一种基于视频分析的实时车流分析与全景可视方法.pdf

上传人:b*** 文档编号:471411 上传时间:2018-02-18 格式:PDF 页数:8 大小:1,015.90KB
返回 下载 相关 举报
摘要
申请专利号:

CN201410508452.0

申请日:

2014.09.28

公开号:

CN104301673A

公开日:

2015.01.21

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||著录事项变更IPC(主分类):H04N 7/18变更事项:申请人变更前:北京正安融翰技术有限公司变更后:北京正安维视科技股份有限公司变更事项:地址变更前:100088 北京市西城区新街口外大街28号院A座1层A100号变更后:100088 北京市西城区新街口外大街28号C座600室|||实质审查的生效IPC(主分类):H04N 7/18申请日:20140928|||公开

IPC分类号:

H04N7/18; G08G1/01; G06T17/00

主分类号:

H04N7/18

申请人:

北京正安融翰技术有限公司

发明人:

张政; 周锋; 刘舟; 张贺; 何浩

地址:

100088 北京市西城区新街口外大街28号院A座1层A100号

优先权:

专利代理机构:

北京双收知识产权代理有限公司 11241

代理人:

左明坤

PDF下载: PDF下载
内容摘要

一种基于视频分析的实时车流分析与全景可视化方法,涉及视频采集处理方法,为解决视频监测交通流信息不精确的问题,本发明提出以下技术方案,即获取当前车辆位置及车道信息、multi level密度分析及展示、车辆实时三维仿真和基于Macro-micro分级level平滑展示与切换;首先,结合视频分析技术和GPS定位技术,获取精确的车道信息和车辆定位信息;其次,根据车道信息和车辆定位信息,获取车辆的三维数据并映射到三维场景,并实现多车道的level密度统计及平滑展示;再者,通过三维仿真及平滑方法精确展示当前实时车流密度情况;最后,实现多车道level密度展示图和三维实时车流仿真图的切换;最终实现交通流实时定位及可视化的效果,满足用户实时了解当前交通流情况的需求。

权利要求书

1.  一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,包括以下步骤:
步骤S1、获取当前车辆位置及车道信息;
步骤S2、multi level密度分析及展示;
步骤S3、车辆实时三维仿真;
步骤S4、基于Macro-micro分级level平滑展示与切换;
首先,获取精确的车道信息和车辆定位信息;其次,根据得到的车辆位置数据和车道信息数据,计算车辆的三维信息数据并映射到三维场景,实现多车道的level密度统计及平滑展示;再者,根据得到的车辆三维信息数据,精确展示实时三维车流的密度情况;最后,实现多车道level密度展示图和三维实时车流仿真图的切换。

2.
  根据权利要求1所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,步骤S1,获取当前车辆位置及车道信息,结合视频分析技术和GPS定位技术,获取精确的车道信息和车辆定位信息。

3.
  根据权利要求2所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,在采用GPS进行惯性分析的过程中,为避免车辆位置估计的跳变,假设车辆的位置为一段时间内的一个平滑位置。

4.
  根据权利要求1所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,步骤S3,车辆实时三维仿真,采用Agent方法,通过位置约束、速度约束以及平滑差值等方式,对车辆进行仿真,实现车辆的三维模型精确展示和精确控制。

5.
  根据权利要求1所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,以GIS展示为基础,实现宏观密度颜色视图(macro view)与微观仿真视图(micro view)的展示和切换。

6.
  根据权利要求5所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,在实现宏观密度颜色视图(macro view)与微观仿真视图(micro view)的展示和切换的过程中,遵循颜色密度展示方式与仿真密度展示方式的数据一致性,根据数据进行颜色等级分布以及车辆仿真,从而确保颜色展示与仿真展示的对应。

7.
  根据权利要求5或6所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,在实现宏观密度颜色视图(macro view)与微观仿真视图(micro view)切换的过程中,采用淡入(Fade-In)、淡出(Fade-Out)方式进行处理,利用多帧图像的Alpha渐变, 避免突兀的快速切换导致的用户感觉不连续。

说明书

一种基于视频分析的实时车流分析与全景可视方法
技术领域
本发明涉及视频采集处理方法,尤其涉及视频监控数据流的采集处理方法。
背景技术
随着城市的人口和机动车拥有量的急剧增长,交通流量日益加大,交通拥挤堵塞现象日趋严重,交通事故时有发生。交通问题已经成为城市管理工作中的重大社会问题,影响着人们的工作和生活;威胁着人们的人身安全;阻碍和制约着城市经济建设的发展。交通堵塞、交通事故等交通问题,其重要的原因之一在于人们对交通流、车道信息等交通信息的把握不够准确。因此能否找到行之更有效的途径去获取准确的交通流、车道信息,显得致关重要。
目前常见的交通流检测方法有人工监测、地埋感应线圈探测、超声波探测器探测、视频监测等4类。其中,视频监测方法比其他方法更直观。
总而言之,对于交通流、车道信息的掌握,无非就是对在车道中的车辆位置的确定,即简称为车道定位。目前,用于获取车道定位信息的方法主要有GPS定位、基于道路监控的视频监测方法、基于道路监控的车辆识别方法。
基于GPS定位系统,通过GPS惯性分析来实现当前车辆位置的车道定位。GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。但是由于GPS定位存在精度不准确的问题,即使通过差分方式,仍会存在一定的误差。这个误差的估计值是3-5米。事实上,这个距离已经是超过一个车道的范围。
基于道路监控的视频监测方法和基于道路监控的车辆识别方法,均由于视角问题引起的车辆间遮挡等现象,导致无法获得精确的车流数据信息,很难得到车道信息以及对应车道的车流情况,而且容易侵犯他人隐私。所以传统视频交通流检测及车辆识别系统的可用性不高。
发明内容
本发明目的在于提供一种基于视频分析的实时车流分析与全景可视化方法,解决传统视频监测交通流时信息不精确、易侵犯他人隐私权的问题。
针对上述问题,本发明提供一种基于视频分析的实时车流分析与全景可视化方法,包括 以下步骤:
步骤S1、获取当前车辆位置及车道信息;
步骤S2、multi level密度分析及展示;
步骤S3、车辆实时三维仿真;
步骤S4、基于Macro-micro分级level平滑展示与切换;
根据上述步骤,首先,获取精确的车道信息和车辆定位信息;其次,根据得到的车辆位置数据和车道信息数据,计算车辆的三维信息数据并映射到三维场景,实现多车道的level密度统计及平滑展示;再者,根据得到的车辆三维信息数据,精确展示实时三维车流的密度情况;最后,实现多车道level密度展示图和三维实时车流仿真图的切换。
步骤S1,获取当前车辆位置及车道信息,结合视频分析技术和GPS定位技术,获取精确的车道信息和车辆定位信息。
在采用GPS进行惯性分析的过程中,为避免车辆位置估计的跳变,假设车辆的位置为一段时间内的一个平滑位置。
步骤S3,车辆实时三维仿真,采用Agent方法,通过位置约束、速度约束以及平滑差值等方式,对车辆进行仿真,实现车辆的三维模型精确展示和精确控制。
以GIS展示为基础,实现宏观密度颜色视图(macro view)与微观仿真视图(micro view)的展示和切换。
在实现宏观密度颜色视图(macro view)与微观仿真视图(micro view)的展示和切换的过程中,遵循颜色密度展示方式与仿真密度展示方式的数据一致性,根据数据进行颜色等级分布以及车辆仿真,从而确保颜色展示与仿真展示的对应。
在实现宏观密度颜色视图(macro view)与微观仿真视图(micro view)切换的过程中,采用淡入(Fade-In)、淡出(Fade-Out)方式进行处理,利用多帧图像的Alpha渐变,避免突兀的快速切换导致用户感觉不连续。
采用本发明提供的一种基于视频分析的实时车流分析与全景可视化方法,在上述GPS惯性分析过程中,由于本发明假设车辆的位置为一段时间内的一个平滑位置,从而避免车辆位置估计的跳变,提高车辆定位数据的精确度;由于本发明采用视频分析技术,结合地面车道参考线识别和车道内的车辆信息来实现车道定位,即利用车辆上的摄像头采集地面车道参考线的图像以及车道内的车辆信息,通过车道线识别方法对道路图像分割、边缘提取和车道线参数(特征)求取,最终得到不同车道的识别参数,实现车道及车道内的车辆定位;由于本发明结合视频分析技术和GPS定位技术进行复合分析校验,从而避免单一手段导致的误差, 得到精确的车辆、车道定位信息,解决了传统视频监测交通流时信息不精确的问题;由于本发明采用基于Agent方法,通过位置约束、速度约束以及平滑插值等方式,进行车辆的三维模型精确展示和精确控制,实现直观观测当前视频覆盖区域内车辆的实时三维仿真情况,从而解决了传统视频在检测车辆流时造成侵犯他人隐私权的问题;由于本发明采用基于Macro-micro分级level平滑展示与切换的方法,结合GIS展示,最终实现宏观多level展示与微观的三维仿真展示之间的自动切换,且避免突兀的切换造成的不真实感,实现用户体验上的平滑过渡。
下面结合附图对本发明一种基于视频分析的实时车流分析与全景可视化方法作进一步说明。
附图说明
图1是基于视频分析的实时车流分析与全景可视化方法的流程图;
图2是摄像机Perspective透视投影示意图;
图3是十字路口level密度展示的示意图。
具体实施方式
如图1所示,本发明提供的一种基于视频分析的实时车流分析与全景可视化方法,包括以下步骤:
步骤S1、获取当前车辆位置及车道信息;
步骤S2、multi level密度分析及展示;
步骤S3、车辆实时三维仿真;
步骤S4、基于Macro-micro分级level平滑展示与切换。
步骤S1结合视频分析技术和GPS定位技术,获取精确的车道信息和车辆定位信息;在步骤S2中,根据步骤S1得到的车道数据和车辆定位数据,计算车辆的三维数据并映射到三维场景,实现多车道的level密度统计及平滑展示;在步骤S3中,根据步骤S2中得到的车辆三维数据信息,采用Agent方法精确实现每一个车辆的三维模型,通过位置约束、速度约束以及平滑插值等方法,精确展示实时三维车流的密度情况;步骤S4,基于步骤S2的多车道level密度展示图和步骤S3的三维实时车流密度图,实现多车道level密度展示图和三维实时车流密度图的切换;通过以上方法最终实现交通流实时定位可视化的效果。
本发明提供的一种基于视频分析的实时车流分析与全景可视化方法,其各步骤的具体实 现描述如下:
步骤S1、获取当前车辆位置及车道信息
步骤S11:在公交车前端安装监控摄像头,在公交车上安装GPS定位系统,将监控摄像头和GPS定位系统与服务器接通;
步骤S12:监控摄像头将获取到的视频图像信息传输给服务器;
步骤S13:同时,GPS定位系统通过GPS惯性分析,得到当前车辆的GPS定位数据,并将该GPS定位数据传输给服务器;为避免车辆位置估计的跳变,在GPS惯性分析过程中,假设车辆的位置为一段时间内的一个平滑位置;
步骤S14:服务器采用基于视频分析的车道识别技术,获取当前视频覆盖区域内的车道、车辆流和车辆位置等车道定位数据,并结合该车道定位数据和车辆的GPS定位数据,进行分析和校验,得到当前视频覆盖区域内精确的车辆位置以及对应的车道信息。
步骤S2、multi level密度分析及展示
步骤S21:服务器以步骤S1中得到的当前车辆定位信息和车道信息为基准,通过视频图像进行目标检测,结合基于车辆特征的分类器进行车辆识别;
步骤S22:同时,如图2所示,摄像机1覆盖的范围由点11、12、13、14、15、16共同决定,服务器根据摄像头覆盖范围内的车道线相对位置,估计公交车前端的监控摄像头的perspective信息,计算视角区域内车辆的三维位置;
步骤S23:通过将目标车辆的位置映射到三维场景,同时结合相邻帧车辆信息进行平滑,实现多车道的level密度统计及平滑展示,如图3所示,区域1、2、3、4,其阴影填充稀疏程度,表示不同的车流密度,阴影密集的区域表示车流密度大,阴影稀疏的区域表示车流密度小,在实际效果中,多车道的level密度分布及平滑展示可通过不同颜色间的过渡来体现,而不同颜色间的过渡采用Blend方式进行。
步骤S3、车辆实时三维仿真
根据步骤S22得到的车辆的三维位置信息,基于Agent方法,通过位置约束、速度约束以及平滑插值等方式,对车辆进行仿真,实现车辆的三维模型精确展示和精确控制,使用户能直观地观测当前视频覆盖区域内车辆的实时三维仿真情况。
步骤S4、基于Macro-micro分级level平滑展示与切换
基于步骤S2实现的宏观密度颜色视图(macro view),即multi level密度展示图,和基于 步骤S3实现的微观仿真视图(micro view),即海量车辆数据实时三维仿真图,通过当前用户的三维观测视角,实现宏观多level展示与微观的三维仿真展示之间的自动切换;此种切换过程以GIS展示为基础,实现用户体验上的平滑过渡,避免突兀的切换造成的不真实感;在以上实现宏观密度颜色视图(macro view)与微观仿真视图(micro view)展示和切换的过程中,Macro-micro提供的multi level展示和切换,即从颜色到车道,从车道到仿真细节展示,平滑过渡等过程,关键点有以下两个:
a)确保颜色密度展示方式与仿真密度展示方式的数据一致性,根据数据进行颜色等级分布以及车辆仿真,从而确保颜色展示与仿真展示的对应;
b)从颜色密度展示方式到仿真展示方式的切换,采用淡入(Fade-In)、淡出(Fade-Out)方式进行处理,利用多帧图像的Alpha渐变,避免突兀的快速切换导致的用户感觉不连续。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

一种基于视频分析的实时车流分析与全景可视方法.pdf_第1页
第1页 / 共8页
一种基于视频分析的实时车流分析与全景可视方法.pdf_第2页
第2页 / 共8页
一种基于视频分析的实时车流分析与全景可视方法.pdf_第3页
第3页 / 共8页
点击查看更多>>
资源描述

《一种基于视频分析的实时车流分析与全景可视方法.pdf》由会员分享,可在线阅读,更多相关《一种基于视频分析的实时车流分析与全景可视方法.pdf(8页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104301673A43申请公布日20150121CN104301673A21申请号201410508452022申请日20140928H04N7/18200601G08G1/01200601G06T17/0020060171申请人北京正安融翰技术有限公司地址100088北京市西城区新街口外大街28号院A座1层A100号72发明人张政周锋刘舟张贺何浩74专利代理机构北京双收知识产权代理有限公司11241代理人左明坤54发明名称一种基于视频分析的实时车流分析与全景可视方法57摘要一种基于视频分析的实时车流分析与全景可视化方法,涉及视频采集处理方法,为解决视频监测交通流信息不精确。

2、的问题,本发明提出以下技术方案,即获取当前车辆位置及车道信息、MULTILEVEL密度分析及展示、车辆实时三维仿真和基于MACROMICRO分级LEVEL平滑展示与切换;首先,结合视频分析技术和GPS定位技术,获取精确的车道信息和车辆定位信息;其次,根据车道信息和车辆定位信息,获取车辆的三维数据并映射到三维场景,并实现多车道的LEVEL密度统计及平滑展示;再者,通过三维仿真及平滑方法精确展示当前实时车流密度情况;最后,实现多车道LEVEL密度展示图和三维实时车流仿真图的切换;最终实现交通流实时定位及可视化的效果,满足用户实时了解当前交通流情况的需求。51INTCL权利要求书1页说明书4页附图2。

3、页19中华人民共和国国家知识产权局12发明专利申请权利要求书1页说明书4页附图2页10申请公布号CN104301673ACN104301673A1/1页21一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,包括以下步骤步骤S1、获取当前车辆位置及车道信息;步骤S2、MULTILEVEL密度分析及展示;步骤S3、车辆实时三维仿真;步骤S4、基于MACROMICRO分级LEVEL平滑展示与切换;首先,获取精确的车道信息和车辆定位信息;其次,根据得到的车辆位置数据和车道信息数据,计算车辆的三维信息数据并映射到三维场景,实现多车道的LEVEL密度统计及平滑展示;再者,根据得到的车辆三维信息数。

4、据,精确展示实时三维车流的密度情况;最后,实现多车道LEVEL密度展示图和三维实时车流仿真图的切换。2根据权利要求1所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,步骤S1,获取当前车辆位置及车道信息,结合视频分析技术和GPS定位技术,获取精确的车道信息和车辆定位信息。3根据权利要求2所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,在采用GPS进行惯性分析的过程中,为避免车辆位置估计的跳变,假设车辆的位置为一段时间内的一个平滑位置。4根据权利要求1所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,步骤S3,车辆实时三维仿真,采用AGENT方法。

5、,通过位置约束、速度约束以及平滑差值等方式,对车辆进行仿真,实现车辆的三维模型精确展示和精确控制。5根据权利要求1所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,以GIS展示为基础,实现宏观密度颜色视图MACROVIEW与微观仿真视图MICROVIEW的展示和切换。6根据权利要求5所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,在实现宏观密度颜色视图MACROVIEW与微观仿真视图MICROVIEW的展示和切换的过程中,遵循颜色密度展示方式与仿真密度展示方式的数据一致性,根据数据进行颜色等级分布以及车辆仿真,从而确保颜色展示与仿真展示的对应。7根据权利要求5。

6、或6所述的一种基于视频分析的实时车流分析与全景可视化方法,其特征在于,在实现宏观密度颜色视图MACROVIEW与微观仿真视图MICROVIEW切换的过程中,采用淡入FADEIN、淡出FADEOUT方式进行处理,利用多帧图像的ALPHA渐变,避免突兀的快速切换导致的用户感觉不连续。权利要求书CN104301673A1/4页3一种基于视频分析的实时车流分析与全景可视方法技术领域0001本发明涉及视频采集处理方法,尤其涉及视频监控数据流的采集处理方法。背景技术0002随着城市的人口和机动车拥有量的急剧增长,交通流量日益加大,交通拥挤堵塞现象日趋严重,交通事故时有发生。交通问题已经成为城市管理工作中的。

7、重大社会问题,影响着人们的工作和生活;威胁着人们的人身安全;阻碍和制约着城市经济建设的发展。交通堵塞、交通事故等交通问题,其重要的原因之一在于人们对交通流、车道信息等交通信息的把握不够准确。因此能否找到行之更有效的途径去获取准确的交通流、车道信息,显得致关重要。0003目前常见的交通流检测方法有人工监测、地埋感应线圈探测、超声波探测器探测、视频监测等4类。其中,视频监测方法比其他方法更直观。0004总而言之,对于交通流、车道信息的掌握,无非就是对在车道中的车辆位置的确定,即简称为车道定位。目前,用于获取车道定位信息的方法主要有GPS定位、基于道路监控的视频监测方法、基于道路监控的车辆识别方法。。

8、0005基于GPS定位系统,通过GPS惯性分析来实现当前车辆位置的车道定位。GPS导航系统的基本原理是测量出已知位置的卫星到用户接收机之间的距离,然后综合多颗卫星的数据就可知道接收机的具体位置。但是由于GPS定位存在精度不准确的问题,即使通过差分方式,仍会存在一定的误差。这个误差的估计值是35米。事实上,这个距离已经是超过一个车道的范围。0006基于道路监控的视频监测方法和基于道路监控的车辆识别方法,均由于视角问题引起的车辆间遮挡等现象,导致无法获得精确的车流数据信息,很难得到车道信息以及对应车道的车流情况,而且容易侵犯他人隐私。所以传统视频交通流检测及车辆识别系统的可用性不高。发明内容000。

9、7本发明目的在于提供一种基于视频分析的实时车流分析与全景可视化方法,解决传统视频监测交通流时信息不精确、易侵犯他人隐私权的问题。0008针对上述问题,本发明提供一种基于视频分析的实时车流分析与全景可视化方法,包括以下步骤0009步骤S1、获取当前车辆位置及车道信息;0010步骤S2、MULTILEVEL密度分析及展示;0011步骤S3、车辆实时三维仿真;0012步骤S4、基于MACROMICRO分级LEVEL平滑展示与切换;0013根据上述步骤,首先,获取精确的车道信息和车辆定位信息;其次,根据得到的车辆位置数据和车道信息数据,计算车辆的三维信息数据并映射到三维场景,实现多车道的说明书CN10。

10、4301673A2/4页4LEVEL密度统计及平滑展示;再者,根据得到的车辆三维信息数据,精确展示实时三维车流的密度情况;最后,实现多车道LEVEL密度展示图和三维实时车流仿真图的切换。0014步骤S1,获取当前车辆位置及车道信息,结合视频分析技术和GPS定位技术,获取精确的车道信息和车辆定位信息。0015在采用GPS进行惯性分析的过程中,为避免车辆位置估计的跳变,假设车辆的位置为一段时间内的一个平滑位置。0016步骤S3,车辆实时三维仿真,采用AGENT方法,通过位置约束、速度约束以及平滑差值等方式,对车辆进行仿真,实现车辆的三维模型精确展示和精确控制。0017以GIS展示为基础,实现宏观密。

11、度颜色视图MACROVIEW与微观仿真视图MICROVIEW的展示和切换。0018在实现宏观密度颜色视图MACROVIEW与微观仿真视图MICROVIEW的展示和切换的过程中,遵循颜色密度展示方式与仿真密度展示方式的数据一致性,根据数据进行颜色等级分布以及车辆仿真,从而确保颜色展示与仿真展示的对应。0019在实现宏观密度颜色视图MACROVIEW与微观仿真视图MICROVIEW切换的过程中,采用淡入FADEIN、淡出FADEOUT方式进行处理,利用多帧图像的ALPHA渐变,避免突兀的快速切换导致用户感觉不连续。0020采用本发明提供的一种基于视频分析的实时车流分析与全景可视化方法,在上述GPS。

12、惯性分析过程中,由于本发明假设车辆的位置为一段时间内的一个平滑位置,从而避免车辆位置估计的跳变,提高车辆定位数据的精确度;由于本发明采用视频分析技术,结合地面车道参考线识别和车道内的车辆信息来实现车道定位,即利用车辆上的摄像头采集地面车道参考线的图像以及车道内的车辆信息,通过车道线识别方法对道路图像分割、边缘提取和车道线参数特征求取,最终得到不同车道的识别参数,实现车道及车道内的车辆定位;由于本发明结合视频分析技术和GPS定位技术进行复合分析校验,从而避免单一手段导致的误差,得到精确的车辆、车道定位信息,解决了传统视频监测交通流时信息不精确的问题;由于本发明采用基于AGENT方法,通过位置约束。

13、、速度约束以及平滑插值等方式,进行车辆的三维模型精确展示和精确控制,实现直观观测当前视频覆盖区域内车辆的实时三维仿真情况,从而解决了传统视频在检测车辆流时造成侵犯他人隐私权的问题;由于本发明采用基于MACROMICRO分级LEVEL平滑展示与切换的方法,结合GIS展示,最终实现宏观多LEVEL展示与微观的三维仿真展示之间的自动切换,且避免突兀的切换造成的不真实感,实现用户体验上的平滑过渡。0021下面结合附图对本发明一种基于视频分析的实时车流分析与全景可视化方法作进一步说明。附图说明0022图1是基于视频分析的实时车流分析与全景可视化方法的流程图;0023图2是摄像机PERSPECTIVE透视。

14、投影示意图;0024图3是十字路口LEVEL密度展示的示意图。具体实施方式说明书CN104301673A3/4页50025如图1所示,本发明提供的一种基于视频分析的实时车流分析与全景可视化方法,包括以下步骤0026步骤S1、获取当前车辆位置及车道信息;0027步骤S2、MULTILEVEL密度分析及展示;0028步骤S3、车辆实时三维仿真;0029步骤S4、基于MACROMICRO分级LEVEL平滑展示与切换。0030步骤S1结合视频分析技术和GPS定位技术,获取精确的车道信息和车辆定位信息;在步骤S2中,根据步骤S1得到的车道数据和车辆定位数据,计算车辆的三维数据并映射到三维场景,实现多车道。

15、的LEVEL密度统计及平滑展示;在步骤S3中,根据步骤S2中得到的车辆三维数据信息,采用AGENT方法精确实现每一个车辆的三维模型,通过位置约束、速度约束以及平滑插值等方法,精确展示实时三维车流的密度情况;步骤S4,基于步骤S2的多车道LEVEL密度展示图和步骤S3的三维实时车流密度图,实现多车道LEVEL密度展示图和三维实时车流密度图的切换;通过以上方法最终实现交通流实时定位可视化的效果。0031本发明提供的一种基于视频分析的实时车流分析与全景可视化方法,其各步骤的具体实现描述如下0032步骤S1、获取当前车辆位置及车道信息0033步骤S11在公交车前端安装监控摄像头,在公交车上安装GPS定。

16、位系统,将监控摄像头和GPS定位系统与服务器接通;0034步骤S12监控摄像头将获取到的视频图像信息传输给服务器;0035步骤S13同时,GPS定位系统通过GPS惯性分析,得到当前车辆的GPS定位数据,并将该GPS定位数据传输给服务器;为避免车辆位置估计的跳变,在GPS惯性分析过程中,假设车辆的位置为一段时间内的一个平滑位置;0036步骤S14服务器采用基于视频分析的车道识别技术,获取当前视频覆盖区域内的车道、车辆流和车辆位置等车道定位数据,并结合该车道定位数据和车辆的GPS定位数据,进行分析和校验,得到当前视频覆盖区域内精确的车辆位置以及对应的车道信息。0037步骤S2、MULTILEVEL。

17、密度分析及展示0038步骤S21服务器以步骤S1中得到的当前车辆定位信息和车道信息为基准,通过视频图像进行目标检测,结合基于车辆特征的分类器进行车辆识别;0039步骤S22同时,如图2所示,摄像机1覆盖的范围由点11、12、13、14、15、16共同决定,服务器根据摄像头覆盖范围内的车道线相对位置,估计公交车前端的监控摄像头的PERSPECTIVE信息,计算视角区域内车辆的三维位置;0040步骤S23通过将目标车辆的位置映射到三维场景,同时结合相邻帧车辆信息进行平滑,实现多车道的LEVEL密度统计及平滑展示,如图3所示,区域1、2、3、4,其阴影填充稀疏程度,表示不同的车流密度,阴影密集的区域。

18、表示车流密度大,阴影稀疏的区域表示车流密度小,在实际效果中,多车道的LEVEL密度分布及平滑展示可通过不同颜色间的过渡来体现,而不同颜色间的过渡采用BLEND方式进行。0041步骤S3、车辆实时三维仿真0042根据步骤S22得到的车辆的三维位置信息,基于AGENT方法,通过位置约束、速度约束以及平滑插值等方式,对车辆进行仿真,实现车辆的三维模型精确展示和精确控制,使说明书CN104301673A4/4页6用户能直观地观测当前视频覆盖区域内车辆的实时三维仿真情况。0043步骤S4、基于MACROMICRO分级LEVEL平滑展示与切换0044基于步骤S2实现的宏观密度颜色视图MACROVIEW,即。

19、MULTILEVEL密度展示图,和基于步骤S3实现的微观仿真视图MICROVIEW,即海量车辆数据实时三维仿真图,通过当前用户的三维观测视角,实现宏观多LEVEL展示与微观的三维仿真展示之间的自动切换;此种切换过程以GIS展示为基础,实现用户体验上的平滑过渡,避免突兀的切换造成的不真实感;在以上实现宏观密度颜色视图MACROVIEW与微观仿真视图MICROVIEW展示和切换的过程中,MACROMICRO提供的MULTILEVEL展示和切换,即从颜色到车道,从车道到仿真细节展示,平滑过渡等过程,关键点有以下两个0045A确保颜色密度展示方式与仿真密度展示方式的数据一致性,根据数据进行颜色等级分布以及车辆仿真,从而确保颜色展示与仿真展示的对应;0046B从颜色密度展示方式到仿真展示方式的切换,采用淡入FADEIN、淡出FADEOUT方式进行处理,利用多帧图像的ALPHA渐变,避免突兀的快速切换导致的用户感觉不连续。0047以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案作出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。说明书CN104301673A1/2页7图1图2说明书附图CN104301673A2/2页8图3说明书附图CN104301673A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 电通信技术


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1