具有过冷相变材料的空调系统.pdf

上传人:e2 文档编号:468048 上传时间:2018-02-18 格式:PDF 页数:12 大小:970.20KB
返回 下载 相关 举报
摘要
申请专利号:

CN201380022691.9

申请日:

2013.02.26

公开号:

CN104246378A

公开日:

2014.12.24

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):F24F 5/00申请日:20130226|||公开

IPC分类号:

F24F5/00; F24F11/00

主分类号:

F24F5/00

申请人:

开利公司

发明人:

G. M. 多布斯

地址:

美国康涅狄格州

优先权:

2012.05.03 US 61/642,072

专利代理机构:

中国专利代理(香港)有限公司 72001

代理人:

张昱;肖日松

PDF下载: PDF下载
内容摘要

一种空调系统,其包括:冷却器系统,所述冷却器系统包括压缩机、冷凝器、膨胀装置和蒸发器;与所述冷凝器热连通的相变材料;耦接到所述相变材料的致动器;和控制器,其将触发信号提供给所述致动器来使所述相变材料开始从过冷状态改变成固体状态。

权利要求书

1.  一种空调系统,其包括:
冷却器系统,其包括压缩机、冷凝器、膨胀装置和蒸发器;
与所述冷凝器热连通的相变材料;
耦接到所述相变材料的致动器;和
控制器,其将触发信号提供给所述致动器来使所述相变材料开始从过冷状态改变成固体状态。

2.
  根据权利要求1所述的空调系统,其中:
所述冷凝器被嵌入在所述相变材料中。

3.
  根据权利要求1所述的空调系统,其还包括:
环境温度传感器,其将环境温度信号提供给所述控制器。

4.
  根据权利要求1所述的空调系统,其还包括:
相变材料传感器,其将相变材料温度信号提供给所述控制器。

5.
  根据权利要求1所述的空调系统,其中:
所述相变材料包括内部通风道,其允许环境空气流动通过所述相变材料。

6.
  根据权利要求5所述的空调系统,其还包括:
风扇,其用于抽吸空气通过所述通风道。

7.
  根据权利要求1所述的空调系统,其中:
所述相变材料包括与所述相变材料热连通的冷却剂供应管线,所述冷却剂供应管线耦接到所述冷却器系统。

8.
  根据权利要求1所述的空调系统,其中:
所述致动器产生声波使所述相变材料开始从所述过冷状态改变成所述固体状态。

9.
  根据权利要求1所述的空调系统,其中:
所述致动器包括冷冻相变材料,所述冷冻相变材料放置成与所述相变材料接触而使所述相变材料开始从所述过冷状态改变成所述固体状态。

10.
  根据权利要求9所述的空调系统,其中:
所述致动器包括使所述冷冻相变材料与所述相变材料分离的阀,所述控制器打开所述阀而使所述相变材料开始从所述过冷状态改变成所述固体状态。

11.
  根据权利要求1所述的空调系统,其中:
所述控制器响应于气候区数据和环境温度来预测夜间温度分布;且
所述控制器响应于所述夜间温度分布来确定所述相变材料是否将过冷。

12.
  根据权利要求11所述的空调系统,其中:
所述控制器响应于所述夜间温度分布而将所述触发信号提供给所述致动器。

13.
  根据权利要求11所述的空调系统,其中:
所述相变材料包括内部通风道,其允许环境空气流动通过所述相变材料;
当所述控制器响应于所述夜间温度分布确定所述相变材料将不会过冷时,所述控制器致动风扇用于将空气抽吸通过所述通风道来使所述相变材料过冷。

14.
  根据权利要求11所述的空调系统,其中:
所述相变材料包括与所述相变材料热连通的冷却剂供应管线,所述冷却剂供应管线耦接到所述冷却器系统;
当所述控制器响应于所述夜间温度分布确定所述相变材料将不会过冷时,所述控制器致动所述冷却器系统来冷却所述冷却剂供应管线而使所述相变材料过冷。

15.
  一种用于操作空调系统的方法,所述空调系统具有包括压缩机、冷凝器、膨胀装置和蒸发器的冷却器系统、与所述冷凝器热连通的相变材料以及耦接到所述相变材料的致动器,所述方法包括:
确定环境温度分布是否将造成所述相变材料的过冷;和
响应于所述确定,触发所述致动器来使所述相变材料开始从过冷状态改变成固体状态。

16.
  根据权利要求15所述的方法,其中:
触发所述致动器包括响应于所述环境温度分布确定触发时间以及在所述触发时间触发所述致动器。

17.
  根据权利要求15所述的方法,其还包括:
响应于确定所述环境温度分布将不会造成所述相变材料的过冷而运行冷凝器风扇。

18.
  根据权利要求17所述的方法,其还包括:
响应于确定所述环境温度分布将不导致所述相变材料的过冷且运行所述冷凝器风扇将不导致所述相变材料的过冷而运行所述冷却器系统。

19.
  根据权利要求18所述的方法,其中:
运行所述冷却器系统包括用冷却剂冷却所述相变材料。

20.
  根据权利要求15所述的方法,其中:
确定所述环境温度分布是否将造成所述相变材料的过冷包括响应于气候区数据、日间温度和相变材料温度来预测夜间温度分布。

说明书

具有过冷相变材料的空调系统
技术背景
本文公开的主题大体涉及空调系统,且明确地说,涉及一种使用过冷相变材料来存储热能的空调系统。
现有空调系统采用相变材料来提高系统的容量和/或效率。示例性的空调系统包括能量存储系统,其在当能量成本相当低(例如非峰值费率)时冻结相变材料。接着相变材料用于在其它操作模式期间吸收热能来改进空调系统的效率和/或容量。
发明概要
一个实施方案是一种空调系统,其包括:冷却器系统,所述冷却器系统包括压缩机、冷凝器、膨胀装置和蒸发器;与冷凝器热连通的相变材料;耦接到相变材料的致动器;和控制器,其将触发信号提供给致动器来使相变材料开始从过冷状态改变成固体状态。
另一示例性实施方案是一种用于操作空调系统的方法,所述空调系统具有包括压缩机、冷凝器、膨胀装置和蒸发器的冷却器系统、与冷凝器热连通的相变材料以及耦接到相变材料的致动器,所述方法包括:确定环境温度分布是否将造成相变材料的过冷;和响应于所述确定,触发致动器来使相变材料开始从过冷状态改变成固体状态。
本文描述其它示例性实施方案和特征。
附图简述
图1描绘了示例性实施方案中的空调系统。
图2描绘了示例性实施方案中的冷凝器盘管组件。
图3描绘了示例性实施方案中的致动器。
图4是温度对时间的曲线图,其图示了示例性实施方案中的相变材料的状态变化。
图5是示例性实施方案中的控制过程的流程图。
具体实施方式
图1描绘了示例性实施方案中的空调系统。冷却器系统包括压缩机10、第一热交换器12、膨胀装置14和第二热交换器16。第一热交换器12可用作冷凝器盘管,并且可位于待进行空气调节的建筑物或空间之外。第二热交换器16可用作蒸发器盘管。如本领域已知,制冷剂通过压缩机10、冷凝器12、膨胀装置14和蒸发器16进行蒸汽压缩循环。热量在蒸发器16处被吸收并且在冷凝器12处被排放。
图1的系统可以是水冷却器系统。蒸发器16与热交换器18(例如盘管)热连通,其携载流体冷却剂,例如水。供应泵20使冷却剂从由蒸发器16冷却的热交换器18循环到供应阀22。如本领域中已知,供应阀22将冷水(约45 ℉)供应到本地区域终端(其中风扇在盘管上方抽吸空气)用于冷却空间。回流阀24接收从本地区域终端回流的流体并将回流流体提供给热交换器18。应当理解本发明的实施方案可以与其它类型的空调系统(例如强制通风)连用且实施方案不限于水冷却器系统。
冷凝器盘管12与相变材料26热连通。冷凝器盘管12可以完全嵌入到相变材料26中或相变材料可处于含有冷凝器盘管12的外壳中。或者,冷凝器盘管的一部分可以暴露于环境空气。风扇28可将空气抽吸通过相变材料26以有助于冷却相变材料26。在示例性实施方案中,相变材料26是达到过冷状态的材料。接着,控制器32使相变材料26开始从过冷液体转变成固体。如本文进一步详细描述,致动器30用于在当相变材料26处于过冷状态时,使相变材料26开始从过冷液体转变成固体。
控制器32控制系统的操作。控制器32可以使用执行存储在存储介质中的计算机代码的通用微处理器来实施而用于执行本文描述的功能。控制器32从与相变材料26热接触的相变材料传感器34接收相变材料温度信号。控制器32还从环境温度传感器36接收环境温度信号。环境温度传感器36可监控冷凝器12附近的外部空气温度。控制器32可将控制信号发送给压缩机10、泵20、供应阀22、回流阀24、风扇28和致动器30。本文参考图5进一步详细描述系统的操作。
图2描绘了示例性实施方案中的冷凝器总成。冷凝器盘管12与相变材料26热连通。在图2的实施方案中,冷凝器盘管12嵌入相变材料26中。在其它实施方案中,冷凝器盘管12的一部分可延伸超过相变材料26,使得整个冷凝器盘管12不嵌入相变材料26中。空气通道40形成于相变材料26中以允许通过风扇28将空气抽吸通过相变材料26。空气通道可配置成各种构造,且实施方案不限于图2中所示的配置。当需要额外的环境气流来冷却相变材料26时,控制器32可以打开风扇28。
冷却剂供应管线42还与相变材料26热连通,且如图2中所示,可嵌入相变材料26中。在当环境温度不足以充分冷却相变材料26(例如冷却到过冷状态)的情况下,控制器32可将冷却的冷却剂从供应阀22导引到相变材料26且回到回流阀24。控制器32致动压缩机10以在盘管18中产生冷却的冷却剂。控制器32设置阀22和24以将冷却的冷却剂供应给相变材料26且泵20被致动来使冷却的冷却剂循环到相变材料26。
图3描绘了示例性实施方案中的致动器30。致动器30由控制器32控制使过冷的液体相变材料开始转变成固体相变材料。如本文使用,过冷是指相变材料26呈液态且处于低于相变材料凝固点的温度。图3中的致动器包括相变材料的管道50和热电冷却器52,其可使管50中的相变材料在所有条件下维持冷冻或固态。阀54将管50连接到相变材料26的主贮存器。控制器32打开阀54以触发主相变材料贮存器26的冷冻。当阀54打开时,相变材料26中的一些未冻结液体流向管50的冷冻容积且开始冻结。随着潜热被释放,冷冻前部从阀区域向外移动到相变材料26的其余部分。致动器30的另一实施方案包括超声发射器来产生超声波而触发相变材料26开始从过冷液体转变成固体。
如本文进一步详细描述,相变材料26经过选择使得当对冷却器系统的冷却要求低或不存在时,相变材料从液体转变为固体。这可能发生在晚上,当外界温度较低时。图4示出了示例性的昼夜温度对时间的分布图,以及相变材料26的状态。在图4的实例中,外部空气温度在日间高达约95 ℉至夜间低至约70 ℉的范围中。如果相变材料26的转变温度被选择为约75 ℉,那么相变材料26将在夜间冷冻(或再装填)且接着在白天融化(或排放)。在白天,冷冻相变材料26从冷凝器盘管12吸收能量,改进了当冷却系统运行时冷凝器12的效率且提高了冷却器系统的效率和容量。
图5是示例性实施方案中由控制器32执行的控制过程的流程图。过程开始于100,其中控制器32获得系统的气候区数据。气候区数据可由已知气候图指示且在安装空调系统之后被编程到控制器32中。在102中,控制器32通过环境温度传感器36监控环境空气温度且可随时间存储多个环境温度。在104中,控制器32从相变材料温度传感器34获得相变材料温度,且可随时间存储多个相变材料温度。
在106中,控制器32基于气候区数据和随时间变化的一个或多个环境空气温度读数来预测夜间温度分布。控制器32可预先加载预测的夜间温度分布,其由气候区数据和日间环境空气温度索引。
在108中,控制器32基于一次或多次相变材料温度测量来确定预测的夜间温度分布是否将足以过冷相变材料26。举例来说,如果相变材料26转变温度约为75 ℉,当前相变材料温度约为80 ℉且预测的夜间温度分布指示四小时的环境空气温度约为72 ℉,那么控制器32可确定预测的夜间温度分布将导致相变材料在开始进行下一冷却器周期之前(即,在待进行空气调节的空间需要冷却之前)过冷。这个决定将受以下因素影响,例如相变材料的量、其温度转变特性等。
如果环境温度单独就足以过冷相变材料26,那么流程进行至110,其中控制器确定触发时间来使过冷的相变材料26从液体转变成固体。当环境温度处于或接近最小值时,控制器32试图触发这个转变,使得由相变材料26释放的热量被环境空气更快速地吸收。在112中,控制器在触发时间发送触发信号到致动器30来使过冷的相变材料26开始转变成固体。
如果在108中预测的夜间温度分布不足以过冷相变材料26,那么流程进行至114,其中确定运行风扇28来将环境空气抽吸通过相变材料26是否将导致相变材料26的过冷。这个决定可由控制器32进行,其基于当前相变材料温度确定仅需要小的温度降低来过冷相变材料26。如果这样,在116中打开风扇28且流程进行到如上文描述的110和112。
如果在114中控制器32确定风扇28将不会过冷相变材料,那么流程进行至118,其中控制器32运行包括压缩机10和泵20的冷却器系统。在120中,供应阀22和回流阀24由控制器32设置成将冷却剂从盘管18导引到相变材料26。流程进行到如上文描述的110和112。
实施方案采用的相变材料满足成本目的但具有足够高的转变温度使得夜间温度每夜下降到低于转变温度。选择具有高过冷倾向的相变材料。当夜间温度下降到低于相变材料的起始温度时,根据相变材料的热容量发生明显冷却。当夜间温度接近最小值时,过冷相变材料被触发以快速释放其潜热。
相变材料的温度根据由潜热释放驱动的热容量上升,直至达到融化温度的极限。这提供了室外空气与相变材料之间的更高温差,且从相变材料到外部空气的热传递可以以更快的速率发生。热交换器设计可最优化成利用这个快速的热释放。具有处于正确区域中的转变温度的候选相变材料(已知呈现过冷且足够廉价)的实例是自然椰子脂肪酸混合物。
实施方案通过允许在介质中捕获的日间热在较冷的夜间空气的较短时期内被释放而不是其它可能来管理过冷用于积极用途。室外空气温度与融化点温度之间的相变材料中产生的温差容许更快地将热释放到环境且减小相关的热交换器的尺寸。从成本/效益观点看,这增加了热能存储的耐久性。
在占用期间,冷却器通常将热排放到热外部空气(95 ℉额定T)。如图4中所示,从冷水温度(CWST)到外部温度(OAT)的“升高”控制冷却器效率。在不占用期间,冷却器在大多数低温期间可关闭。
具有选择转变温度 (Tm)的较不昂贵的相变材料的出现意味着系统可被设计成采取OAT 和 Tm 中更好的以在占用期间排出热,从而在电资费通常最高时降低冷却器升高且提高冷却器效率。相变材料整日排放。在当冷却器极少运行时的夜间的不占用期间,在夜间空气温度下降到低于“节能”模式的Tm 之后,相变材料由更冷的夜间空气再装载。实施方案使用呈现过冷的相变材料,因此当被触发时,相变材料温度相对于夜间空气上升且再装载得更快。如果需要,冷却器系统可以协助以便在早晨占用之前完成相变材料的再装载。如果需要冷却器系统,那么其将以比在白天将具有的升高更低的升高来操作且使用更便宜的电力。
虽然已经仅结合有限数量的实施方案来详细描述本发明,但是应容易理解本发明不限于这些公开的实施方案。更确切地说,可以修改本发明以并入之前未描述的任何数量的变化、改变、替换或等效配置,但其需与本发明的精神和范围相称。此外,虽然已经描述了本发明的各种实施方案,但应当理解本发明的方面可仅包括所述实施方案中的一些。因此,本发明不应被视为受限于上文的描述,而是仅受限于所附权利要求书的范围。

具有过冷相变材料的空调系统.pdf_第1页
第1页 / 共12页
具有过冷相变材料的空调系统.pdf_第2页
第2页 / 共12页
具有过冷相变材料的空调系统.pdf_第3页
第3页 / 共12页
点击查看更多>>
资源描述

《具有过冷相变材料的空调系统.pdf》由会员分享,可在线阅读,更多相关《具有过冷相变材料的空调系统.pdf(12页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104246378A43申请公布日20141224CN104246378A21申请号201380022691922申请日2013022661/642,07220120503USF24F5/00200601F24F11/0020060171申请人开利公司地址美国康涅狄格州72发明人GM多布斯74专利代理机构中国专利代理香港有限公司72001代理人张昱肖日松54发明名称具有过冷相变材料的空调系统57摘要一种空调系统,其包括冷却器系统,所述冷却器系统包括压缩机、冷凝器、膨胀装置和蒸发器;与所述冷凝器热连通的相变材料;耦接到所述相变材料的致动器;和控制器,其将触发信号提供给所述致动器。

2、来使所述相变材料开始从过冷状态改变成固体状态。30优先权数据85PCT国际申请进入国家阶段日2014103086PCT国际申请的申请数据PCT/US2013/0277452013022687PCT国际申请的公布数据WO2013/165535EN2013110751INTCL权利要求书2页说明书4页附图5页19中华人民共和国国家知识产权局12发明专利申请权利要求书2页说明书4页附图5页10申请公布号CN104246378ACN104246378A1/2页21一种空调系统,其包括冷却器系统,其包括压缩机、冷凝器、膨胀装置和蒸发器;与所述冷凝器热连通的相变材料;耦接到所述相变材料的致动器;和控制器,。

3、其将触发信号提供给所述致动器来使所述相变材料开始从过冷状态改变成固体状态。2根据权利要求1所述的空调系统,其中所述冷凝器被嵌入在所述相变材料中。3根据权利要求1所述的空调系统,其还包括环境温度传感器,其将环境温度信号提供给所述控制器。4根据权利要求1所述的空调系统,其还包括相变材料传感器,其将相变材料温度信号提供给所述控制器。5根据权利要求1所述的空调系统,其中所述相变材料包括内部通风道,其允许环境空气流动通过所述相变材料。6根据权利要求5所述的空调系统,其还包括风扇,其用于抽吸空气通过所述通风道。7根据权利要求1所述的空调系统,其中所述相变材料包括与所述相变材料热连通的冷却剂供应管线,所述冷。

4、却剂供应管线耦接到所述冷却器系统。8根据权利要求1所述的空调系统,其中所述致动器产生声波使所述相变材料开始从所述过冷状态改变成所述固体状态。9根据权利要求1所述的空调系统,其中所述致动器包括冷冻相变材料,所述冷冻相变材料放置成与所述相变材料接触而使所述相变材料开始从所述过冷状态改变成所述固体状态。10根据权利要求9所述的空调系统,其中所述致动器包括使所述冷冻相变材料与所述相变材料分离的阀,所述控制器打开所述阀而使所述相变材料开始从所述过冷状态改变成所述固体状态。11根据权利要求1所述的空调系统,其中所述控制器响应于气候区数据和环境温度来预测夜间温度分布;且所述控制器响应于所述夜间温度分布来确定。

5、所述相变材料是否将过冷。12根据权利要求11所述的空调系统,其中所述控制器响应于所述夜间温度分布而将所述触发信号提供给所述致动器。13根据权利要求11所述的空调系统,其中所述相变材料包括内部通风道,其允许环境空气流动通过所述相变材料;当所述控制器响应于所述夜间温度分布确定所述相变材料将不会过冷时,所述控制器致动风扇用于将空气抽吸通过所述通风道来使所述相变材料过冷。14根据权利要求11所述的空调系统,其中所述相变材料包括与所述相变材料热连通的冷却剂供应管线,所述冷却剂供应管线耦接到所述冷却器系统;权利要求书CN104246378A2/2页3当所述控制器响应于所述夜间温度分布确定所述相变材料将不会。

6、过冷时,所述控制器致动所述冷却器系统来冷却所述冷却剂供应管线而使所述相变材料过冷。15一种用于操作空调系统的方法,所述空调系统具有包括压缩机、冷凝器、膨胀装置和蒸发器的冷却器系统、与所述冷凝器热连通的相变材料以及耦接到所述相变材料的致动器,所述方法包括确定环境温度分布是否将造成所述相变材料的过冷;和响应于所述确定,触发所述致动器来使所述相变材料开始从过冷状态改变成固体状态。16根据权利要求15所述的方法,其中触发所述致动器包括响应于所述环境温度分布确定触发时间以及在所述触发时间触发所述致动器。17根据权利要求15所述的方法,其还包括响应于确定所述环境温度分布将不会造成所述相变材料的过冷而运行冷。

7、凝器风扇。18根据权利要求17所述的方法,其还包括响应于确定所述环境温度分布将不导致所述相变材料的过冷且运行所述冷凝器风扇将不导致所述相变材料的过冷而运行所述冷却器系统。19根据权利要求18所述的方法,其中运行所述冷却器系统包括用冷却剂冷却所述相变材料。20根据权利要求15所述的方法,其中确定所述环境温度分布是否将造成所述相变材料的过冷包括响应于气候区数据、日间温度和相变材料温度来预测夜间温度分布。权利要求书CN104246378A1/4页4具有过冷相变材料的空调系统技术背景0001本文公开的主题大体涉及空调系统,且明确地说,涉及一种使用过冷相变材料来存储热能的空调系统。0002现有空调系统采。

8、用相变材料来提高系统的容量和/或效率。示例性的空调系统包括能量存储系统,其在当能量成本相当低(例如非峰值费率)时冻结相变材料。接着相变材料用于在其它操作模式期间吸收热能来改进空调系统的效率和/或容量。发明概要0003一个实施方案是一种空调系统,其包括冷却器系统,所述冷却器系统包括压缩机、冷凝器、膨胀装置和蒸发器;与冷凝器热连通的相变材料;耦接到相变材料的致动器;和控制器,其将触发信号提供给致动器来使相变材料开始从过冷状态改变成固体状态。0004另一示例性实施方案是一种用于操作空调系统的方法,所述空调系统具有包括压缩机、冷凝器、膨胀装置和蒸发器的冷却器系统、与冷凝器热连通的相变材料以及耦接到相变。

9、材料的致动器,所述方法包括确定环境温度分布是否将造成相变材料的过冷;和响应于所述确定,触发致动器来使相变材料开始从过冷状态改变成固体状态。0005本文描述其它示例性实施方案和特征。0006附图简述图1描绘了示例性实施方案中的空调系统。0007图2描绘了示例性实施方案中的冷凝器盘管组件。0008图3描绘了示例性实施方案中的致动器。0009图4是温度对时间的曲线图,其图示了示例性实施方案中的相变材料的状态变化。0010图5是示例性实施方案中的控制过程的流程图。具体实施方式0011图1描绘了示例性实施方案中的空调系统。冷却器系统包括压缩机10、第一热交换器12、膨胀装置14和第二热交换器16。第一热。

10、交换器12可用作冷凝器盘管,并且可位于待进行空气调节的建筑物或空间之外。第二热交换器16可用作蒸发器盘管。如本领域已知,制冷剂通过压缩机10、冷凝器12、膨胀装置14和蒸发器16进行蒸汽压缩循环。热量在蒸发器16处被吸收并且在冷凝器12处被排放。0012图1的系统可以是水冷却器系统。蒸发器16与热交换器18(例如盘管)热连通,其携载流体冷却剂,例如水。供应泵20使冷却剂从由蒸发器16冷却的热交换器18循环到供应阀22。如本领域中已知,供应阀22将冷水(约45)供应到本地区域终端(其中风扇在盘管上方抽吸空气)用于冷却空间。回流阀24接收从本地区域终端回流的流体并将回流流体提供给热交换器18。应当。

11、理解本发明的实施方案可以与其它类型的空调系统(例如强制通风)连用且实施方案不限于水冷却器系统。说明书CN104246378A2/4页50013冷凝器盘管12与相变材料26热连通。冷凝器盘管12可以完全嵌入到相变材料26中或相变材料可处于含有冷凝器盘管12的外壳中。或者,冷凝器盘管的一部分可以暴露于环境空气。风扇28可将空气抽吸通过相变材料26以有助于冷却相变材料26。在示例性实施方案中,相变材料26是达到过冷状态的材料。接着,控制器32使相变材料26开始从过冷液体转变成固体。如本文进一步详细描述,致动器30用于在当相变材料26处于过冷状态时,使相变材料26开始从过冷液体转变成固体。0014控制。

12、器32控制系统的操作。控制器32可以使用执行存储在存储介质中的计算机代码的通用微处理器来实施而用于执行本文描述的功能。控制器32从与相变材料26热接触的相变材料传感器34接收相变材料温度信号。控制器32还从环境温度传感器36接收环境温度信号。环境温度传感器36可监控冷凝器12附近的外部空气温度。控制器32可将控制信号发送给压缩机10、泵20、供应阀22、回流阀24、风扇28和致动器30。本文参考图5进一步详细描述系统的操作。0015图2描绘了示例性实施方案中的冷凝器总成。冷凝器盘管12与相变材料26热连通。在图2的实施方案中,冷凝器盘管12嵌入相变材料26中。在其它实施方案中,冷凝器盘管12的。

13、一部分可延伸超过相变材料26,使得整个冷凝器盘管12不嵌入相变材料26中。空气通道40形成于相变材料26中以允许通过风扇28将空气抽吸通过相变材料26。空气通道可配置成各种构造,且实施方案不限于图2中所示的配置。当需要额外的环境气流来冷却相变材料26时,控制器32可以打开风扇28。0016冷却剂供应管线42还与相变材料26热连通,且如图2中所示,可嵌入相变材料26中。在当环境温度不足以充分冷却相变材料26(例如冷却到过冷状态)的情况下,控制器32可将冷却的冷却剂从供应阀22导引到相变材料26且回到回流阀24。控制器32致动压缩机10以在盘管18中产生冷却的冷却剂。控制器32设置阀22和24以将。

14、冷却的冷却剂供应给相变材料26且泵20被致动来使冷却的冷却剂循环到相变材料26。0017图3描绘了示例性实施方案中的致动器30。致动器30由控制器32控制使过冷的液体相变材料开始转变成固体相变材料。如本文使用,过冷是指相变材料26呈液态且处于低于相变材料凝固点的温度。图3中的致动器包括相变材料的管道50和热电冷却器52,其可使管50中的相变材料在所有条件下维持冷冻或固态。阀54将管50连接到相变材料26的主贮存器。控制器32打开阀54以触发主相变材料贮存器26的冷冻。当阀54打开时,相变材料26中的一些未冻结液体流向管50的冷冻容积且开始冻结。随着潜热被释放,冷冻前部从阀区域向外移动到相变材料。

15、26的其余部分。致动器30的另一实施方案包括超声发射器来产生超声波而触发相变材料26开始从过冷液体转变成固体。0018如本文进一步详细描述,相变材料26经过选择使得当对冷却器系统的冷却要求低或不存在时,相变材料从液体转变为固体。这可能发生在晚上,当外界温度较低时。图4示出了示例性的昼夜温度对时间的分布图,以及相变材料26的状态。在图4的实例中,外部空气温度在日间高达约95至夜间低至约70的范围中。如果相变材料26的转变温度被选择为约75,那么相变材料26将在夜间冷冻(或再装填)且接着在白天融化(或排放)。在白天,冷冻相变材料26从冷凝器盘管12吸收能量,改进了当冷却系统运行时冷凝器12的效率且。

16、提高了冷却器系统的效率和容量。0019图5是示例性实施方案中由控制器32执行的控制过程的流程图。过程开始于100,说明书CN104246378A3/4页6其中控制器32获得系统的气候区数据。气候区数据可由已知气候图指示且在安装空调系统之后被编程到控制器32中。在102中,控制器32通过环境温度传感器36监控环境空气温度且可随时间存储多个环境温度。在104中,控制器32从相变材料温度传感器34获得相变材料温度,且可随时间存储多个相变材料温度。0020在106中,控制器32基于气候区数据和随时间变化的一个或多个环境空气温度读数来预测夜间温度分布。控制器32可预先加载预测的夜间温度分布,其由气候区数。

17、据和日间环境空气温度索引。0021在108中,控制器32基于一次或多次相变材料温度测量来确定预测的夜间温度分布是否将足以过冷相变材料26。举例来说,如果相变材料26转变温度约为75,当前相变材料温度约为80且预测的夜间温度分布指示四小时的环境空气温度约为72,那么控制器32可确定预测的夜间温度分布将导致相变材料在开始进行下一冷却器周期之前(即,在待进行空气调节的空间需要冷却之前)过冷。这个决定将受以下因素影响,例如相变材料的量、其温度转变特性等。0022如果环境温度单独就足以过冷相变材料26,那么流程进行至110,其中控制器确定触发时间来使过冷的相变材料26从液体转变成固体。当环境温度处于或接。

18、近最小值时,控制器32试图触发这个转变,使得由相变材料26释放的热量被环境空气更快速地吸收。在112中,控制器在触发时间发送触发信号到致动器30来使过冷的相变材料26开始转变成固体。0023如果在108中预测的夜间温度分布不足以过冷相变材料26,那么流程进行至114,其中确定运行风扇28来将环境空气抽吸通过相变材料26是否将导致相变材料26的过冷。这个决定可由控制器32进行,其基于当前相变材料温度确定仅需要小的温度降低来过冷相变材料26。如果这样,在116中打开风扇28且流程进行到如上文描述的110和112。0024如果在114中控制器32确定风扇28将不会过冷相变材料,那么流程进行至118,。

19、其中控制器32运行包括压缩机10和泵20的冷却器系统。在120中,供应阀22和回流阀24由控制器32设置成将冷却剂从盘管18导引到相变材料26。流程进行到如上文描述的110和112。0025实施方案采用的相变材料满足成本目的但具有足够高的转变温度使得夜间温度每夜下降到低于转变温度。选择具有高过冷倾向的相变材料。当夜间温度下降到低于相变材料的起始温度时,根据相变材料的热容量发生明显冷却。当夜间温度接近最小值时,过冷相变材料被触发以快速释放其潜热。0026相变材料的温度根据由潜热释放驱动的热容量上升,直至达到融化温度的极限。这提供了室外空气与相变材料之间的更高温差,且从相变材料到外部空气的热传递可。

20、以以更快的速率发生。热交换器设计可最优化成利用这个快速的热释放。具有处于正确区域中的转变温度的候选相变材料(已知呈现过冷且足够廉价)的实例是自然椰子脂肪酸混合物。0027实施方案通过允许在介质中捕获的日间热在较冷的夜间空气的较短时期内被释放而不是其它可能来管理过冷用于积极用途。室外空气温度与融化点温度之间的相变材料中产生的温差容许更快地将热释放到环境且减小相关的热交换器的尺寸。从成本/效益观点看,这增加了热能存储的耐久性。0028在占用期间,冷却器通常将热排放到热外部空气(95额定T)。如图4中所示,说明书CN104246378A4/4页7从冷水温度CWST到外部温度OAT的“升高”控制冷却器。

21、效率。在不占用期间,冷却器在大多数低温期间可关闭。0029具有选择转变温度TM的较不昂贵的相变材料的出现意味着系统可被设计成采取OAT和TM中更好的以在占用期间排出热,从而在电资费通常最高时降低冷却器升高且提高冷却器效率。相变材料整日排放。在当冷却器极少运行时的夜间的不占用期间,在夜间空气温度下降到低于“节能”模式的TM之后,相变材料由更冷的夜间空气再装载。实施方案使用呈现过冷的相变材料,因此当被触发时,相变材料温度相对于夜间空气上升且再装载得更快。如果需要,冷却器系统可以协助以便在早晨占用之前完成相变材料的再装载。如果需要冷却器系统,那么其将以比在白天将具有的升高更低的升高来操作且使用更便宜。

22、的电力。0030虽然已经仅结合有限数量的实施方案来详细描述本发明,但是应容易理解本发明不限于这些公开的实施方案。更确切地说,可以修改本发明以并入之前未描述的任何数量的变化、改变、替换或等效配置,但其需与本发明的精神和范围相称。此外,虽然已经描述了本发明的各种实施方案,但应当理解本发明的方面可仅包括所述实施方案中的一些。因此,本发明不应被视为受限于上文的描述,而是仅受限于所附权利要求书的范围。说明书CN104246378A1/5页8图1说明书附图CN104246378A2/5页9图2说明书附图CN104246378A3/5页10图3说明书附图CN104246378A104/5页11图4说明书附图CN104246378A115/5页12图5说明书附图CN104246378A12。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 机械工程;照明;加热;武器;爆破 > 供热;炉灶;通风


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1