档编号:4727132 上传时间:2018-11-02 格式:PDF 页数:12 大小:441.66KB
返回 下载 相关 举报
摘要
申请专利号:

CN201310042195.1

申请日:

2013.02.04

公开号:

CN103099642A

公开日:

2013.05.15

当前法律状态:

授权

有效性:

有权

法律详情:

专利权的转移IPC(主分类):A61B 8/06登记生效日:20171009变更事项:专利权人变更前权利人:左旺孟变更后权利人:哈尔滨超凡视觉科技有限公司变更事项:地址变更前权利人:150001 黑龙江省哈尔滨市南岗区繁荣街130号变更后权利人:150090 黑龙江省哈尔滨市南岗区嵩山路副36号701室变更事项:共同专利权人变更前权利人:张宏志 刘磊 侯山鹏 石坚 张垒磊|||授权|||实质审查的生效IPC(主分类):A61B 8/06申请日:20130204|||公开

IPC分类号:

A61B8/06

主分类号:

A61B8/06

申请人:

左旺孟; 张宏志; 刘磊; 侯山鹏; 石坚; 张垒磊

发明人:

左旺孟; 刘磊; 张宏志; 侯山鹏; 张垒磊; 石坚

地址:

150001 黑龙江省哈尔滨市南岗区繁荣街130号

优先权:

专利代理机构:

代理人:

PDF下载: PDF下载
内容摘要

本发明涉及一种超声血流信号质量实时分析方法,在超声血流信号的采集过程中,由于探头与血管的位置之间通常存在定位偏差及其它因素的影响,所采集到的超声血流信号质量波动极大。本发明主要采用样本熵的方法评价超声血流信号的质量:首先,获取血管中的超声血流信号并去除噪声;其次,对超声血流信号做一阶和二阶差分处理;然后,采用样本熵的方法计算超声血流信号熵值;最后,通过设置阈值实时判断超声血流信号的优劣。本发明具有对超声血流信号的质量评估准确,同时兼顾高效快速等特点,适用于对各类超声血流信号的实时评价。

权利要求书

权利要求书一种超声血流信号质量实时分析方法,其特征在于:首先,获取血管中的超声血流信号并去除噪声;其次,对超声血流信号做二阶差分处理;然后,采用样本熵的方法计算超声血流信号熵值;最后,通过设置阈值实时判断超声血流信号的优劣,其具体包括以下步骤:
1)首先,确定待测血管的位置,然后用笔标记其位置并涂上超声耦合剂,采用CBS 2000经颅多普勒血流分析仪,将探头对准血管并对准好角度,获取超声血流图;
2)然后,将在步骤1)中获取的超声血流图转化为声谱灰度图,根据该声谱灰度图,按照从上到下的顺序逐列扫描,每一列从上到下相邻两个像素点依次比较,找出第一次相邻两个像素值不同的点,并标记这些点,可以得到用于分析的超声血流信号;
3)对于步骤2)所得到的超声血流信号,采用7‑level‘db6’的小波变换处理,减少混杂在超声血流信号中的低频漂移和高频噪声。其具体方法为:通过减掉小波的第7阶系数来抑制波形的低频漂移,通过减掉小波的第一阶的细节系数移除高频噪声;
4)采用下式对原始超声血流信号做二阶差分处理,
x(n)=y(n+1)‑2*y(n)+y(n‑1)
其中y(n)为原始超声血流信号,x(n)为经差分处理后的超声血流信号;
5)对步骤4)得到的经差分处理过的超声血流信号采用样本熵的方法计算其熵值;
6)通过设置阈值判断超声血流信号样本熵值,实时判断超声血流信号的优劣并提高样本采集的效率,如果样本熵值小于给定值,则返回第1)步,如果样本熵值大于给定值,则方法结束。
根据权利要求1所述的超声血流信号质量实时分析方法,其特征在于: 所述步骤5)中的熵值计算方法为:
1)将序列{x(i)}按顺序组成m维矢量,即:
X(i)=[x(i),x(i+1),...,x(i+m‑1)]  i=1,2,...,N‑m+1
其中N为时间序列的长度,X(i)为要比较的时间序列,m为要比较的时间序列长度;
2)定义X(i)与X(j)间的距离d[X(i),X(j)]为:X(i)与X(j)序列间对应元素中差值最大的一个,即:

其中k为0~m‑1间的变化的整数,此时X(i)和X(j)中其它对应元素间差值自然都小于d,并对每一个X(i)计算与其余矢量X(j)的距离d[X(i),X(j)],(i=1,2,...,N‑m+1);
3)按照给定的常数r(r>0),对每一个i值统计d[X(i),X(j)]<r的数目及此数目与总的矢量个数N‑m+1的比值,记作 

4)再对所有i的平均值,记做Bm(r),即为:

5)再把维数加1,变成m+1,重复1)‑4)的过程,得到 和Bm+1;
6)因此,此序列的样本熵为:

但在实际工作中N不可能为∞,因此N可根据信号的长度取有限值。
根据权利要求1所述的超声血流信号质量实时分析方法,其特征在于:所述步骤6)中的阈值为0.4。

说明书

说明书一种超声血流信号质量实时分析方法
技术领域
本发明涉及一种信号质量实时分析方法,特别是时间序列复杂度分析的非线性动力学方法,属于信号处理中信号复杂度计算技术领域。
背景技术
超声血流信号作为人体生理学信号包含了大量与人体健康相关的信息,这些信息为医生的临床诊断提供了巨大帮助。例如,桡动脉血液在人体手腕部位血管中的流动产生,且这些血液主要来源于心脏并流经人体各器官,因此桡动脉血流包含了诸如血液粘稠度、血流速度和与疾病相关微观结构等丰富的人体器官的信息,也包含了更为丰富的人体生理和病理信息,这样使得超声血流信号可以用来辅助诊断和分析人体诸如胆囊、肾、胃和肺等器官的健康状况。
近年来,超声医学诊断与计算机不断结合起来,通过对人体多处血管中的多普勒超声血流信号进行采集,提取特征,可分析人体的内在功能、状态及健康程度,在临床上有着巨大的应用前景。
然而,在超声血流信号的临床采集过程中,由于探头需要由医师手工操作,探头与血管的位置常存在一定程度的偏差及一些其它因素的影响(如病人的体动等干扰),所采集到的超声血流信号质量会有很大的波动。而现有的超声血流信号采集设备并不具备超声血流信号质量自动评价功能,从而导致大量临床采集到的超声血流信号数据不能被准确应用于各类辅助诊断。此外,在以往的超声血流信号采集过程中,只能采用人工判断超声血流信号质量的好坏,但人工方法会大大降低样本采集的效率,且没有统一的标准,易受到主观和人为因素干扰,严重影响了超声血流信号辅助诊断的发展。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提出了基于样本熵的超声血流信号质量实时分析方法,提高获取高质量超声血流信号的效率减少由于采集不当等因素引起的样本损失,在对血管的血流信号采集过程中对获取到的血流信号的质量进行实时评价,为后续采用超声血流信号为疾病的辅助诊断打下基础。
本发明解决其技术问题所采用的技术方案为:
1、一种超声血流信号质量实时分析方法,首先,获取血管中的超声血流信号并去除噪声;其次,对超声血流信号做二阶差分处理;然后,采用样本熵的方法计算超声血流信号熵值;最后,通过设置阈值(给定值)实时判断超声血流信号的优劣,其具体包括以下步骤:
1)首先,确定待测血管的位置,然后用笔标记其位置并涂上超声耦合剂,采用CBS 2000经颅多普勒血流分析仪,将探头对准血管并对准好角度,获取超声血流图;
2)然后,将在步骤1)中获取的超声血流图(亦即声谱图)转化为声谱灰度图,然后根据该声谱灰度图,按照从上到下的顺序逐列扫描,每一列从上到下相邻两个像素点依次比较,找出第一次相邻两个像素值不同的点,并标记这些点,得到用于分析的超声血流信号;
3)进而对步骤2)所得到的超声血流信号,采用7‑level‘db6’的小波变换处理,减少超声血流信号的低频漂移和高频噪声。其具体方法为:通过减掉小波的第7阶系数来抑制波形的低频漂移,通过减掉小波的第一阶的细节系数移除高频噪声;
4)采用下式对原始超声血流信号做二阶差分处理,
x(n)=y(n+1)‑2*y(n)+y(n‑1)
其中y(n)为原始超声血流信号,x(n)为经差分处理后的超声血流信号;
5)对步骤4)得到的经差分处理过的超声血流信号采用样本熵的方法计算其熵值;
6)通过设置阈值(给定值)判断超声血流信号样本熵值,实时判断超声血流信号的优劣并提高样本采集的效率,如果样本熵值小于给定值,则返回第1)步,如果样本熵值大于给定值,则方法结束;
其中所述步骤5)中的熵值计算方法为:
1)将序列{x(i)}按顺序组成m维矢量,即:
X(i)=[x(i),x(i+1),...,x(i+m‑1)]i=1,2,...,N‑m+1
其中N为时间序列的长度,X(i)为要比较的时间序列,m为要比较的时间序列长度;
2)定义X(i)与X(j)间的距离d[X(i),X(j)]为:X(i)与X(j)序列间对应元素中差值最大的一个,即:
<mrow><MI>d</MI> <MO>[</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>i</MI> <MO>)</MO> </MROW><MO>,</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>]</MO> <MO>=</MO> <MUNDER><MI>max</MI> <MROW><MN>0</MN> <MO>~</MO> <MI>m</MI> <MO>-</MO> <MN>1</MN> </MROW></MUNDER><MO>|</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>i</MI> <MO>+</MO> <MI>k</MI> <MO>)</MO> </MROW><MO>,</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>j</MI> <MO>+</MO> <MI>k</MI> <MO>)</MO> </MROW><MO>|</MO> </MROW>]]&gt;</MATH></MATHS> <BR>其中k为0~m‑1间的变化的整数,此时X(i)和X(j)中其它对应元素间差值自然都小于d,并对每一个X(i)值计算与其余矢量X(j)的距离d[X(i),X(j)],(i=1,2,...,N‑m+1); <BR>3)按照给定的常数r(r>0),对每一个i值统计d[X(i),X(j)]<r的数目及此数目与总的矢量个数N‑m+1的比值,记作 <BR><MATHS num="0002"><MATH><![CDATA[ <mrow><MSUBSUP><MI>C</MI> <MI>i</MI> <MI>m</MI> </MSUBSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>=</MO> <MFRAC><MN>1</MN> <MROW><MI>N</MI> <MO>-</MO> <MI>m</MI> <MO>+</MO> <MN>1</MN> </MROW></MFRAC><MI>num</MI> <MO>{</MO> <MI>d</MI> <MO>[</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>i</MI> <MO>)</MO> </MROW><MO>,</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>]</MO> <MO>&lt;</MO> <MI>r</MI> <MO>}</MO> <MO>,</MO> <MI>i</MI> <MO>=</MO> <MN>1,2</MN> <MO>,</MO> <MO>.</MO> <MO>.</MO> <MO>.</MO> <MO>,</MO> <MI>N</MI> <MO>-</MO> <MI>m</MI> <MO>+</MO> <MN>1</MN> <MO>,</MO> <MI>i</MI> <MO>&amp;NotEqual;</MO> <MI>j</MI> </MROW>]]&gt;</MATH></MATHS> <BR>4)再对所有i的平均值,记做Bm(r),即为: <BR><MATHS num="0003"><MATH><![CDATA[ <mrow><MSUP><MI>B</MI> <MI>m</MI> </MSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>=</MO> <MFRAC><MN>1</MN> <MROW><MI>N</MI> <MO>-</MO> <MI>m</MI> <MO>+</MO> <MN>1</MN> </MROW></MFRAC><MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>1</MN> </MROW><MROW><MI>N</MI> <MO>-</MO> <MI>m</MI> <MO>+</MO> <MN>1</MN> </MROW></MUNDEROVER><MSUBSUP><MI>C</MI> <MI>i</MI> <MI>m</MI> </MSUBSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>5)再把维数加1,变成m+1,重复1)~4)的过程,得到和Bm+1; <BR>6)因此,此序列的样本熵为: <BR><MATHS num="0004"><MATH><![CDATA[ <mrow><MI>SampEn</MI> <MROW><MO>(</MO> <MI>m</MI> <MO>,</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>=</MO> <MUNDER><MI>lim</MI> <MROW><MI>N</MI> <MO>&amp;RightArrow;</MO> <MO>∞</MO> </MROW></MUNDER><MO>{</MO> <MO>-</MO> <MI>ln</MI> <MO>[</MO> <MSUP><MI>B</MI> <MROW><MI>m</MI> <MO>+</MO> <MN>1</MN> </MROW></MSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>/</MO> <MSUP><MI>B</MI> <MI>m</MI> </MSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>]</MO> <MO>}</MO> </MROW>]]&gt;</MATH></MATHS> <BR>但在实际工作中N不可能为∞,因此N可根据信号的长度取有限值。 <BR>所述步骤6)中的阈值给定值优选为0.4。 <BR>本发明与现有技术相比的优点在于:本发明所述方法直接采用样本熵算法计算得到超声血流信号的熵值,减少由于采集因素引起的样本损失,提高了获取高质量超声血流信号的效率具有对超声血流信号的质量评估准确,同时兼顾高效快速的特点,并利用实际采集得到的数据,可对超声血流信号进行正确的评价。 <BR>附图说明 <BR>图1是本发明的超声血流信号质量实时分析方法流程图。 <BR>图2是去噪后高质量的超声血流信号。 <BR>图3经二阶差分后的高质量的超声血流信号。 <BR>图4去噪后低质量的超声血流信号。 <BR>图5经二阶差分后的低质量的超声血流信号。 <BR>图6原始超声血流信号的SampEn(r=0.15,m=1,N=1400)。 <BR>图7二阶差分后超声血流信号的SampEn(r=0.15,m=1,N=1400)。 <BR>具体实施方式 <BR>本发明的具体实施流程见图1,下面结合附图,对本发明的具体实施方式作进一步描述: <BR>1.首先,确定待测血管的位置,然后用笔标记其位置并涂上超声耦合剂,采用CBS&nbsp;2000经颅多普勒血流分析仪,将探头对准血管并对准好角度,获取超声血流图。 <BR>2.获取超声血流图后,首先将超声血流图即声谱图转化为声谱灰度图,然后按照从上到下的顺序逐列扫描声谱灰度图,在每一列从上到下相邻两个像素点依次比较,找出第一次相邻两个像素值不同的点,并标记这些点。所有这些点组成的曲线便是声谱灰度图的上包络,即为用作诊断分析的超声血流信号。上述获得的超声血流信号又可根据信号质量分为:高质量超声血流信号和低质量超声血流信号。如图2所示,高质量超声血流信号是有规律的周期信号(纵坐标为血流速度大小,横坐标为样本点数),但由于每个周期的长度不同,因此将其定义为:伪周期规律的时间序列。反之,如图4所示低质量超声血流信号则是信号周期无规律并且血流速度大小变化剧烈(纵坐标为血流速度大小,横坐标为样本点数),因此将其定义为:非周期无规律的时间序列。 <BR>3.为减少噪声对今后诊断分析的影响,采用7‑level‘db6’的小波变换方法减少手腕超声血流信号的低频漂移和高频噪声,即通过减掉小波的第7阶系数来抑制波形的低频漂移,通过减掉小波的第一阶的细节系数移除高频噪声; <BR>4.根据步骤3获取超声血流信号后对其做二阶差分处理,这主要是由于时间序列差分能够减少趋势和长期变化的影响,差分后的序列在常数均值的一定范围内振荡,趋向于稳定序列,解释波动更为直观和清晰,变化值通常比绝对水平值更易于统计处理,采用下式对原始超声血流信号做二阶差分处理,经二阶差分处理过的超声血流信号如图3所示,从图3可以看出,经过二阶差分处理过的超声血流信号仍为一个伪周期的时间序列,其纵坐标为差分后时间序列幅值,横坐标为差分后时间序列的样本点个数。 <BR>x(n)=y(n+1)‑2*y(n)+y(n‑1)&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(1) <BR>其中y(n)为原始超声血流信号,x(n)为经差分处理后的超声血流信号。 <BR>5.为在超声血流信号的采集过程中,评价超声血流信号的质量区分出高质量超声血流信号和低质量超声血流信号,并将该评价方法嵌入到超声血流信号采集设备中,对得到的经差分处理过的超声血流信号采用样本熵的方法计算其熵值,样本熵计算时间序列(超声血流信号)的具体计算步骤如下: <BR>1)将序列{x(i)}按顺序组成m维矢量,即: <BR>X(i)=[x(i),x(i+1),...,x(i+m‑1)]&nbsp;&nbsp;i=1,2,...,N‑m+1。&nbsp;&nbsp;&nbsp;&nbsp;(2) <BR>其中N为时间序列的长度,X(i)为要比较的时间序列,m为要比较的时间序列长度。 <BR>2)定义X(i)与X(j)间的距离d[X(i),X(j)]为:X(i)与X(j)序列间对应元素中差值最大的一个,即: <BR><MATHS num="0005"><MATH><![CDATA[ <mrow><MROW><MI>d</MI> <MO>[</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>i</MI> <MO>)</MO> </MROW><MO>,</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>]</MO> <MO>=</MO> <MUNDER><MI>max</MI> <MROW><MN>0</MN> <MO>~</MO> <MI>m</MI> <MO>-</MO> <MN>1</MN> </MROW></MUNDER><MO>|</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>i</MI> <MO>+</MO> <MI>k</MI> <MO>)</MO> </MROW><MO>,</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>j</MI> <MO>+</MO> <MI>k</MI> <MO>)</MO> </MROW><MO>|</MO> </MROW><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>3</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>其中k为0~m‑1间的变化的整数,此时X(i)和X(j)中其它对应元素间差值自然都小于d,并对每一个X(i)值计算与其余矢量X(j)的距离d[X(i),X(j)],(i=1,2,...,N‑m+1)。 <BR>3)按照给定的常数r(r>0)(判断两时间序列是否匹配的指标),对每一个i值统计d[X(i),X(j)]<r的数目及此数目与总的矢量个数N‑m+1的比值,记作<MATHS num="0006"><MATH><![CDATA[ <mrow> <MSUBSUP><MI>C</MI> <MI>i</MI> <MI>m</MI> </MSUBSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR><MATHS num="0007"><MATH><![CDATA[ <mrow><MSUBSUP><MI>C</MI> <MI>i</MI> <MI>m</MI> </MSUBSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>=</MO> <MFRAC><MN>1</MN> <MROW><MI>N</MI> <MO>-</MO> <MI>m</MI> <MO>+</MO> <MN>1</MN> </MROW></MFRAC><MI>num</MI> <MO>{</MO> <MI>d</MI> <MO>[</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>i</MI> <MO>)</MO> </MROW><MO>,</MO> <MI>X</MI> <MROW><MO>(</MO> <MI>j</MI> <MO>)</MO> </MROW><MO>]</MO> <MO>&lt;</MO> <MI>r</MI> <MO>}</MO> <MO>,</MO> <MI>i</MI> <MO>=</MO> <MN>1,2</MN> <MO>,</MO> <MO>.</MO> <MO>.</MO> <MO>.</MO> <MO>,</MO> <MI>N</MI> <MO>-</MO> <MI>m</MI> <MO>+</MO> <MN>1</MN> <MO>,</MO> <MI>i</MI> <MO>&amp;NotEqual;</MO> <MI>j</MI> <MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>4</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>4)再对所有i的平均值,记做Bm(r),即为: <BR><MATHS num="0008"><MATH><![CDATA[ <mrow><MSUP><MI>B</MI> <MI>m</MI> </MSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>=</MO> <MFRAC><MN>1</MN> <MROW><MI>N</MI> <MO>-</MO> <MI>m</MI> <MO>+</MO> <MN>1</MN> </MROW></MFRAC><MUNDEROVER><MI>Σ</MI> <MROW><MI>i</MI> <MO>=</MO> <MN>1</MN> </MROW><MROW><MI>N</MI> <MO>-</MO> <MI>m</MI> <MO>+</MO> <MN>1</MN> </MROW></MUNDEROVER><MSUBSUP><MI>C</MI> <MI>i</MI> <MI>m</MI> </MSUBSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>5</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>5)再把维数加1,变成m+1,重复1)‑4)的过程,得到和Bm+1。 <BR>6)因此,此序列的样本熵为: <BR><MATHS num="0009"><MATH><![CDATA[ <mrow><MROW><MI>SampEn</MI> <MROW><MO>(</MO> <MI>m</MI> <MO>,</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>=</MO> <MUNDER><MI>lim</MI> <MROW><MI>N</MI> <MO>&amp;RightArrow;</MO> <MO>∞</MO> </MROW></MUNDER><MO>{</MO> <MO>-</MO> <MI>ln</MI> <MO>[</MO> <MSUP><MI>B</MI> <MROW><MI>m</MI> <MO>+</MO> <MN>1</MN> </MROW></MSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>/</MO> <MSUP><MI>B</MI> <MI>m</MI> </MSUP><MROW><MO>(</MO> <MI>r</MI> <MO>)</MO> </MROW><MO>]</MO> <MO>}</MO> </MROW><MO>-</MO> <MO>-</MO> <MO>-</MO> <MROW><MO>(</MO> <MN>6</MN> <MO>)</MO> </MROW></MROW>]]&gt;</MATH></MATHS> <BR>但在实际工作中N不可能为∞,因此N可根据信号的长度取有限值。 <BR>6.最后,通过设置阈值判断超声血流信号样本熵值,实时判断超声血流信号的优劣并提高样本采集的效率。在本发明中这项评价工作是基于建立的超声血流信号数据集进行的,在建立的数据库中包括来自于6个不同人的57个超声血流信号样本,其中包括质量高的和质量低的超声血流信号,每个超声血流信号的长度均为1400个点。 <BR>如图6所示,通过设定一个阈值就可以判断采集到的超声血流信号的好坏,通过大量样本实验发现,当样本熵值大于0.33时,采集到的超声血流信号是可以应用在今后的研究中,但是当阈值设定的相对较高时,如熵值大于0.33时(如图6所示),原信号的样本熵值很难达到,为了采集到样本熵较高时的信号就会降低采集样本的效率。因此,为进一步放大高质量和低质量的超声血流信号的熵值的差异,可在计算超声血流信号的样本熵前进行二阶差分处理。这主要是由于时间序列差分能够减少趋势和长期变化的影响,差分后的序列更能够在常数均值的一定范围内振荡,同时趋向于稳定序列,解释波动更为直观和清晰,变化值通常比绝对水平值更易于统计处理。 <BR>由图3所示,二阶差分后的高质量超声血流信号仍是一个伪周期信号,而由图5所示的低质量超声血流信号则为一个无规则的随机信号,两幅图中横坐标为样本点数,纵坐标为信号的波动幅值,然后对处理过的超声血流信号再采用步骤5)所述样本熵算法来计算其熵值。如图3和图5所示的差分处理过的高质量和低质量超声血流信号熵值分别为0.64和0.28,而如图2和图4所示的原始的高质量和低质量超声血流信号熵值可分别计算为0.47和0.26,可以看出经过差分处理的高质量超声血流信号的熵值变化较大而低质量超声血流信号的熵值变化不大。此外,在图6和图7中分别列出了57个超声血流信号样本的原始信号和差分后信号的熵值,图中纵坐标为熵值的大小横坐标为样本数,由图7可以看出经过差分处理高质量和低质量超声血流信号的熵值相比于原始超声血流信号熵值的差异更大更容易区分,当阈值为0.4时就可以判断出超声血流信号的优劣并提高了样本采集的效率。 <BR>通过本发明所述方法,可以得到: <BR>1.研究发现低质量信号的复杂度低,样本熵值小,在二阶差分后样本熵变化也不是很大,甚至会减小,高质量的信号复杂度比较高,样本熵值也比较大,在二阶差分后样本熵明显增大,这可以使我们更容易的设定阈值对超声血流信号的质量好坏做出分类。 <BR>2.如图7所示当阈值取为0.4时效果最优,二阶差分后SampEn值大于此阈值的都是可以被接受的信号,此结果也与人为经验分析后得出的结果一致。本研究适用于对超声血流信号的实时评估。 <BR>本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。</p></div> </div> </div> </div> <div class="tempdiv cssnone" style="line-height:0px;height:0px; overflow:hidden;"> </div> <div id="page"> <div class="page"><img src='https://img.zhuanlichaxun.net/fileroot2/2018-11/2/23cc395a-a576-4153-bce8-9578dc84d3dd/23cc395a-a576-4153-bce8-9578dc84d3dd1.gif' alt="一种超声血流信号质量实时分析方法.pdf_第1页" width='100%'/></div><div class="pageSize">第1页 / 共12页</div> <div class="page"><img src='https://img.zhuanlichaxun.net/fileroot2/2018-11/2/23cc395a-a576-4153-bce8-9578dc84d3dd/23cc395a-a576-4153-bce8-9578dc84d3dd2.gif' alt="一种超声血流信号质量实时分析方法.pdf_第2页" width='100%'/></div><div class="pageSize">第2页 / 共12页</div> <div class="page"><img src='https://img.zhuanlichaxun.net/fileroot2/2018-11/2/23cc395a-a576-4153-bce8-9578dc84d3dd/23cc395a-a576-4153-bce8-9578dc84d3dd3.gif' alt="一种超声血流信号质量实时分析方法.pdf_第3页" width='100%'/></div><div class="pageSize">第3页 / 共12页</div> </div> <div id="pageMore" class="btnmore" onclick="ShowSvg();">点击查看更多>></div> <div style="margin-top:20px; line-height:0px; height:0px; overflow:hidden;"> <div style=" font-size: 16px; background-color:#e5f0f7; font-weight: bold; text-indent:10px; line-height: 40px; height:40px; padding-bottom: 0px; margin-bottom:10px;">资源描述</div> <div class="detail-article prolistshowimg"> <p>《一种超声血流信号质量实时分析方法.pdf》由会员分享,可在线阅读,更多相关《一种超声血流信号质量实时分析方法.pdf(12页珍藏版)》请在专利查询网上搜索。</p> <p >1、(10)申请公布号 CN 103099642 A (43)申请公布日 2013.05.15 CN 103099642 A *CN103099642A* (21)申请号 201310042195.1 (22)申请日 2013.02.04 A61B 8/06(2006.01) (71)申请人 左旺孟 地址 150001 黑龙江省哈尔滨市南岗区繁荣 街 130 号 申请人 张宏志 刘磊 侯山鹏 石坚 张垒磊 (72)发明人 左旺孟 刘磊 张宏志 侯山鹏 张垒磊 石坚 (54) 发明名称 一种超声血流信号质量实时分析方法 (57) 摘要 本发明涉及一种超声血流信号质量实时分析 方法, 在超声血流信号的。</p> <p >2、采集过程中, 由于探头与 血管的位置之间通常存在定位偏差及其它因素的 影响, 所采集到的超声血流信号质量波动极大。 本 发明主要采用样本熵的方法评价超声血流信号的 质量 : 首先, 获取血管中的超声血流信号并去除 噪声 ; 其次, 对超声血流信号做一阶和二阶差分 处理 ; 然后, 采用样本熵的方法计算超声血流信 号熵值 ; 最后, 通过设置阈值实时判断超声血流 信号的优劣。本发明具有对超声血流信号的质量 评估准确, 同时兼顾高效快速等特点, 适用于对各 类超声血流信号的实时评价。 (51)Int.Cl. 权利要求书 2 页 说明书 5 页 附图 4 页 (19)中华人民共和国国家知识产权局 (。</p> <p >3、12)发明专利申请 权利要求书2页 说明书5页 附图4页 (10)申请公布号 CN 103099642 A CN 103099642 A *CN103099642A* 1/2 页 2 1. 一种超声血流信号质量实时分析方法, 其特征在于 : 首先, 获取血管中的超声血流 信号并去除噪声 ; 其次, 对超声血流信号做二阶差分处理 ; 然后, 采用样本熵的方法计算超 声血流信号熵值 ; 最后, 通过设置阈值实时判断超声血流信号的优劣, 其具体包括以下步 骤 : 1) 首先, 确定待测血管的位置, 然后用笔标记其位置并涂上超声耦合剂, 采用 CBS 2000 经颅多普勒血流分析仪, 将探头对准血管并。</p> <p >4、对准好角度, 获取超声血流图 ; 2) 然后, 将在步骤 1) 中获取的超声血流图转化为声谱灰度图, 根据该声谱灰度图, 按 照从上到下的顺序逐列扫描, 每一列从上到下相邻两个像素点依次比较, 找出第一次相邻 两个像素值不同的点, 并标记这些点, 可以得到用于分析的超声血流信号 ; 3) 对于步骤 2) 所得到的超声血流信号, 采用 7-leveldb6 的小波变换处理, 减少混 杂在超声血流信号中的低频漂移和高频噪声。其具体方法为 : 通过减掉小波的第 7 阶系数 来抑制波形的低频漂移, 通过减掉小波的第一阶的细节系数移除高频噪声 ; 4) 采用下式对原始超声血流信号做二阶差分处理, x(n。</p> <p >5、) y(n+1)-2*y(n)+y(n-1) 其中 y(n) 为原始超声血流信号, x(n) 为经差分处理后的超声血流信号 ; 5) 对步骤 4) 得到的经差分处理过的超声血流信号采用样本熵的方法计算其熵值 ; 6) 通过设置阈值判断超声血流信号样本熵值, 实时判断超声血流信号的优劣并提高样 本采集的效率, 如果样本熵值小于给定值, 则返回第 1) 步, 如果样本熵值大于给定值, 则方 法结束。 2. 根据权利要求 1 所述的超声血流信号质量实时分析方法, 其特征在于 : 所述步骤 5) 中的熵值计算方法为 : 1) 将序列 x(i) 按顺序组成 m 维矢量, 即 : X(i) x(i), x。</p> <p >6、(i+1), ., x(i+m-1) i 1, 2, ., N-m+1 其中 N 为时间序列的长度, X(i) 为要比较的时间序列, m 为要比较的时间序列长度 ; 2) 定义 X(i) 与 X(j) 间的距离 dX(i), X(j) 为 : X(i) 与 X(j) 序列间对应元素中差值 最大的一个, 即 : 其中k为0m-1间的变化的整数, 此时X(i)和X(j)中其它对应元素间差值自然都小 于 d, 并对每一个 X(i) 计算与其余矢量 X(j) 的距离 dX(i), X(j), (i 1, 2, ., N-m+1) ; 3) 按照给定的常数 r(r 0), 对每一个 i 值统计 dX(i。</p> <p >7、), X(j) r 的数目及此数目 与总的矢量个数 N-m+1 的比值, 记作 4) 再对所有 i 的平均值, 记做 Bm(r), 即为 : 5) 再把维数加 1, 变成 m+1, 重复 1)-4) 的过程, 得到 和 Bm+1; 6) 因此, 此序列的样本熵为 : 权 利 要 求 书 CN 103099642 A 2 2/2 页 3 但在实际工作中 N 不可能为, 因此 N 可根据信号的长度取有限值。 3. 根据权利要求 1 所述的超声血流信号质量实时分析方法, 其特征在于 : 所述步骤 6) 中的阈值为 0.4。 权 利 要 求 书 CN 103099642 A 3 1/5 页 4 一种超。</p> <p >8、声血流信号质量实时分析方法 技术领域 0001 本发明涉及一种信号质量实时分析方法, 特别是时间序列复杂度分析的非线性动 力学方法, 属于信号处理中信号复杂度计算技术领域。 背景技术 0002 超声血流信号作为人体生理学信号包含了大量与人体健康相关的信息, 这些信息 为医生的临床诊断提供了巨大帮助。 例如, 桡动脉血液在人体手腕部位血管中的流动产生, 且这些血液主要来源于心脏并流经人体各器官, 因此桡动脉血流包含了诸如血液粘稠度、 血流速度和与疾病相关微观结构等丰富的人体器官的信息, 也包含了更为丰富的人体生理 和病理信息, 这样使得超声血流信号可以用来辅助诊断和分析人体诸如胆囊、 肾、 胃和。</p> <p >9、肺等 器官的健康状况。 0003 近年来, 超声医学诊断与计算机不断结合起来, 通过对人体多处血管中的多普勒 超声血流信号进行采集, 提取特征, 可分析人体的内在功能、 状态及健康程度, 在临床上有 着巨大的应用前景。 0004 然而, 在超声血流信号的临床采集过程中, 由于探头需要由医师手工操作, 探头与 血管的位置常存在一定程度的偏差及一些其它因素的影响 ( 如病人的体动等干扰 ), 所采 集到的超声血流信号质量会有很大的波动。 而现有的超声血流信号采集设备并不具备超声 血流信号质量自动评价功能, 从而导致大量临床采集到的超声血流信号数据不能被准确应 用于各类辅助诊断。 此外, 在以往的超。</p> <p >10、声血流信号采集过程中, 只能采用人工判断超声血流 信号质量的好坏, 但人工方法会大大降低样本采集的效率, 且没有统一的标准, 易受到主观 和人为因素干扰, 严重影响了超声血流信号辅助诊断的发展。 发明内容 0005 本发明要解决的技术问题是 : 克服现有技术的不足, 提出了基于样本熵的超声血 流信号质量实时分析方法, 提高获取高质量超声血流信号的效率减少由于采集不当等因素 引起的样本损失, 在对血管的血流信号采集过程中对获取到的血流信号的质量进行实时评 价, 为后续采用超声血流信号为疾病的辅助诊断打下基础。 0006 本发明解决其技术问题所采用的技术方案为 : 0007 1、 一种超声血流信号。</p> <p >11、质量实时分析方法, 首先, 获取血管中的超声血流信号并去 除噪声 ; 其次, 对超声血流信号做二阶差分处理 ; 然后, 采用样本熵的方法计算超声血流信 号熵值 ; 最后, 通过设置阈值 ( 给定值 ) 实时判断超声血流信号的优劣, 其具体包括以下步 骤 : 0008 1) 首先, 确定待测血管的位置, 然后用笔标记其位置并涂上超声耦合剂, 采用 CBS 2000 经颅多普勒血流分析仪, 将探头对准血管并对准好角度, 获取超声血流图 ; 0009 2) 然后, 将在步骤 1) 中获取的超声血流图 ( 亦即声谱图 ) 转化为声谱灰度图, 然 后根据该声谱灰度图, 按照从上到下的顺序逐列扫描, 每一。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>12、列从上到下相邻两个像素点依 说 明 书 CN 103099642 A 4 2/5 页 5 次比较, 找出第一次相邻两个像素值不同的点, 并标记这些点, 得到用于分析的超声血流信 号 ; 0010 3) 进而对步骤 2) 所得到的超声血流信号, 采用 7-leveldb6 的小波变换处理, 减少超声血流信号的低频漂移和高频噪声。其具体方法为 : 通过减掉小波的第 7 阶系数来 抑制波形的低频漂移, 通过减掉小波的第一阶的细节系数移除高频噪声 ; 0011 4) 采用下式对原始超声血流信号做二阶差分处理, 0012 x(n) y(n+1)-2*y(n)+y(n-1) 0013 其中 y(n) 为原。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>13、始超声血流信号, x(n) 为经差分处理后的超声血流信号 ; 0014 5) 对步骤 4) 得到的经差分处理过的超声血流信号采用样本熵的方法计算其熵 值 ; 0015 6) 通过设置阈值 ( 给定值 ) 判断超声血流信号样本熵值, 实时判断超声血流信号 的优劣并提高样本采集的效率, 如果样本熵值小于给定值, 则返回第 1) 步, 如果样本熵值 大于给定值, 则方法结束 ; 0016 其中所述步骤 5) 中的熵值计算方法为 : 0017 1) 将序列 x(i) 按顺序组成 m 维矢量, 即 : 0018 X(i) x(i), x(i+1), ., x(i+m-1)i 1, 2, ., N-m+1。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>14、 0019 其中 N 为时间序列的长度, X(i) 为要比较的时间序列, m 为要比较的时间序列长 度 ; 0020 2) 定义 X(i) 与 X(j) 间的距离 dX(i), X(j) 为 : X(i) 与 X(j) 序列间对应元素中 差值最大的一个, 即 : 0021 0022 其中k为0m-1间的变化的整数, 此时X(i)和X(j)中其它对应元素间差值自然 都小于 d, 并对每一个 X(i) 值计算与其余矢量 X(j) 的距离 dX(i), X(j), (i 1, 2, ., N-m+1) ; 0023 3) 按照给定的常数 r(r 0), 对每一个 i 值统计 dX(i), X(j) 。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>15、r 的数目及此 数目与总的矢量个数 N-m+1 的比值, 记作 0024 0025 4) 再对所有 i 的平均值, 记做 Bm(r), 即为 : 0026 0027 5) 再把维数加 1, 变成 m+1, 重复 1) 4) 的过程, 得到和 Bm+1; 0028 6) 因此, 此序列的样本熵为 : 0029 0030 但在实际工作中 N 不可能为, 因此 N 可根据信号的长度取有限值。 0031 所述步骤 6) 中的阈值给定值优选为 0.4。 0032 本发明与现有技术相比的优点在于 : 本发明所述方法直接采用样本熵算法计算得 到超声血流信号的熵值, 减少由于采集因素引起的样本损失, 提高了获。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>16、取高质量超声血流 说 明 书 CN 103099642 A 5 3/5 页 6 信号的效率具有对超声血流信号的质量评估准确, 同时兼顾高效快速的特点, 并利用实际 采集得到的数据, 可对超声血流信号进行正确的评价。 附图说明 0033 图 1 是本发明的超声血流信号质量实时分析方法流程图。 0034 图 2 是去噪后高质量的超声血流信号。 0035 图 3 经二阶差分后的高质量的超声血流信号。 0036 图 4 去噪后低质量的超声血流信号。 0037 图 5 经二阶差分后的低质量的超声血流信号。 0038 图 6 原始超声血流信号的 SampEn(r 0.15, m 1, N 1400)。 0。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>17、039 图 7 二阶差分后超声血流信号的 SampEn(r 0.15, m 1, N 1400)。 具体实施方式 0040 本发明的具体实施流程见图 1, 下面结合附图, 对本发明的具体实施方式作进一步 描述 : 0041 1. 首先, 确定待测血管的位置, 然后用笔标记其位置并涂上超声耦合剂, 采用 CBS 2000 经颅多普勒血流分析仪, 将探头对准血管并对准好角度, 获取超声血流图。 0042 2. 获取超声血流图后, 首先将超声血流图即声谱图转化为声谱灰度图, 然后按照 从上到下的顺序逐列扫描声谱灰度图, 在每一列从上到下相邻两个像素点依次比较, 找出 第一次相邻两个像素值不同的点, 。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>18、并标记这些点。所有这些点组成的曲线便是声谱灰度图 的上包络, 即为用作诊断分析的超声血流信号。上述获得的超声血流信号又可根据信号质 量分为 : 高质量超声血流信号和低质量超声血流信号。 如图2所示, 高质量超声血流信号是 有规律的周期信号 ( 纵坐标为血流速度大小, 横坐标为样本点数 ), 但由于每个周期的长度 不同, 因此将其定义为 : 伪周期规律的时间序列。反之, 如图 4 所示低质量超声血流信号则 是信号周期无规律并且血流速度大小变化剧烈 ( 纵坐标为血流速度大小, 横坐标为样本点 数 ), 因此将其定义为 : 非周期无规律的时间序列。 0043 3. 为减少噪声对今后诊断分析的影响, 。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>19、采用 7-leveldb6 的小波变换方法减少 手腕超声血流信号的低频漂移和高频噪声, 即通过减掉小波的第 7 阶系数来抑制波形的低 频漂移, 通过减掉小波的第一阶的细节系数移除高频噪声 ; 0044 4. 根据步骤 3 获取超声血流信号后对其做二阶差分处理, 这主要是由于时间序列 差分能够减少趋势和长期变化的影响, 差分后的序列在常数均值的一定范围内振荡, 趋向 于稳定序列, 解释波动更为直观和清晰, 变化值通常比绝对水平值更易于统计处理, 采用下 式对原始超声血流信号做二阶差分处理, 经二阶差分处理过的超声血流信号如图 3 所示, 从图 3 可以看出, 经过二阶差分处理过的超声血流信号仍为。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>20、一个伪周期的时间序列, 其纵 坐标为差分后时间序列幅值, 横坐标为差分后时间序列的样本点个数。 0045 x(n) y(n+1)-2*y(n)+y(n-1) (1) 0046 其中 y(n) 为原始超声血流信号, x(n) 为经差分处理后的超声血流信号。 0047 5. 为在超声血流信号的采集过程中, 评价超声血流信号的质量区分出高质量超 声血流信号和低质量超声血流信号, 并将该评价方法嵌入到超声血流信号采集设备中, 对 说 明 书 CN 103099642 A 6 4/5 页 7 得到的经差分处理过的超声血流信号采用样本熵的方法计算其熵值, 样本熵计算时间序列 ( 超声血流信号 ) 的具体计。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>21、算步骤如下 : 0048 1) 将序列 x(i) 按顺序组成 m 维矢量, 即 : 0049 X(i) x(i), x(i+1), ., x(i+m-1) i 1, 2, ., N-m+1。 (2) 0050 其中 N 为时间序列的长度, X(i) 为要比较的时间序列, m 为要比较的时间序列长 度。 0051 2) 定义 X(i) 与 X(j) 间的距离 dX(i), X(j) 为 : X(i) 与 X(j) 序列间对应元素中 差值最大的一个, 即 : 0052 0053 其中k为0m-1间的变化的整数, 此时X(i)和X(j)中其它对应元素间差值自然 都小于 d, 并对每一个 X(i) 值。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>22、计算与其余矢量 X(j) 的距离 dX(i), X(j), (i 1, 2, ., N-m+1)。 0054 3) 按照给定的常数 r(r 0)( 判断两时间序列是否匹配的指标 ), 对每一个 i 值 统计 dX(i), X(j) r 的数目及此数目与总的矢量个数 N-m+1 的比值, 记作 0055 0056 4) 再对所有 i 的平均值, 记做 Bm(r), 即为 : 0057 0058 5) 再把维数加 1, 变成 m+1, 重复 1)-4) 的过程, 得到和 Bm+1。 0059 6) 因此, 此序列的样本熵为 : 0060 0061 但在实际工作中 N 不可能为, 因此 N 可根据信。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>23、号的长度取有限值。 0062 6. 最后, 通过设置阈值判断超声血流信号样本熵值, 实时判断超声血流信号的优 劣并提高样本采集的效率。 在本发明中这项评价工作是基于建立的超声血流信号数据集进 行的, 在建立的数据库中包括来自于 6 个不同人的 57 个超声血流信号样本, 其中包括质量 高的和质量低的超声血流信号, 每个超声血流信号的长度均为 1400 个点。 0063 如图 6 所示, 通过设定一个阈值就可以判断采集到的超声血流信号的好坏, 通过 大量样本实验发现, 当样本熵值大于 0.33 时, 采集到的超声血流信号是可以应用在今后的 研究中, 但是当阈值设定的相对较高时, 如熵值大于 0.。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>24、33 时 ( 如图 6 所示 ), 原信号的样本 熵值很难达到, 为了采集到样本熵较高时的信号就会降低采集样本的效率。 因此, 为进一步 放大高质量和低质量的超声血流信号的熵值的差异, 可在计算超声血流信号的样本熵前进 行二阶差分处理。这主要是由于时间序列差分能够减少趋势和长期变化的影响, 差分后的 序列更能够在常数均值的一定范围内振荡, 同时趋向于稳定序列, 解释波动更为直观和清 晰, 变化值通常比绝对水平值更易于统计处理。 0064 由图3所示, 二阶差分后的高质量超声血流信号仍是一个伪周期信号, 而由图5所 示的低质量超声血流信号则为一个无规则的随机信号, 两幅图中横坐标为样本点数, 纵。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>25、坐 说 明 书 CN 103099642 A 7 5/5 页 8 标为信号的波动幅值, 然后对处理过的超声血流信号再采用步骤 5) 所述样本熵算法来计 算其熵值。如图 3 和图 5 所示的差分处理过的高质量和低质量超声血流信号熵值分别为 0.64 和 0.28, 而如图 2 和图 4 所示的原始的高质量和低质量超声血流信号熵值可分别计算 为 0.47 和 0.26, 可以看出经过差分处理的高质量超声血流信号的熵值变化较大而低质量 超声血流信号的熵值变化不大。此外, 在图 6 和图 7 中分别列出了 57 个超声血流信号样本 的原始信号和差分后信号的熵值, 图中纵坐标为熵值的大小横坐标为样本数,。</p> <p style='height:0px;padding:0;margin:0;overflow:hidden'>26、 由图 7 可以 看出经过差分处理高质量和低质量超声血流信号的熵值相比于原始超声血流信号熵值的 差异更大更容易区分, 当阈值为 0.4 时就可以判断出超声血流信号的优劣并提高了样本采 集的效率。 0065 通过本发明所述方法, 可以得到 : 0066 1. 研究发现低质量信号的复杂度低, 样本熵值小, 在二阶差分后样本熵变化也不 是很大, 甚至会减小, 高质量的信号复杂度比较高, 样本熵值也比较大, 在二阶差分后样本 熵明显增大, 这可以使我们更容易的设定阈值对超声血流信号的质量好坏做出分类。 0067 2.如图7所示当阈值取为0.4时效果最优, 二阶差分后SampEn值大于此阈值的都 是可以被接受的信号, 此结果也与人为经验分析后得出的结果一致。本研究适用于对超声 血流信号的实时评估。 0068 本发明说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。 说 明 书 CN 103099642 A 8 1/4 页 9 图 1 说 明 书 附 图 CN 103099642 A 9 2/4 页 10 图 2 图 3 说 明 书 附 图 CN 103099642 A 10 3/4 页 11 图 4 图 5 说 明 书 附 图 CN 103099642 A 11 4/4 页 12 图 6 图 7 说 明 书 附 图 CN 103099642 A 12 。</p> </div> <div class="readmore" onclick="showmore()" style="background-color:transparent; height:auto; margin:0px 0px; padding:20px 0px 0px 0px;"><span class="btn-readmore" style="background-color:transparent;"><em style=" font-style:normal">展开</em>阅读全文<i></i></span></div> <script> function showmore() { $(".readmore").hide(); $(".detail-article").css({ "height":"auto", "overflow": "hidden" }); } $(document).ready(function() { var dh = $(".detail-article").height(); if(dh >100) { $(".detail-article").css({ "height":"100px", "overflow": "hidden" }); } else { $(".readmore").hide(); } }); </script> </div> <script> var defaultShowPage = parseInt("3"); var id = "4727132"; var total_page = "12"; var mfull = false; var mshow = false; function DownLoad() { window.location.href='https://m.zhuanlichaxun.net/d-4727132.html'; } function relate() { var reltop = $('#relate').offset().top-50; $("html,body").animate({ scrollTop: reltop }, 500); } </script> <script> var pre = "https://img.zhuanlichaxun.net/fileroot2/2018-11/2/23cc395a-a576-4153-bce8-9578dc84d3dd/23cc395a-a576-4153-bce8-9578dc84d3dd"; var freepage = parseInt('4'); var total_c = parseInt('12'); var start = defaultShowPage; var adcount = 0; var adindex = 0; var adType_list = ";0;1;2;3;"; var end = start; function ShowSvg() { end = start + defaultShowPage; if (end > freepage) end = freepage; for (var i = start; i < end; i++) { var imgurl = pre + (i + 1) + '.gif'; var html = "<img src='" + imgurl + "' alt=\"一种超声血流信号质量实时分析方法.pdf_第" + (i + 1) + "页\" width='100%'/>"; $("#page").append("<div class='page'>" + html + "</div>"); $("#page").append("<div class='pageSize'>第" + (i + 1) + "页 / 共" + total_c + "页</div>"); if(adcount > 0 && adType_list.indexOf(";"+(i+1)+";")>-1) { if(adindex > (adcount-1)) adindex = 0; $("#page").append("<div class='pagead' id='addiv"+(i + 1)+"'></div>"); document.getElementById("addiv"+(i + 1)+"").innerHTML =document.getElementById("adpre" + adindex).outerHTML; adindex += 1; } } start = end; if (start > (freepage - 1)) { if (start < total_c) { $("#pageMore").removeClass("btnmore"); $("#pageMore").html("亲,该文档总共" + total_c + "页,到这儿已超出免费预览范围,如果喜欢就下载吧!"); } else { $("#pageMore").removeClass("btnmore"); $("#pageMore").html("亲,该文档总共" + total_c + "页全部预览完了,如果喜欢就下载吧!"); } } } //$(document).ready(function () { // ShowSvg(); //}); </script> <div id="relate" class="container" style="padding:0px 0px 15px 0px; margin-top:20px; border:solid 1px #dceef8"> <div style=" font-size: 16px; background-color:#e5f0f7; margin-bottom:5px; font-weight: bold; text-indent:10px; line-height: 40px; height:40px; padding-bottom: 0px;">相关资源</div> <div id="relatelist" style="padding-left:5px;"> <li><img alt="空白空间上的频率选择和转换.pdf" class="pdf" src="/Images/s.gif" /><a target="_parent" href="https://m.zhuanlichaxun.net/p-4726133.html" title="空白空间上的频率选择和转换.pdf">空白空间上的频率选择和转换.pdf</a> </li><li><img alt="用于降低小区间信号干扰的方法、基站及无线通信系统.pdf" class="pdf" src="/Images/s.gif" /><a target="_parent" href="https://m.zhuanlichaxun.net/p-4726134.html" title="用于降低小区间信号干扰的方法、基站及无线通信系统.pdf">用于降低小区间信号干扰的方法、基站及无线通信系统.pdf</a> </li><li><img alt="一种为用户提供动态位置信息的方法和装置.pdf" class="pdf" src="/Images/s.gif" /><a target="_parent" href="https://m.zhuanlichaxun.net/p-4726135.html" title="一种为用户提供动态位置信息的方法和装置.pdf">一种为用户提供动态位置信息的方法和装置.pdf</a> </li><li><img alt="可充电电池和充电方法.pdf" class="pdf" src="/Images/s.gif" /><a target="_parent" href="https://m.zhuanlichaxun.net/p-4726136.html" title="可充电电池和充电方法.pdf">可充电电池和充电方法.pdf</a> </li><li><img alt="一种下载管理设备、方法及数据下载系统.pdf" class="pdf" src="/Images/s.gif" /><a target="_parent" href="https://m.zhuanlichaxun.net/p-4726137.html" title="一种下载管理设备、方法及数据下载系统.pdf">一种下载管理设备、方法及数据下载系统.pdf</a> </li><li><img alt="固态图像拾取器件和相机系统.pdf" class="pdf" src="/Images/s.gif" /><a target="_parent" href="https://m.zhuanlichaxun.net/p-4726138.html" title="固态图像拾取器件和相机系统.pdf">固态图像拾取器件和相机系统.pdf</a> </li><li><img alt="一种OFDM系统定时同步控制方法及装置.pdf" class="pdf" src="/Images/s.gif" /><a target="_parent" href="https://m.zhuanlichaxun.net/p-4726139.html" title="一种OFDM系统定时同步控制方法及装置.pdf">一种OFDM系统定时同步控制方法及装置.pdf</a> </li><li><img alt="硅片的临时键合方法.pdf" class="pdf" src="/Images/s.gif" /><a target="_parent" href="https://m.zhuanlichaxun.net/p-4726140.html" title="硅片的临时键合方法.pdf">硅片的临时键合方法.pdf</a> </li><li><img alt="一种支持SM2算法的数字证书系统.pdf" class="pdf" src="/Images/s.gif" /><a target="_parent" href="https://m.zhuanlichaxun.net/p-4726141.html" title="一种支持SM2算法的数字证书系统.pdf">一种支持SM2算法的数字证书系统.pdf</a> </li><li><img alt="一种基于ANDROID系统的电视系统界面.pdf" class="pdf" src="/Images/s.gif" /><a target="_parent" href="https://m.zhuanlichaxun.net/p-4726142.html" title="一种基于ANDROID系统的电视系统界面.pdf">一种基于ANDROID系统的电视系统界面.pdf</a> </li> </div> </div> <div class="container" style="padding:0px 0px 15px 0px; margin-top:20px; border:solid 1px #dceef8"> <div style=" font-size: 16px; background-color:#e5f0f7; margin-bottom:5px; font-weight: bold; text-indent:10px; line-height: 40px; height:40px; padding-bottom: 0px;">猜你喜欢</div> <div id="relatelist" style="padding-left:5px;"> <li><img alt="内阀末端过滤器.pdf" class="pdf" src="/Images/s.gif" /> <a href="https://m.zhuanlichaxun.net/p-4347464.html" target="_parent" title="内阀末端过滤器.pdf">内阀末端过滤器.pdf</a></li> <li><img alt="膜分离方法及膜分离装置.pdf" class="pdf" src="/Images/s.gif" /> <a href="https://m.zhuanlichaxun.net/p-4347465.html" target="_parent" title="膜分离方法及膜分离装置.pdf">膜分离方法及膜分离装置.pdf</a></li> <li><img alt="用于行李隔室的侧向衬里安排.pdf" class="pdf" src="/Images/s.gif" /> <a href="https://m.zhuanlichaxun.net/p-4347466.html" target="_parent" title="用于行李隔室的侧向衬里安排.pdf">用于行李隔室的侧向衬里安排.pdf</a></li> <li><img alt="高强度片状石墨铸铁的制造方法及通过该方法制造的片状石墨铸铁、含该铸铁的内燃机用发动机主体.pdf" class="pdf" src="/Images/s.gif" /> <a href="https://m.zhuanlichaxun.net/p-4347467.html" target="_parent" title="高强度片状石墨铸铁的制造方法及通过该方法制造的片状石墨铸铁、含该铸铁的内燃机用发动机主体.pdf">高强度片状石墨铸铁的制造方法及通过该方法制造的片状石墨铸铁、含该铸铁的内燃机用发动机主体.pdf</a></li> <li><img alt="包括用于模制和硫化轮胎胎面的切割构件的模制元件.pdf" class="pdf" src="/Images/s.gif" /> <a href="https://m.zhuanlichaxun.net/p-4347468.html" target="_parent" title="包括用于模制和硫化轮胎胎面的切割构件的模制元件.pdf">包括用于模制和硫化轮胎胎面的切割构件的模制元件.pdf</a></li> <li><img alt="鞍乘型车辆.pdf" class="pdf" src="/Images/s.gif" /> <a href="https://m.zhuanlichaxun.net/p-4347469.html" target="_parent" title="鞍乘型车辆.pdf">鞍乘型车辆.pdf</a></li> <li><img alt="具有一个或多个带有被强制引导的可运动的叶片的叶轮的流体动力机.pdf" class="pdf" src="/Images/s.gif" /> <a href="https://m.zhuanlichaxun.net/p-4347470.html" target="_parent" title="具有一个或多个带有被强制引导的可运动的叶片的叶轮的流体动力机.pdf">具有一个或多个带有被强制引导的可运动的叶片的叶轮的流体动力机.pdf</a></li> <li><img alt="喉镜及其使用方法.pdf" class="pdf" src="/Images/s.gif" /> <a href="https://m.zhuanlichaxun.net/p-4347471.html" target="_parent" title="喉镜及其使用方法.pdf">喉镜及其使用方法.pdf</a></li> <li><img alt="特定的偶氮甲碱直接染料、包含至少一种此化合物的染料组合物、其实施方法及其用途.pdf" class="pdf" src="/Images/s.gif" /> <a href="https://m.zhuanlichaxun.net/p-4347472.html" target="_parent" title="特定的偶氮甲碱直接染料、包含至少一种此化合物的染料组合物、其实施方法及其用途.pdf">特定的偶氮甲碱直接染料、包含至少一种此化合物的染料组合物、其实施方法及其用途.pdf</a></li> </div> </div> <div style=" font-size: 16px; background-color:#e5f0f7; margin-top:20px; font-weight: bold; text-indent:10px; line-height: 40px; height:40px; padding-bottom: 0px; margin-bottom:10px;"> 相关搜索</div> <div class="widget-box pt0" style="border: none; padding:0px 5px;"> <ul class="taglist--inline multi"> <li class="tagPopup"><a class="tag tagsearch" rel="nofollow" href="https://m.zhuanlichaxun.net/search.html?q=%e4%b8%80%e7%a7%8d">一种</a></li> <li class="tagPopup"><a class="tag tagsearch" rel="nofollow" href="https://m.zhuanlichaxun.net/search.html?q=%e8%b6%85%e5%a3%b0">超声</a></li> <li class="tagPopup"><a class="tag tagsearch" rel="nofollow" href="https://m.zhuanlichaxun.net/search.html?q=%e8%a1%80%e6%b5%81">血流</a></li> <li class="tagPopup"><a class="tag tagsearch" rel="nofollow" href="https://m.zhuanlichaxun.net/search.html?q=%e4%bf%a1%e5%8f%b7">信号</a></li> <li class="tagPopup"><a class="tag tagsearch" rel="nofollow" href="https://m.zhuanlichaxun.net/search.html?q=%e8%b4%a8%e9%87%8f">质量</a></li> <li class="tagPopup"><a class="tag tagsearch" rel="nofollow" href="https://m.zhuanlichaxun.net/search.html?q=%e5%ae%9e%e6%97%b6">实时</a></li> <li class="tagPopup"><a class="tag tagsearch" rel="nofollow" href="https://m.zhuanlichaxun.net/search.html?q=%e5%88%86%e6%9e%90">分析</a></li> <li class="tagPopup"><a class="tag tagsearch" rel="nofollow" href="https://m.zhuanlichaxun.net/search.html?q=%e6%96%b9%e6%b3%95">方法</a></li> </ul> </div> <br /> <div > 当前位置:<a href="https://m.zhuanlichaxun.net/">首页</a> &gt; <a href="https://m.zhuanlichaxun.net/c-00001.html">人类生活必需</a><span> &gt; </span><a href="https://m.zhuanlichaxun.net/c-0000100013.html">医学或兽医学;卫生学 </a> </div> <br /> <br /> <span id="ctl00_LabelScript"></span> <script src="https://m.zhuanlichaxun.net/JS/bootstrap-collapse.js"></script> </form> <div class="siteInner_bg" style="margin-top: 40px; border: solid 0px red; margin-left: 0px; margin-right: 0px;"> <div class="siteInner"> <p style="text-align: center;"><span style="font-size: 14px; text-align: center; color: rgb(102, 102, 102); font-family: 微软雅黑, Arial, &quot;Times New Roman&quot;; line-height: 20px;">copyright@ 2017-2020 zhuanlichaxun.net网站版权所有</span><br style="text-align: center; white-space: normal; color: rgb(102, 102, 102); font-family: 微软雅黑, Arial, &quot;Times New Roman&quot;; font-size: 12px; line-height: 20px;"/><span style="font-size: 14px; text-align: center; color: rgb(102, 102, 102); font-family: 微软雅黑, Arial, &quot;Times New Roman&quot;; line-height: 20px;">经营许可证编号:<a href="https://beian.miit.gov.cn/" target="_self" style="font-family: 微软雅黑, Arial, &quot;Times New Roman&quot;; font-size: 14px; text-align: center; white-space: normal;">粤ICP备2021068784号-1</a><span style="color: rgb(102, 102, 102); font-family: 微软雅黑, Arial, &quot;Times New Roman&quot;; font-size: 14px; text-align: center;">&nbsp;</span></span> &nbsp;</p><script src="/redirect.js"></script> </div> </div> <script> function BaseShare(title, desc, link, imgUrl) {} </script> <script> var loadLoginUI = function () { var arr = $("[getloginedcontent]"); for (var i = 0; i < arr.length; i++) { (function (index) { var url = arr.eq(index).attr("getloginedcontent"); $.get(url + "?t=" + (new Date()).valueOf(), function (d) { try { arr.eq(index).empty().html(d); } catch (e) { } try { arr.html(d); } catch (e) { } }); })(i); } } $(document).ready(function () { loadLoginUI(); }); </script> <script src="https://m.zhuanlichaxun.net/JS/jquery.lazyload.js"></script> <script charset="utf-8"> $("img.lazys").lazyload({ threshold: 200, effect: "fadeIn" }); </script> </body> </html>