本发明涉及一种利用光热法在线检测、分选原材料(包括半成品、成品)的系统,实现了光热辐射测量方法在生产领域的应用,为工业自动化提供了一种新手段。 光热方法问世已十余年了,主要用于物质表面及表面下性质的研究及无损检测,如Murphy,J.C.& Westel,G.C.,Material Eval.,44(1986)1224。叙述了用高功率脉冲激光束或调制的连续波激光束加热,然后使用激光探针探测的光束偏转方法,叙述了偏转的机理。这些方法可用于对材料裂缝,夹杂等缺陷的无损检测,但由于所采用的装置精密,需避免振动及背景辐射等干扰,因此只能在实验室条件下进行,不能用于生产现场。美国专利US3808439,文中提供了一种用激光束加热的热成象装置用于无损检测。所选的辐照源为CO
2激光束,目的是避开红外热象仪的接收波长,并且具有足够的加热功率,与被检物体无关。欧洲专利57290A1提供了一种温度扫描器,用于热轧带钢温度分布的探测和分析显示。这是被动式探测,没有辐照源。美国专利US3791635提供了一种简单的辐射测量计,探测热状态下的金属带的辐射能,其辐射计安置在特定位置上以消除发射率的影响美国专利US4650345提供了一种微波辐射方法和装置,测量移动的纺织品温度。属于烘干过程中的温度自动控制,其测温原理为,具有一定温度的纺织物通过波导时有热噪声发射。
本发明的目的在于提供一种光热法原材料(包括半成品、成品)在线检测分选系统,实现在工业化生产线上快速、简便地分离各种原材料。
本发明由辐照源[1],红外探测头[3],分离装置[4],屏蔽罩[5]附加在生产线传送带两侧构成,其中辐照源[1]带有聚束装置[2],并根据待测物体的吸收特性加以选择。红外探测头[3]由光学系统[6],调制盘[7],探测器[8],低噪声选频放大器[9],参考信号电路[10],锁相放大器[11],显示记录装置[12],电平鉴别电路[13]构成。在红外探测头安放处设有屏蔽罩[5]。分离装置[4]受红外探测头[3]的信号控制,完成分选动作,两者之间通过信号线联接。在工业生产线上待选物体的分离步骤为:首先测试待测物体的吸收特性,根据其吸收比随波长的改变不同,在待测物体吸收比相差较大的波段选择相应的辐照源。根据待选物体吸收特性的不同,可选择不同功率、波长的辐照源,如卤钨灯、水银灯、氙灯、激光器、微波源、射线源等,以造成待选物体吸收辐照能的差别。辐照源带有聚束装置[2](如图中的反射罩)将能量聚集在辐照区内。用辐照源加热待选物体,辐照功率与辐照时间的选择以取得最佳分辨率为准(即造成待选物体间可分辨的温差)。如图3中ab为选择辐照源的最佳区间。辐照时间为辐照源长度/在线传输速率。根据辐照源总功率选择辐照时间而得出辐照源长度,辐照功率越大,所需辐照时间愈短。经辐照后的待选物体由红外探测头测定其再辐射量,所得信号经电平鉴别电路[13]处理后去控制分离装置[4]分离物体。
检测原理:
根据不同材料的吸收特性选择辐照源。所选波段上材料的吸收特性应有明显差异。应用选定的辐照源辐照这些材料,由于它们的吸收比不同将导致物体的温度有不同程度的升高,这又引起物体自身热辐射的改变。随即由红外探测头接收来自物体的热辐射。显然,热辐射量的差别包含了物体自身特性的信息。根据红外探测头所输出的信号差异进行相应的特性测量或将此信号送至分离执行装置,完成所希望的分选过程。适当试验、选择辐照功率和辐照时间,可取得最佳分辨效果。
材料表面单位面积所吸收的功率为
1H∫ λ 1λ 2η ( λ ) a ( λ ) M ( λ ) d λ ]]> a(λ)为材料的光谱吸收比,M(λ)为光源的辐射度,H为几何因子,η(λ)则为光路衰减因子,λ
1,λ
2为光源的上波长限及下波长限。
设物体单位体积内吸收的辐射能为A,则其温升为下列热传导方程的解:
![]()
式中K=K/cρ,K为材料的热导,ρ为密度,c为比热。
若受辐照后的材料表面温度为T,由探测系统所输出的信号为:
V S=1△ f∫ λ ′1λ ′2D *λε λM °( λ T ) ζ τ( λ ) d λ [ 伏特 ]]]> 式中ε
λ为材料的光谱发射率,D
*λ为探测器的光谱探测率,ζ为探测系统与材料的相对配置有关的几何因子,△f为系统带宽,M
0(λT)为黑体的辐射度,τ(λ)则为光路衰减因子,在一定的近似下,由辐射理论可证,物体温升而引起的辐射信号相对变化为温度相对变化的4倍,因而得到较高的分辨率。
本发明的优点在于实现了工业化生产中材料(包括成品、半成品)的在线检测、分选,具有快速、简便、非接触测量及分辨率高的特点。
下面结合附图对本发明进一步说明:
图1为检测、分选系统示意图。待测物体A,B等在传送带上以恒定速率运动,首先从辐照源[1]正前方通过经受辐照,聚束装置[2]将辐射能量限制在辐照区域内,物体经受辐照的时间等于传输速率与辐照源总长度的乘积,可由改变辐照源的总长来改变辐照时间。经辐照加热后的物体进入屏蔽罩[5],由红外探测头[3]接收物体的热辐射信号。屏蔽罩[5]的作用是减小背景及杂散辐射干扰。对不同物体红外探测头[3]输出不同电平的电压信号控制分离装置[4]动作,进行分离。或直接由显示记录装置给出测定结果。
图2为红外探测头及分离装置线路框图。[6]为光学系统,它将来自待测物体的热辐射聚焦至探测器[8]上。辐射在到达探测器[8]前由调制盘[7]调制。探测器输出的信号由低噪声放大器[9]、锁相放大器[11]、参考信号电路[10]三者构成的微弱信号检测电路放大并检出有用信号,测得的结果视需要可送至显示、记录装置[12]或送至电平鉴别电路[13]后取出控制信号给分离装置[4],控制它执行分选动作。分离装置[4]应根据待分选物体的形状设计不同的拾取机构。
图3为一选择辐照源的实例。A为棕色玻璃瓶吸收特性线,B为绿色玻璃瓶吸收特性线,C为无色玻璃瓶吸收特性线,在可见及近红外(2.7-3.5μ)区有明显不同(即图中ab段),故可选用1000W卤钨灯,实验证明在辐照源距瓶子表面10cm时辐照时间只需15秒即可造成明显信号差。