一种基于射频识别技术的穿戴式室内定位系统及方法 【技术领域】
本发明涉及无线室内定位技术领域,尤其涉及一种基于射频识别技术的穿戴式室内定位系统及方法。
背景技术
随着无线通信技术的发展,人们对定位与导航的需求日益增大,特别是在复杂的室内环境,如机场大厅、展览馆、仓库、超市、图书馆、公园、地下停车场、矿井等环境中,需要利用移动终端为人员、设施与物品提供位置信息。因此,人们提出了许多室内定位技术的解决方案,包括A-GPS定位技术、超声波定位技术、蓝牙技术、红外线技术、超宽带技术、无线局域网络、光跟踪定位技术,以及图像分析、信标定位、计算机视觉定位技术等被广泛研究,甚至有些已经进入商业应用阶段。
常见的定位技术可以归结为以下几种方式:1)测量信号方向(信号的到达角度,简称AOA)的定位技术;2)测量信号功率的定位技术;3)测量信号传播时间特性(到达时间,简称TOA;或到达时间差,简称TDOA)的定位技术。以上几种方式均需要提前在环境中部署主动发射信号的发射端基础设施,如导航卫星、通讯基站或问讯器等,使用者通过随身携带的接收端设备被动接收发射端基础设施的信号,如GPS导航仪、手机或移动节点(Node)等,并通过不同的算法进行分析,最后得到当前位置的相关信息。一般主动发射信号的发射端成本都较高,而被动接收端成本相对较低,因此这种方式就适用于接收端众多的应用模式,可以有效降低系统总的成本。但是由于上述方式受到一些客观条件的限制,比如受发射端基础设施与接收端设备之间的时间同步、环境干扰、电磁波的多径传播效应以及复杂室内环境等条件的限制,导致传播模型存在较大误差,定位精度不高,到目前为止还没有出现能够满足针对复杂的室内环境定位需求的技术。
前述常见的定位技术之所以不适用于室内定位,还有一个很大原因就在于室内定位应用的特殊性。为了让无线信号能够覆盖到室内环境的所有范围,就需要在室内环境中布置大量的发射端基础设施,这样势必会造成系统总成本的增加,因此需要一种新的技术和模式来解决室内定位问题。
RFID全称为射频识别(Radio Frequency Identification),是一种利用射频技术实现的非接触式自动识别技术。RFID电子标签具有体积小、读写速度快、形状多样、使用寿命长、可重复使用、存储容量大、能穿透非导电性材料等特点,结合RFID读写器可以实现多目标识别和移动目标识别,进一步通过与互联网技术的结合还可以实现全球范围内物品的跟踪与信息的共享。
目前已有一些使用有源RFID产品实现室内定位的公开报道。但是有源RFID产品成本较高,不利于推广。无源RFID产品,特别是工作频率在840~960MHz的超高频频段RFID产品,根据发射功率的大小,常见读取距离在1米~10米,如采用前述定位技术需要部署较高密度的读写器作为发射端基础设施,很少有人采用。
【发明内容】
为了解决现有技术的问题,本发明的目的是通过使用无源RFID电子标签作为基础设施,将可穿戴式读写器作为发射端绑定于需要进行室内定位的人体身上,并提供一种实时响应、高精度、低成本基于射频识别技术的穿戴式室内定位系统及方法。
为了达成所述目的,本发明的一方面,提供一种基于射频识别技术的穿戴式室内定位系统,其包括:
一RFID电子标签作为接收端,固定于已知室内环境的地表上,建立RFID电子标签的ID标识信息和所在位置的坐标信息;
一地面铺设体,铺设在地表和RFID电子标签之上,用于固定和保护RFID电子标签;
一地图记录标签,置于该已知室内环境的入口处显著位置,用于存储RFID电子标签的一个ID标识信息和一段用户区信息;
一读写器天线作为发射端,缝合于使用者的衣物上,并且使用者位于已知室内环境;
一读写器,缝合于使用者的衣物上,并与读写器天线相连,使用者位于已知室内环境,用于读取RFID电子标签的ID标识信息和位置的坐标信息;
一微处理器单元与读写器相连,用于接收读写器发送的ID标识信息实时计算出使用者当前所在的位置;
一显示单元与微处理器单元相连,用于显示使用者当前所在的位置;
一供电单元分别与读写器、微处理器单元和显示单元连接,用于提供电源。
为了达成所述目的,本发明的另一方面,提供一种基于射频识别技术的穿戴式室内定位方法,包括以下步骤:
步骤1:启动供电单元并初始化;
步骤2:使用者穿着缝合有读写器天线和读写器地衣物走入已知环境的入口处;
步骤3:读写器读取到一个ID标识信息,并发送给微处理器单元;
步骤4:微处理器单元根据ID标识信息判断其是否属于地图记录标签,如是,则向读写器发送指令,读取地图记录标签用户区内存储的已知环境的RFID电子标签ID标识与地理信息的映射关系表,再将其发送给微处理器单元;如否,则无效,重新进入步骤202;
步骤5:微处理器单元根据接收的RFID电子标签ID标识与地理信息的映射关系表,建立该环境地理信息的可视化图像,并在显示单元中以地图形式显示;
步骤6:使用者进入该已知环境,读写器以固定采样周期读取读写器天线作用范围内的全部地图记录标签和RFID电子标签上的ID标识信息,并发送给微处理器单元;
步骤7:微处理器单元根据所接收到的ID标识信息,滤除地图记录标签的ID标识信息;
步骤8:微处理器单元利用RFID电子标签的ID标识信息计算使用者当前所在的位置,并将该位置显示于显示单元的地图上;
步骤9:是否进入下一个采样周期,如是,则重复步骤206;如否,则进入下一步;
步骤10:关闭供电单元,结束本次使用。
本发明的有益效果是:1)利用无源RFID电子标签作为地理标记提前埋设于已知环境的地面上,可以充分发挥无源RFID电子标签成本低的优势,从而大大减少定位系统的基础设施投入;2)在RFID电子标签的部署密度一定时,可以通过调节发射端读写器的输出功率来控制定位精度,在常见读取距离内,输出功率越大,定位误差就会越小;3)将小型化的读写器模块与人的衣服缝合在一起,使其不影响人体的正常运动,实现该人在已知环境中的实时定位。
【附图说明】
图1为本发明提供的基于射频识别技术的穿戴式室内定位系统示意图。
图2为本发明提供的基于射频识别技术的穿戴式室内定位方法流程图。
图31和图32为本发明实施例中基于射频识别技术的穿戴式室内定位方法定位效果图。
【具体实施方式】
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明提供的基于射频识别技术的穿戴式室内定位系统及方法是基于射频技术(Radio Frequency Identification,RFID)实现的。RFID技术是一种利用射频技术实现的非接触式自动识别技术。RFID电子标签读写速度快、存储容量大、能穿透非导电性材料,同时无源RFID电子标签可以在非视距下进行远距离(数米到10米)批量读取,这样就成为解决室内定位问题的有效方案之一。
如图1所示,图1为本发明提供的基于射频识别技术的穿戴式室内定位系统示意图,其中包括地面铺设体1、RFID电子标签2、地图记录标签3、读写器天线4、读写器5、衣物6、供电单元7、微处理器单元8和显示单元9。在本发明的一个实施例中,RFID电子标签2选用符合ISO/IEC18000-6C协议的UHF频段电子标签,仅包含64比特EPC代码,无用户区;地图记录标签3选用符合ISO/IEC 18000-6C协议的超高频电子标签,包含64比特EPC代码和4K字节的用户区,可以存储最多32768个二维地理坐标信息;读写器5选用一个基于SkyeModule M9读写器模块开发的便携式超高频读写器,输出功率为23dBm;读写器天线4选用一个陶瓷基底的全向辐射天线,增益4dBi。RFID电子标签2固定在面积为90平米(长*宽=9*10)的长方形室内环境的地表上,以0.6米间隔铺设,共铺设有240个,地面铺设体1为地板革材料,铺设在地表和RFID电子标签1之上,起到固定和保护RFID电子标签1的作用;一个地图记录标签3放置在醒目的红色标志物上,置于该已知室内环境的入口处显著位置。使用者穿着集成有读写器天线4和读写器5的衣物6进入该环境,其中读写器天线4缝合于衣物6的腿部位置,与读写器5相连,读写器5缝合于衣物6的腰部位置,与微处理器单元8相连,微处理器单元8进一步与显示单元9相连,供电单元7为读写器5、微处理器单元8和显示单元9分别提供电源。其原理是使用RFID电子标签2作为接收端基础设施埋设于已知环境的地面上,建立每个RFID电子标签2的ID标识与其所在位置的坐标信息的一一映射;发射端读写器5和读写器天线4缝合于使用者的衣物上;使用者在进入该已知环境后首先读取地图记录标签3用户区内存储的已知环境的RFID电子标签2的ID标识与地理信息的映射关系表,之后以固定采样周期读取读写器天线4作用范围内的RFID电子标签2的ID标识信息,并由微处理器单元8实时计算出使用者当前所在的位置,显示于显示单元9的地图上。
供电单元7、微处理器单元8和显示单元9既可以与读写器天线4和读写器5一起缝合于衣物6内,也可以作为独立外接设备与缝合于衣物6内的读写器5相连。
在本发明的一个实施例中,供电单元7、微处理器单元8和显示单元9可由一台笔记本电脑代替。笔记本电脑通过USB接口与读写器5传输数据,并为读写器5提供+5V电压。这样,使用者就可以通过穿着集成有读写器天线4和读写器5的衣物6,并通过手持的笔记本电脑查看自己在地图中的实时位置信息。
作为本发明的另一实施例,供电单元7和微处理单元8同样集成于衣物6上,其中供电单元7以锂电池形式缝合于衣物6的背部位置,微处理器单元8与读写器5封装在同一壳体中,缝合于衣物6的腰部位置,显示单元9为戴在使用者头部的头盔显示器。这样,使用者穿着集成有读写器天线4、读写器5、供电单元7和微处理单元8的衣物6进入该环境,即可在作为显示单元9的头盔显示器中看到自己当前所在的位置。
当读写器天线4设计不变的情况下,读写器5的发射功率直接决定了读写器天线4的有效作用距离。如果地表上RFID电子标签2的部署密度一定,增加读写器5的发射功率,可以使读写器天线4的有效作用距离更远,从而在一段采样周期内读到更多的RFID电子标签2。因此根据读写器5发射功率的逐渐减小,可以将读写器天线4缝合于衣物6的腿部的位置逐渐降低。为了不影响使用者的正常运动,可以选择在衣物6的大腿前侧或大腿外侧、膝盖上侧、小腿前侧或小腿外侧、脚踝外侧位置缝合读写器天线4。
RFID电子标签2可以存储和被读取的内容有两部分,一是其ID标识信息,通常为一串根据编码标准格式生成的64比特或96比特唯一代码;另一部分是用户区,用户可以根据自己的需要在其中存储各类信息。读写器5在读取RFID电子标签2时,通常只读取其ID标识信息。如果需要读取用户区内容,则需要先读取该RFID电子标签2的ID标识信息,再对用户区内容进行操作。由于需要在地图记录标签3中保存已知环境的RFID电子标签2的ID标识与地理信息的映射关系表,因此就必须利用RFID电子标签2的用户区。这样,地图记录标签3中就存储有两段信息,分别为一个ID标识信息和一段用户区信息,其中ID标识信息的前一个或多个特定位为固定信息,用于区分地图记录标签和铺设在地表上的RFID电子标签,其余位为该地图记录标签3的唯一标识,用户区信息存储已知环境的RFID电子标签2的ID标识与地理信息的映射关系表。在本发明的一个实施例中,地图记录标签3的ID标识信息为“000000000E0003E0”,其中前四位(16比特)“0000”为预先设定的固定信息,用来表示地图记录标签3,后面的12位(48比特)“00000E0003E0”为该地图记录标签3的唯一标识。
而RFID电子标签2中只需要存储一个ID标识信息,因此可以选用没有用户区的低成本电子标签。其ID标识信息的前一个或多个特定位为与地图记录标签3的ID标识信息不同的固定信息,其余位为该RFID电子标签的唯一标识。在本发明的一个实施例中,一组RFID电子标签中的前四个ID标识信息分别为“E007000019D2417F”、“E007000019D24173”、“E007000019D2411B”、“E007000019D240A5”,其中每个ID标识信息的前四位(16比特)“E007”为预先设定的固定信息,用来表示RFID电子标签,后面的各12位(48比特)“000019D2417F”、“000019D24173”、“000019D2411B”、“000019D240A5”为该RFID电子标签的唯一标识。
地图记录标签3用户区内存储的地理信息映射关系表,包括该位置在已知环境空间坐标系中的二维或三维坐标信息与RFID电子标签2的ID标识的一一映射,还可以包括所在位置的颜色、材料、有无棱角、是否可移动等状态和属性信息的映射。在本发明的一个实施例中,用户区存储的已知环境的RFID电子标签2的ID标识与地理信息的映射关系表为:
0,0=E007000019D2417F
1,0=E007000019D24173
2,0=E007000019D2411B
3,0=E007000019D240A5
4,0=E007000019D240C5
5,0=E007000019D240C3
……
0,1=E007000019D24196
1,1=E007000019D2415A
2,1=E007000019D24165
3,1=E0070000132E26E4
……
其中等号前面的两个数字分别对应该点在已知环境坐标系二维平面地图上的横坐标和纵坐标,等号后面的字符串表示该点对应的RFID电子标签2的ID标识信息。
微处理器单元8用于接收读写器5发送的地图记录标签3和RFID电子标签2信息,并利用地图记录标签3用户区存储的已知环境的RFID电子标签2的ID标识与地理信息的映射关系表建立地理信息的可视化图像。当微处理器单元8进一步接收到读写器5发送的RFID电子标签2信息后,再根据RFID电子标签2的ID标识信息计算当前所处地理位置,并在显示单元9中向使用者展示。
如图2所示,为本发明提供的可穿戴的RFID室内定位方法流程图,包括以下步骤:
步骤201:启动供电单元7并初始化;
步骤202:使用者穿着缝合有读写器天线4和读写器5的衣物6走入已知环境的入口处;
步骤203:读写器5读取到一个ID标识信息,并发送给微处理器单元8;
步骤204:微处理器单元8根据ID标识信息判断其是否属于地图记录标签3,如是,则向读写器5发送指令,读取地图记录标签3用户区内存储的已知环境的RFID电子标签2的ID标识与地理信息的映射关系表,再将其映射关系表发送给微处理器单元8;如否,则无效,重新进入步骤202;
步骤205:微处理器单元8根据接收的RFID电子标签2的ID标识与地理信息的映射关系表,建立该环境地理信息的可视化图像,并在显示单元9中以地图形式显示;
步骤206:使用者进入该已知环境,读写器5以固定采样周期读取读写器天线4作用范围内的全部地图记录标签3和RFID电子标签2上的ID标识信息,并发送给微处理器单元8;
步骤207:微处理器单元8根据所接收到的ID标识信息,滤除地图记录标签3的ID标识信息;
步骤208:微处理器单元8利用RFID电子标签2的ID标识信息计算使用者当前所在的位置,并将该位置显示于显示单元9的地图上;
步骤209:是否进入下一个采样周期,如是,则重复步骤206;如否,则进入下一步;
步骤210:关闭供电单元7,结束本次使用。
在步骤204中,微处理器单元8根据ID标识信息判断其是否属于地图记录标签3,是根据该ID标识信息前一个或多个特定位的固定信息来做判断,当该特定位信息属于预先定义的地图记录标签3时,则微处理器单元8判断其为地图记录标签3,该特定位信息属于预先定义的RFID电子标签2时,微处理器单元8判断其为RFID电子标签2。如在前面所述的实施例中,RFID电子标签2的ID标识信息前四位(16比特)“0000”为预先设定的用来表示地图记录标签3的固定信息,“E007”为预先设定的用来表示RFID电子标签2的固定信息。通过读取前四位并和预设固定信息进行比较,就可以很快根据某个ID标识信息判断其是属于地图记录标签3,还是RFID电子标签2。
在步骤208中,微处理器单元8利用RFID电子标签2的ID标识信息计算使用者当前所在的位置,当在一个采样周期内所接收到的ID标识信息为一个时,则该ID标识信息所对应的空间坐标位置即为当前所在位置,例如当该ID标识信息所对应的空间坐标为(2,3)时,则当前所在位置的计算结果为(2,3);当在一个采样周期内所接收到的ID标识信息为多个时,则计算多个ID标识信息所对应的空间坐标位置的质心为当前所在位置,如同时接收到3个ID标识信息,所对应的空间坐标分别为(2,2)、(3,2)、(3,1),则当前所在位置的计算结果为(8/3,5/3)。
如图31和图32所示为本发明实施例中可穿戴RFID室内定位方法定位效果图。首先在已知环境中部署好迷宫的位置,标出最佳路线作为参考,即图31所示。实施例中,使用者手持一台用来替代供电单元7、微处理器单元8和显示单元9的笔记本电脑,穿着集成读写器天线4和读写器5的衣物6进入该迷宫入口及最佳路线。RFID电子标签2部署密度为相隔0.6米,读写器5采样周期为0.5秒,根据前述本发明的方法所计算出每个采样周期结束时的位置连线如图32所示,误差均小于0.3米。从图中可以看出,尽管本发明所提供的基于射频识别技术的穿戴式室内定位方法由于受到读写器读取率和人体电磁干扰等因素的影响,仍然存在一定的定位误差,但是与目前其它现有技术的RFID室内定位方式相比,定位精度还是比较高的,能够满足使用者对室内定位实时响应、高精度、低成本的要求。
上面描述是用于实现本发明及其实施例,本发明的范围不应由该描述来限定,本领域的技术人员应该理解,在不脱离本发明的范围的任何修改或局部替换,均属于本发明权利要求来限定的范围。