激光诱导击穿光谱的小波阈值降噪的阈值校正方法.pdf

上传人:大师****2 文档编号:4695778 上传时间:2018-10-27 格式:PDF 页数:13 大小:2.34MB
返回 下载 相关 举报
摘要
申请专利号:

CN201310349855.0

申请日:

2013.08.09

公开号:

CN104345049A

公开日:

2015.02.11

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):G01N 21/63申请日:20130809|||公开

IPC分类号:

G01N21/63

主分类号:

G01N21/63

申请人:

中国科学院沈阳自动化研究所

发明人:

于海斌; 张博; 孙兰香; 杨志家; 辛勇; 丛智博; 齐立峰

地址:

110016辽宁省沈阳市东陵区南塔街114号

优先权:

专利代理机构:

沈阳科苑专利商标代理有限公司21002

代理人:

周秀梅; 许宗富

PDF下载: PDF下载
内容摘要

本发明公开了一种用于激光诱导击穿光谱的小波阈值降噪的阈值校正方法,基于合理的阈值校正数学模型,通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪。通过本方法取得了很好的激光诱导击穿光谱的降噪效果,在提高了信噪比的同时降低了检出限。

权利要求书

权利要求书
1.  一种激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,包括以下步骤:
输入整个激光诱导击穿光谱信号,利用Shannon熵来选择小波基函数利用白噪声检验方法来确定小波阈值降噪的分解层数J;
根据所述小波基函数以及小波阈值降噪的分解层数J对激光诱导击穿光谱信号进行离散小波变换,得到每一个分解层j上的近似系数cAj和细节系数cDj,j=1,…,J;
在每一个分解层j上,基于Donoho阈值λj,根据灰色系统理论计算得到上阈值的修正参数γj;根据模糊系统理论计算小波系数模糊集合的隶属度:近似系数模糊集合的隶属度和细节系数模糊集合的隶属度
在每一个分解层j上,根据和计算得到下阈值的修正参数Cj;
在每一个分解层j上,根据上阈值的修正参数γj和下阈值λ1j的修正参数Cj,计算得到新的上阈值λ2j=γj·λj和新的下阈值λ1j=Cj·λ2j;
在每一个分解层j上,将新的上阈值λ2j和新的下阈值λ1j代入半软阈值函数Tj,计算得到校正后的细节系数
通过Mallet方法,利用cAJ和校正后的细节系数对激光诱导击穿光谱信号进行小波重构,完成激光诱导击穿光谱信号降噪过程。

2.  根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述的每一个分解层j上的近似系数cAj={aj,1,…,aj,i,…,dj,k}和细节系数cDj={dj,1,…,dj,i,…,dj,k},其中,i代表小波系数的序号,k代表小波系数的个数。

3.  根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述Donoho阈值的计算公式其中,σj是噪声方差的估计值Median(cDj)表示在每一个分解层j上细节系数cDj的中 位数,Lj是每一个分解层j上细节系数cDj的个数。

4.  根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述的上阈值的修正参数γj的计算公式:
γj=minjmini|aJ,i-dj,i|+ξmaxjmaxi|aJ,i-dj,i||aJ,i-dj,i|+ξmaxjmaxi|aJ,i-dj,i|]]>
其中,ξ是辨识系数,取ξ=0.5;当j≠J时,对aJ,k进行上抽样插零,其中,j代表分解层数,j=1,…,J;i代表每一分解层数上小波系数的序号,max代表极大值,min代表极小值。

5.  根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述小波系数模糊集合的隶属度的计算公式:
μ(x)=0,xp12+12sin[πq-p(x-p+q2)],p<xq1,x>q]]>
其中,p是隶属度函数μ(x)等于0时自变量x的取值,q是隶属度函数μ(x)等于1时自变量x的取值;
所述p和q的计算公式是:
p=t1+t22+π(t1-t2)4arcsin(2Δ-1)q=t1+t22-π(t1-t2)4arcsin(2Δ-1)]]>
其中,t1是小波系数模糊集合的绝对极小值,t2是小波系数模糊集合的绝对极大值;⊿→0;
将|aj,i|和|dj,i|代入到μ(x)中就可以分别得到和的隶属度。

6.  根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述下阈值的修正参数Cj=1-Nj;其中,Nj是欧几里德贴近度,Nj 的计算公式:Nj(A&OverBar;,D&OverBar;)=1-1kΣi=1k[μA&OverBar;(|aj,i|)-μA&OverBar;(|dj,i|)]2;]]>其中,i代表小波系数的序号,k代表小波系数的个数。

7.  根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述半软阈值函数的计算公式:

其中,sgn(.)代表符号函数,j代表分解层数,j=1,…,J;λ1j代表每一个分解层上的下阈值,λ2j代表每一个分解层上的上阈值,cDj代表每个分解层上的细节小波系数;代表每一个分解层上修正后的小波细节系数,Tj代表半软阈值函数。

8.  根据权利要求1所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法,其特征在于,所述小波重构是根据Mallet方法,利用cAJ和校正后的细节系数进行小波逆变换完成了小波信号重构。

说明书

说明书激光诱导击穿光谱的小波阈值降噪的阈值校正方法
技术领域
本发明涉及激光诱导击穿光谱的信号预处理分析领域,具体是一种基于合理的阈值校正数学模型,通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪。
背景技术
激光诱导击穿光谱(LIBS)是一种典型的原子发射光谱测量技术。它利用聚焦的强脉冲激光将待测样品激发成等离子体而形成发射光谱,通过分析等离子体中原子或离子光谱来实现对样品的元素分析。LIBS发射强度的严重波动受到以冲击波形式的等离子传播的影响,并且受到来自多种噪声源,比如光电耦合器的暗电流,电子电路的热噪声以及光谱仪的杂散光和等离子体的连续辐射等。这些噪声夹杂在LIBS光谱信号中,不利于后续的样品元素分析。
为了解决LIBS光谱信号的降噪问题,人们通常采用的手段有两类:直接影响测量采集的硬件优化方式(设计滤波器、隔离器和探测器)以及LIBS光谱信号采集之后使强度增强的软件方法(设计数字滤波器、平滑滤波器和小波滤波器)。硬件优化方式由于其研发周期长和耗费大,造成了硬件优化手段的应用存在很大的局限性。软件方法不仅具有比硬件优化方式更高的精度而且还具有硬件优化方式不能比拟的可靠性,甚至能够实现硬件优化方式在理论上也无法达到的性能。软件滤波方法主要包括平滑滤波器、数字滤波器和小波滤波方法。平滑滤波器虽然能够保留LIBS信号的形状特征但是会导致LIBS信号在幅值上的损失较大,这不利于后续的LIBS定量分析。数字滤波器由于需要选择的合理滤波器参数较多会增加算法的复杂性并存在计算量大的不足。小波滤波方法主要包括三种:系数相关性方法、模极大值方法和阈值方法。系数相关性方法不仅需要定义直接影响到降噪效果的相关系数,而且需要迭代,计算量较大。模极大值方法存在一个由模极大值重构小波系数的问题,由于其重构算法的不同会导致降噪结果的不理想,此外还有算法复杂、计算量较大、收敛缓慢和稳定 性较差的不足。阈值方法不仅具有需要选择的滤波参数(阈值和阈值函数)较少的优点,而且实现最简单、计算量最小。
发明内容
为了解决现有小波阈值降噪中选择阈值的困难所引起的降噪效果不理想的不足,本发明的目的在于提出了一种基于合理的阈值校正数学模型,通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪。
本发明为实现上述目的所采用的技术方案是:一种激光诱导击穿光谱的小波阈值降噪的阈值校正方法,包括以下步骤:
输入整个激光诱导击穿光谱信号,利用Shannon熵来选择小波基函数利用白噪声检验方法来确定小波阈值降噪的分解层数J;
根据所述小波基函数以及小波阈值降噪的分解层数J对激光诱导击穿光谱信号进行离散小波变换,得到每一个分解层j上的近似系数cAj和细节系数cDj,j=1,…,J;
在每一个分解层j上,基于Donoho阈值λj,根据灰色系统理论计算得到上阈值的修正参数γj;根据模糊系统理论计算小波系数模糊集合的隶属度:近似系数模糊集合的隶属度和细节系数模糊集合的隶属度
在每一个分解层j上,根据和计算得到下阈值的修正参数Cj;
在每一个分解层j上,根据上阈值的修正参数γj和下阈值λ1j的修正参数Cj,计算得到新的上阈值λ2j=γj·λj和新的下阈值λ1j=Cj·λ2j;
在每一个分解层j上,将新的上阈值λ2j和新的下阈值λ1j代入半软阈值函数Tj,计算得到校正后的细节系数
通过Mallet方法,利用cAJ和校正后的细节系数对激光诱导击穿光谱信号进行小波重构,完成激光诱导击穿光谱信号降噪过程。
所述的每一个分解层j上的近似系数cAj={aj,1,…,aj,i,…,dj,k}和细节系数 cDj={dj,1,…,dj,i,…,dj,k},其中,i代表小波系数的序号,k代表小波系数的个数。
所述Donoho阈值的计算公式其中,σj是噪声方差的估计值Median(cDj)表示在每一个分解层j上细节系数cDj的中位数,Lj是每一个分解层j上细节系数cDj的个数。
所述的上阈值的修正参数γj的计算公式:
γj=minjmini|aJ,i-dj,i|+ξmaxjmaxi|aJ,i-dj,i||aJ,i-dj,i|+ξmaxjmaxi|aJ,i-dj,i|]]>
其中,ξ是辨识系数,取ξ=0.5;当j≠J时,对aJ,k进行上抽样插零,其中,j代表分解层数,j=1,…,J;i代表每一分解层数上小波系数的序号,max代表极大值,min代表极小值。
所述小波系数模糊集合的隶属度的计算公式:
μ(x)=0,xp12+12sin[πq-p(x-p+q2)],p<xq1,x>q]]>
其中,p是隶属度函数μ(x)等于0时自变量x的取值,q是隶属度函数μ(x)等于1时自变量x的取值;
所述p和q的计算公式是:
p=t1+t22+π(t1-t2)4arcsin(2Δ-1)q=t1+t22-π(t1-t2)4arcsin(2Δ-1)]]>
其中,t1是小波系数模糊集合的绝对极小值,t2是小波系数模糊集合的绝对极大值;⊿→0;
将|aj,i|和|dj,i|代入到μ(x)中就可以分别得到和的隶属度。
所述下阈值的修正参数Cj=1-Nj;其中,Nj是欧几里德贴近度,Nj的计算公 式:Nj(A&OverBar;,D&OverBar;)=1-1kΣi=1k[μA&OverBar;(|aj,i|)-μA&OverBar;(|dj,i|)]2;]]>其中,i代表小波系数的序号,k代表小波系数的个数。
所述半软阈值函数的计算公式:

其中,sgn(.)代表符号函数,j代表分解层数,j=1,…,J;λ1j代表每一个分解层上的下阈值,λ2j代表每一个分解层上的上阈值,cDj代表每个分解层上的细节小波系数;代表每一个分解层上修正后的小波细节系数,Tj代表半软阈值函数。
所述小波重构是根据Mallet方法,利用cAJ和校正后的细节系数进行小波逆变换完成了小波信号重构。
本发明具有以下优点:
1、本发明激光诱导击穿光谱的小波阈值降噪的阈值校正方法建立了上阈值和下阈值校正的数学模型,不仅根据不同分解层数上的小波系数特征进行校正,而且还根据半软阈值函数的特点进行调节,提高了小波阈值选择的自适应性、准确性和可靠性。
2、本发明的方法不需要人为参与小波阈值的设定,极大地减小了人为因素的干扰,而且本方法算法简单、计算速度快,易于实施。
3、本发明的方法可以提高LIBS光谱信号的信噪比,降低了最低检出限。
附图说明
图1本发明工作流程图;
图2为本发明铜合金样品未进行降噪处理的局部信号谱图;
图3为本发明对铜合金样品进行小波阈值降噪的小波细节系数的结果图;
图4为本发明对铜合金样品进行小波阈值降噪前后的局部信号对比谱图。
具体实施方式
下面结合附图及实施例对本发明做进一步的详细说明。
如图1所示,本发明基于合理的阈值校正数学模型,通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪的工作流程为:
基于合理的阈值校正数学模型,通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪,具体步骤如下:
步骤1)输入整个LIBS光谱信息;
步骤2)利用Shannon熵来选择小波基函数利用白噪声检验方法来确定小波阈值降噪的分解层数J;
步骤3)根据2)中确定的小波基函数以及小波阈值降噪的分解层数J对1)中光谱信号进行离散小波变换得到每一个分解层j上的近似系数cAj和细节系数cDj(j=1,…,J);
所述的每一个分解层j上的近似系数cAj={aj,1,…,aj,i,…,dj,k}和细节系数cDj={dj,1,…,dj,i,…,dj,k},其中,i代表小波系数的序号,k代表小波系数的个数。
步骤4)在每一个分解层j上,基于Donoho阈值λj,根据灰色系统理论计算得到上阈值的修正参数γj;
Donoho阈值的计算公式σj是噪声方差的估计值Median(cDj)表示在每一个分解层j上细节系数cDj的中位数,Lj是每一个分解层j上细节系数cDj的个数。根据灰色系统理论,通过计算每一分解层j上的灰色关联度得到所述的上阈值的修正参数γj。所述的上阈值的修正参数γj的计算公式:γj=minjmini|aJ,i-dj,i|+ξmaxjmaxi|aJ,i-dj,i||aJ,i-dj,i|+ξmaxjmaxi|aJ,i-dj,i|.]]>其中,ξ是辨识系数,取ξ=0.5;当j≠J时,对aJ,k进行上抽样插零。
步骤5)在每一个分解层j上,根据模糊系统理论计算小波系数模糊集合的隶属度:近似系数模糊集合的隶属度μA(|aj,i|)和细节系数模糊集合的隶属度
根据模糊系统理论,建立每一分解层j上的小波系数模糊集合:近似系数模糊集合和细节系数模糊集合计算近似系数模糊集合的隶属度μA(|aj,i|)和细节系数模糊集合的隶属度的计算公式:
μ(x)=0,xp12+12sin[πq-p(x-p+q2)],p<xq1,x>q.]]>其中,p是隶属度函数μ(x)等于0时自变量x的取值,q是隶属度函数μ(x)等于1时自变量x的取值。p和q的计算公式是:p=t1+t22+π(t1-t2)4arcsin(2Δ-1)q=t1+t22-π(t1-t2)4arcsin(2Δ-1).]]>其中,t1是小波系数模糊集合的绝对极小值,t2是小波系数模糊集合的绝对极大值;⊿→0。
步骤6)在每一个分解层j上,根据5)中得到的和计算得到下阈值的修正参数Cj;
所述的下阈值的修正参数Cj=1-Nj。其中,Nj是欧几里德贴近度,Nj的计算公式:其中,i代表小波系数的序号,k代表小波系数的个数。
步骤7)在每一个分解层j上,根据4)中得到上阈值的修正参数γj和根据6)下阈值λ1j的修正参数Cj,计算得到新的上阈值λ2j=γj·λj和新的下阈值λ1j=Cj·λ2j;
步骤8)在每一个分解层j上,将新的上阈值λ2j和新的下阈值λ1j代入半软阈值函数Tj,计算得到校正后的细节系数
所述的半软阈值函数的计算公式:其中,sgn(.)代表符号函数。
步骤9)通过Mallet方法,利用3)中得到的cAJ和8)中得到的校正后的细节系数对激光诱导击穿光谱信号进行小波重构,完成激光诱导击穿光谱信号降噪过程。
图2、图3及图4给出了本实施例针对铜合金样品的测定过程。
请参阅图1,本发明的具体分析铜合金实施例步骤为:
步骤1)输入整个光谱信息;
本实施例中选择波长在220~375nm之间的光谱数据。图2中黑色实线是所选择的光谱局部信号。
步骤2)步骤2)利用Shannon熵来选择小波基函数利用白噪声检验方法来确定小波阈值降噪的分解层数J;
本实施例中确定的小波基函数是‘db5’,确定小波阈值降噪的分解层数J=4。
步骤3)根据2)中确定的小波基函数以及小波阈值降噪的分解层数J对1)中光谱信号进行离散小波变换得到每一个分解层j上的近似系数cAj和细节系数cDj(j=1,…,J);
步骤4)在每一个分解层j上,基于Donoho阈值λj,根据灰色系统理论计算得到上阈值的修正参数γj;
本实施例中Donoho阈值λ1=2.3982,λ2=3.5038,λ3=6.0059,λ4=14.2357。
上阈值的修正参数γ1=0.9996,γ2=0.8878,γ3=0.8179,γ4=0.7948。
步骤5)在每一个分解层j上,根据模糊系统理论计算小波系数模糊集合的隶属度;
步骤6)在每一个分解层j上,根据5)中得到的μA(|aj,i|)和计算得到下阈值的修正参数Cj;
本实施例中下阈值的修正参数C1=0.4938,C2=0.5625,C3=0.5443,C4=0.9342.
步骤7)在每一个分解层j上,根据4)中得到上阈值的修正参数γj和根据6)下阈值λ1j的修正参数Cj,计算得到新的上阈值λ2j=γj·λj和新的下阈值λ1j=Cj·λ2j;
本实施例中新的上阈值λ21=2.3972,λ22=3.1106,λ23=4.9122,λ24=11.3145;新的下阈值λ11=1.1837,λ12=1.7497,λ13=2.6737,λ14=10.5700。
步骤8)在每一个分解层j上,将新的上阈值λ2j和新的下阈值λ1j代入半软阈值函数Tj,计算得到校正后的细节系数
图3是对铜合金样品进行小波阈值降噪的小波细节系数的结果图;
步骤9)通过Mallet方法,利用3)中得到的cAJ和8)中得到的校正后的细节系数对激光诱导击穿光谱信号进行小波重构,完成激光诱导击穿光谱信号降噪过程。
图4中的红色实线是LIBS光谱信号降噪的最终结果。从图4的对比降噪前后的效果可以看出,本方法的选择小波阈值的效果很好,不仅很好的保留了原来的LIBS光谱信号的特征,而且提高了信噪比,降低了最低检出限。

激光诱导击穿光谱的小波阈值降噪的阈值校正方法.pdf_第1页
第1页 / 共13页
激光诱导击穿光谱的小波阈值降噪的阈值校正方法.pdf_第2页
第2页 / 共13页
激光诱导击穿光谱的小波阈值降噪的阈值校正方法.pdf_第3页
第3页 / 共13页
点击查看更多>>
资源描述

《激光诱导击穿光谱的小波阈值降噪的阈值校正方法.pdf》由会员分享,可在线阅读,更多相关《激光诱导击穿光谱的小波阈值降噪的阈值校正方法.pdf(13页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 104345049 A (43)申请公布日 2015.02.11 CN 104345049 A (21)申请号 201310349855.0 (22)申请日 2013.08.09 G01N 21/63(2006.01) (71)申请人 中国科学院沈阳自动化研究所 地址 110016 辽宁省沈阳市东陵区南塔街 114 号 (72)发明人 于海斌 张博 孙兰香 杨志家 辛勇 丛智博 齐立峰 (74)专利代理机构 沈阳科苑专利商标代理有限 公司 21002 代理人 周秀梅 许宗富 (54) 发明名称 激光诱导击穿光谱的小波阈值降噪的阈值校 正方法 (57) 摘要 本发明公开。

2、了一种用于激光诱导击穿光谱的 小波阈值降噪的阈值校正方法, 基于合理的阈值 校正数学模型, 通过灰色理论和模糊理论计算得 到校正后的阈值并用于激光诱导击穿光谱的小波 阈值降噪。通过本方法取得了很好的激光诱导击 穿光谱的降噪效果, 在提高了信噪比的同时降低 了检出限。 (51)Int.Cl. 权利要求书 2 页 说明书 6 页 附图 4 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书2页 说明书6页 附图4页 (10)申请公布号 CN 104345049 A CN 104345049 A 1/2 页 2 1. 一种激光诱导击穿光谱的小波阈值降噪的阈值校正方法, 其特征。

3、在于, 包括以下步 骤 : 输入整个激光诱导击穿光谱信号, 利用 Shannon 熵来选择小波基函数利用白噪声检 验方法来确定小波阈值降噪的分解层数 J ; 根据所述小波基函数 以及小波阈值降噪的分解层数 J 对激光诱导击穿光谱信号进行 离散小波变换, 得到每一个分解层 j 上的近似系数 cAj和细节系数 cDj, j=1,J ; 在每一个分解层j上, 基于Donoho阈值j, 根据灰色系统理论计算得到上阈值的修正 参数j; 根据模糊系统理论计算小波系数模糊集合的隶属度 : 近似系数模糊集合的隶属度 和细节系数模糊集合的隶属度 在每一个分解层 j 上, 根据和计算得到下阈值的修正参数 Cj; 。

4、在每一个分解层 j 上, 根据上阈值的修正参数 j和下阈值 1j的修正参数 Cj, 计算得 到新的上阈值 2j=jj和新的下阈值 1j=Cj2j; 在每一个分解层j上, 将新的上阈值2j和新的下阈值1j代入半软阈值函数Tj, 计算 得到校正后的细节系数 通过Mallet方法, 利用cAJ和校正后的细节系数对激光诱导击穿光谱信号进行小 波重构, 完成激光诱导击穿光谱信号降噪过程。 2. 根据权利要求 1 所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法, 其 特征在于, 所述的每一个分解层 j 上的近似系数 cAj=aj,1,aj,i,dj,k 和细节系数 cDj=dj,1,dj,i,dj,k。

5、, 其中, i 代表小波系数的序号, k 代表小波系数的个数。 3. 根据权利要求 1 所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法, 其特 征在于, 所述 Donoho 阈值的计算公式其中, j是噪声方差的估计值 Median(cDj) 表示在每一个分解层 j 上细节系数 cDj的中位数, Lj是每 一个分解层 j 上细节系数 cDj的个数。 4. 根据权利要求 1 所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法, 其特征 在于, 所述的上阈值的修正参数 j的计算公式 : 其中, 是辨识系数, 取 =0.5 ; 当 j J 时, 对 aJ,k进行上抽样插零, 其中, j 代表分 解。

6、层数, j=1,J ; i 代表每一分解层数上小波系数的序号, max 代表极大值, min 代表极小 值。 5. 根据权利要求 1 所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法, 其特征 在于, 所述小波系数模糊集合的隶属度的计算公式 : 权 利 要 求 书 CN 104345049 A 2 2/2 页 3 其中, p 是隶属度函数 (x) 等于 0 时自变量 x 的取值, q 是隶属度函数 (x) 等于 1 时自变量 x 的取值 ; 所述 p 和 q 的计算公式是 : 其中, t1是小波系数模糊集合的绝对极小值, t2是小波系数模糊集合的绝对极大值 ; 0 ; 将 |aj,i| 和 。

7、|dj,i| 代入到 (x) 中就可以分别得到和的隶属度。 6. 根据权利要求 1 所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法, 其 特征在于, 所述下阈值的修正参数 Cj=1-Nj; 其中, Nj是欧几里德贴近度, Nj的计算公式 : 其中, i 代表小波系数的序号, k 代表小波系数 的个数。 7. 根据权利要求 1 所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法, 其特征 在于, 所述半软阈值函数的计算公式 : 其中, sgn(.) 代表符号函数, j 代表分解层数, j=1,J ; 1j代表每一个分解层上的 下阈值, 2j代表每一个分解层上的上阈值, cDj代表每个分解层上。

8、的细节小波系数 ;代 表每一个分解层上修正后的小波细节系数, Tj代表半软阈值函数。 8. 根据权利要求 1 所述的激光诱导击穿光谱的小波阈值降噪的阈值校正方法, 其特征 在于, 所述小波重构是根据Mallet方法, 利用cAJ和校正后的细节系数进行小波逆变换 完成了小波信号重构。 权 利 要 求 书 CN 104345049 A 3 1/6 页 4 激光诱导击穿光谱的小波阈值降噪的阈值校正方法 技术领域 0001 本发明涉及激光诱导击穿光谱的信号预处理分析领域, 具体是一种基于合理的阈 值校正数学模型, 通过灰色理论和模糊理论计算得到校正后的阈值并用于激光诱导击穿光 谱的小波阈值降噪。 背景。

9、技术 0002 激光诱导击穿光谱 (LIBS) 是一种典型的原子发射光谱测量技术。它利用聚焦的 强脉冲激光将待测样品激发成等离子体而形成发射光谱, 通过分析等离子体中原子或离子 光谱来实现对样品的元素分析。 LIBS发射强度的严重波动受到以冲击波形式的等离子传播 的影响, 并且受到来自多种噪声源, 比如光电耦合器的暗电流, 电子电路的热噪声以及光谱 仪的杂散光和等离子体的连续辐射等。这些噪声夹杂在 LIBS 光谱信号中, 不利于后续的样 品元素分析。 0003 为了解决 LIBS 光谱信号的降噪问题, 人们通常采用的手段有两类 : 直接影响测量 采集的硬件优化方式 (设计滤波器、 隔离器和探测。

10、器) 以及LIBS光谱信号采集之后使强度增 强的软件方法 (设计数字滤波器、 平滑滤波器和小波滤波器) 。硬件优化方式由于其研发周 期长和耗费大, 造成了硬件优化手段的应用存在很大的局限性。软件方法不仅具有比硬件 优化方式更高的精度而且还具有硬件优化方式不能比拟的可靠性, 甚至能够实现硬件优化 方式在理论上也无法达到的性能。软件滤波方法主要包括平滑滤波器、 数字滤波器和小波 滤波方法。平滑滤波器虽然能够保留 LIBS 信号的形状特征但是会导致 LIBS 信号在幅值上 的损失较大, 这不利于后续的 LIBS 定量分析。数字滤波器由于需要选择的合理滤波器参数 较多会增加算法的复杂性并存在计算量大的。

11、不足。小波滤波方法主要包括三种 : 系数相关 性方法、 模极大值方法和阈值方法。系数相关性方法不仅需要定义直接影响到降噪效果的 相关系数, 而且需要迭代, 计算量较大。 模极大值方法存在一个由模极大值重构小波系数的 问题, 由于其重构算法的不同会导致降噪结果的不理想, 此外还有算法复杂、 计算量较大、 收敛缓慢和稳定性较差的不足。阈值方法不仅具有需要选择的滤波参数 (阈值和阈值函数) 较少的优点, 而且实现最简单、 计算量最小。 发明内容 0004 为了解决现有小波阈值降噪中选择阈值的困难所引起的降噪效果不理想的不足, 本发明的目的在于提出了一种基于合理的阈值校正数学模型, 通过灰色理论和模糊。

12、理论计 算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪。 0005 本发明为实现上述目的所采用的技术方案是 : 一种激光诱导击穿光谱的小波阈值 降噪的阈值校正方法, 包括以下步骤 : 0006 输入整个激光诱导击穿光谱信号, 利用 Shannon 熵来选择小波基函数利用白噪 声检验方法来确定小波阈值降噪的分解层数 J ; 0007 根据所述小波基函数以及小波阈值降噪的分解层数J对激光诱导击穿光谱信号 说 明 书 CN 104345049 A 4 2/6 页 5 进行离散小波变换, 得到每一个分解层 j 上的近似系数 cAj和细节系数 cDj, j=1,J ; 0008 在每一个分解层j。

13、上, 基于Donoho阈值j, 根据灰色系统理论计算得到上阈值的 修正参数j; 根据模糊系统理论计算小波系数模糊集合的隶属度 : 近似系数模糊集合的隶 属度和细节系数模糊集合的隶属度 0009 在每一个分解层 j 上, 根据和计算得到下阈值的修正参数 Cj; 0010 在每一个分解层 j 上, 根据上阈值的修正参数 j和下阈值 1j的修正参数 Cj, 计 算得到新的上阈值 2j=jj和新的下阈值 1j=Cj2j; 0011 在每一个分解层j上, 将新的上阈值2j和新的下阈值1j代入半软阈值函数Tj, 计算得到校正后的细节系数 0012 通过Mallet方法, 利用cAJ和校正后的细节系数对激光。

14、诱导击穿光谱信号进 行小波重构, 完成激光诱导击穿光谱信号降噪过程。 0013 所述的每一个分解层 j 上的近似系数 cAj=aj,1,aj,i,dj,k 和细节系数 cDj=dj,1,dj,i,dj,k, 其中, i 代表小波系数的序号, k 代表小波系数的个数。 0014 所述 Donoho 阈值的计算公式其中, j是噪声方差的估计值 Median(cDj) 表示在每一个分解层 j 上细节系数 cDj的中位数, Lj是 每一个分解层 j 上细节系数 cDj的个数。 0015 所述的上阈值的修正参数 j的计算公式 : 0016 0017 其中, 是辨识系数, 取 =0.5 ; 当 j J 时。

15、, 对 aJ,k进行上抽样插零, 其中, j 代 表分解层数, j=1,J ; i 代表每一分解层数上小波系数的序号, max 代表极大值, min 代表 极小值。 0018 所述小波系数模糊集合的隶属度的计算公式 : 0019 0020 其中, p 是隶属度函数 (x) 等于 0 时自变量 x 的取值, q 是隶属度函数 (x) 等 于 1 时自变量 x 的取值 ; 0021 所述 p 和 q 的计算公式是 : 说 明 书 CN 104345049 A 5 3/6 页 6 0022 0023 其中, t1是小波系数模糊集合的绝对极小值, t2是小波系数模糊集合的绝对极大 值 ; 0 ; 00。

16、24 将 |aj,i| 和 |dj,i| 代入到 (x) 中就可以分别得到和的隶属度。 0025 所述下阈值的修正参数 Cj=1-Nj; 其中, Nj是欧几里德贴近度, Nj的计算公式 : 其中, i 代表小波系数的序号, k 代表小波系数 的个数。 0026 所述半软阈值函数的计算公式 : 0027 0028 其中, sgn(.) 代表符号函数, j 代表分解层数, j=1,J ; 1j代表每一个分解层 上的下阈值, 2j代表每一个分解层上的上阈值, cDj代表每个分解层上的细节小波系数 ; 代表每一个分解层上修正后的小波细节系数, Tj代表半软阈值函数。 0029 所述小波重构是根据 Ma。

17、llet 方法, 利用 cAJ和校正后的细节系数进行小波逆 变换完成了小波信号重构。 0030 本发明具有以下优点 : 0031 1、 本发明激光诱导击穿光谱的小波阈值降噪的阈值校正方法建立了上阈值和下 阈值校正的数学模型, 不仅根据不同分解层数上的小波系数特征进行校正, 而且还根据半 软阈值函数的特点进行调节, 提高了小波阈值选择的自适应性、 准确性和可靠性。 0032 2、 本发明的方法不需要人为参与小波阈值的设定, 极大地减小了人为因素的干 扰, 而且本方法算法简单、 计算速度快, 易于实施。 0033 3、 本发明的方法可以提高 LIBS 光谱信号的信噪比, 降低了最低检出限。 附图说。

18、明 0034 图 1 本发明工作流程图 ; 0035 图 2 为本发明铜合金样品未进行降噪处理的局部信号谱图 ; 0036 图 3 为本发明对铜合金样品进行小波阈值降噪的小波细节系数的结果图 ; 说 明 书 CN 104345049 A 6 4/6 页 7 0037 图 4 为本发明对铜合金样品进行小波阈值降噪前后的局部信号对比谱图。 具体实施方式 0038 下面结合附图及实施例对本发明做进一步的详细说明。 0039 如图 1 所示, 本发明基于合理的阈值校正数学模型, 通过灰色理论和模糊理论计 算得到校正后的阈值并用于激光诱导击穿光谱的小波阈值降噪的工作流程为 : 0040 基于合理的阈值校。

19、正数学模型, 通过灰色理论和模糊理论计算得到校正后的阈值 并用于激光诱导击穿光谱的小波阈值降噪, 具体步骤如下 : 0041 步骤 1) 输入整个 LIBS 光谱信息 ; 0042 步骤 2) 利用 Shannon 熵来选择小波基函数利用白噪声检验方法来确定小波阈 值降噪的分解层数 J ; 0043 步骤 3) 根据 2) 中确定的小波基函数以及小波阈值降噪的分解层数 J 对 1) 中 光谱信号进行离散小波变换得到每一个分解层 j 上的近似系数 cAj和细节系数 cDj(j=1, ,J) ; 0044 所述的每一个分解层 j 上的近似系数 cAj=aj,1,aj,i,dj,k 和细节系数 cD。

20、j=dj,1,dj,i,dj,k, 其中, i 代表小波系数的序号, k 代表小波系数的个数。 0045 步骤 4) 在每一个分解层 j 上, 基于 Donoho 阈值 j, 根据灰色系统理论计算得到 上阈值的修正参数 j; 0046 Donoho 阈 值 的 计 算 公 式j是 噪 声 方 差 的 估 计 值 Median(cDj) 表示在每一个分解层 j 上细节系数 cDj的中位数, Lj是 每一个分解层 j 上细节系数 cDj的个数。根据灰色系统理论, 通过计算每一分解层 j 上的 灰色关联度得到所述的上阈值的修正参数 j。所述的上阈值的修正参数 j的计算公式 : 其中, 是辨识系数, 。

21、取 =0.5 ; 当 j J 时, 对 aJ,k进行上抽样插零。 0047 步骤 5) 在每一个分解层 j 上, 根据模糊系统理论计算小波系数模糊集合的隶属 度 : 近似系数模糊集合的隶属度 A(|aj,i|) 和细节系数模糊集合的隶属度 0048 根据模糊系统理论, 建立每一分解层 j 上的小波系数模糊集合 : 近似系数模糊集 合和细节系数模糊集合计算近似系数模糊集合的隶属度 A(|aj,i|) 和细节系数模糊 集合的隶属度的计算公式 : 说 明 书 CN 104345049 A 7 5/6 页 8 0049 其中, p 是隶属度函数 (x) 等于 0 时自变量 x 的取值, q 是隶属度函。

22、数 (x) 等于 1 时自变量 x 的取值。p 和 q 的计算 公式是 :其中, t1是小波系数模糊集合的绝对极小值, t2是小波 系数模糊集合的绝对极大值 ; 0。 0050 步骤 6) 在每一个分解层 j 上, 根据 5) 中得到的和计算得到下 阈值的修正参数 Cj; 0051 所述的下阈值的修正参数 Cj=1-Nj。其中, Nj是欧几里德贴近度, Nj的计算公式 : 其中, i代表小波系数的序号, k代表小波系数的 个数。 0052 步骤 7) 在每一个分解层 j 上, 根据 4) 中得到上阈值的修正参数 j和根据 6) 下 阈值 1j的修正参数 Cj, 计算得到新的上阈值 2j=jj和。

23、新的下阈值 1j=Cj2j; 0053 步骤 8) 在每一个分解层 j 上, 将新的上阈值 2j和新的下阈值 1j代入半软阈值 函数 Tj, 计算得到校正后的细节系数 0054 所述的半软阈值函数的计算公式 : 其中, sgn(.) 代表符号函数。 0055 步骤 9) 通过 Mallet 方法, 利用 3) 中得到的 cAJ和 8) 中得到的校正后的细节系 数对激光诱导击穿光谱信号进行小波重构, 完成激光诱导击穿光谱信号降噪过程。 0056 图 2、 图 3 及图 4 给出了本实施例针对铜合金样品的测定过程。 0057 请参阅图 1, 本发明的具体分析铜合金实施例步骤为 : 0058 步骤 。

24、1) 输入整个光谱信息 ; 0059 本实施例中选择波长在 220 375nm 之间的光谱数据。图 2 中黑色实线是所选择 说 明 书 CN 104345049 A 8 6/6 页 9 的光谱局部信号。 0060 步骤 2) 步骤 2) 利用 Shannon 熵来选择小波基函数利用白噪声检验方法来确定 小波阈值降噪的分解层数 J ; 0061 本实施例中确定的小波基函数是 db5 , 确定小波阈值降噪的分解层数 J=4。 0062 步骤 3) 根据 2) 中确定的小波基函数以及小波阈值降噪的分解层数 J 对 1) 中 光谱信号进行离散小波变换得到每一个分解层 j 上的近似系数 cAj和细节系数。

25、 cDj(j=1, ,J) ; 0063 步骤 4) 在每一个分解层 j 上, 基于 Donoho 阈值 j, 根据灰色系统理论计算得到 上阈值的修正参数 j; 0064 本实施例中 Donoho 阈值 1=2.3982,2=3.5038,3=6.0059,4=14.2357。 0065 上阈值的修正参数 1=0.9996, 2=0.8878, 3=0.8179, 4=0.7948。 0066 步骤 5) 在每一个分解层 j 上, 根据模糊系统理论计算小波系数模糊集合的隶属 度 ; 0067 步骤 6) 在每一个分解层 j 上, 根据 5) 中得到的 A(|aj,i|) 和计算得到 下阈值的修。

26、正参数 Cj; 0068 本实施例中下阈值的修正参数 C1=0.4938,C2=0.5625,C3=0.5443,C4=0.9342. 0069 步骤 7) 在每一个分解层 j 上, 根据 4) 中得到上阈值的修正参数 j和根据 6) 下 阈值 1j的修正参数 Cj, 计算得到新的上阈值 2j=jj和新的下阈值 1j=Cj2j; 0070 本实施例中新的上阈值 21=2.3972, 22=3.1106, 23=4.9122, 24=11.3145 ; 新 的下阈值 11=1.1837, 12=1.7497, 13=2.6737, 14=10.5700。 0071 步骤 8) 在每一个分解层 j。

27、 上, 将新的上阈值 2j和新的下阈值 1j代入半软阈值 函数 Tj, 计算得到校正后的细节系数 0072 图 3 是对铜合金样品进行小波阈值降噪的小波细节系数的结果图 ; 0073 步骤 9) 通过 Mallet 方法, 利用 3) 中得到的 cAJ和 8) 中得到的校正后的细节系 数对激光诱导击穿光谱信号进行小波重构, 完成激光诱导击穿光谱信号降噪过程。 0074 图 4 中的红色实线是 LIBS 光谱信号降噪的最终结果。从图 4 的对比降噪前后的 效果可以看出, 本方法的选择小波阈值的效果很好, 不仅很好的保留了原来的 LIBS 光谱信 号的特征, 而且提高了信噪比, 降低了最低检出限。 说 明 书 CN 104345049 A 9 1/4 页 10 图 1 说 明 书 附 图 CN 104345049 A 10 2/4 页 11 图 2 说 明 书 附 图 CN 104345049 A 11 3/4 页 12 图 3 说 明 书 附 图 CN 104345049 A 12 4/4 页 13 图 4 说 明 书 附 图 CN 104345049 A 13 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 测量;测试


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1