纳米基体粉末金属复合材料.pdf

上传人:g**** 文档编号:4500145 上传时间:2018-10-17 格式:PDF 页数:32 大小:3.59MB
返回 下载 相关 举报
摘要
申请专利号:

CN201180052095.6

申请日:

2011.10.27

公开号:

CN103189154A

公开日:

2013.07.03

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):B22F 1/00申请日:20111027|||公开

IPC分类号:

B22F1/00; B22F1/02; B82B1/00

主分类号:

B22F1/00

申请人:

贝克休斯公司

发明人:

徐志跃; S·查克拉伯蒂; G·阿格拉瓦尔

地址:

美国得克萨斯

优先权:

2010.10.27 US 12/913,321

专利代理机构:

中国国际贸易促进委员会专利商标事务所 11038

代理人:

李跃龙

PDF下载: PDF下载
内容摘要

公开了粉末金属复合材料。该粉末金属复合材料包括包含纳米基体材料的基本连续的蜂窝状纳米基体。该压块还包括分散在该纳米基体中的多个包含颗粒芯部材料的分散颗粒以及在所述分散颗粒之间在整个纳米基体中延伸的接合层,所述颗粒芯部材料包含Mg、Al、Zn或Mn或其组合,所述分散颗粒的芯部材料包含多个分布的碳纳米颗粒。该纳米基体粉末金属复合材料是独特的轻重量高强度材料,还可以提供独特地可选且可控的腐蚀性质,包括非常快的腐蚀速率,可用于制造多种可降解或可处置制品,包括各种井下工具和部件。

权利要求书

权利要求书
1.   粉末金属复合材料,包含:
包含纳米基体材料的基本连续的蜂窝状纳米基体;
分散在所述蜂窝状纳米基体中的包含颗粒芯部材料的多个分散颗粒,所述颗粒芯部材料包含Mg、Al、Zn或Mn或其组合,所述分散颗粒的芯部材料包含多个分布的碳纳米颗粒;和
在分散颗粒之间遍及蜂窝状纳米基体延伸的接合层。

2.   权利要求1的粉末金属复合材料,其中所述接合层包含固态接合层。

3.   权利要求2的粉末金属复合材料,其中所述纳米基体材料具有熔化温度(TM),所述颗粒芯部材料具有熔化温度(TDP);其中压块在烧结温度(TS)下以固态可烧结,并且TS低于TM和TDP。

4.   权利要求1的粉末金属复合材料,其中所述接合层包含部分熔化并再凝固的接合层。

5.   权利要求1的粉末金属复合材料,其中所述颗粒芯部材料包含Mg‑Zn、Mg‑Zn、Mg‑Al、Mg‑Mn或Mg‑Zn‑Y。

6.   权利要求1的粉末金属复合材料,其中所述芯部材料包含Mg‑Al‑X合金,其中X包含Zn、Mn、Si、Ca或Y或其组合。

7.   权利要求6的粉末金属复合材料,其中所述Mg‑Al‑X合金包含按重量计至多约85%的Mg、至多约15%的Al和至多约5%的X。

8.   权利要求1的粉末金属复合材料,其中所述分散颗粒进一步包含稀土元素。

9.   权利要求1的粉末金属复合材料,其中所述分散颗粒具有约5微米至约300微米的平均颗粒尺寸。

10.   权利要求1的粉末金属复合材料,其中分散颗粒的分散包括在所述蜂窝状纳米基体中的基本均质的分散。

11.   权利要求1的粉末金属复合材料,其中分散颗粒的分散包括在所述蜂窝状纳米基体中的颗粒尺寸的多峰分布。

12.   权利要求1的粉末金属复合材料,其中所述分散颗粒具有等轴的颗粒形状。

13.   权利要求1的粉末金属复合材料,进一步包含多个分散的第二颗粒,其中所述分散的第二颗粒也分散在所述蜂窝状纳米基体中并相对于所述分散颗粒。

14.   权利要求13的粉末金属复合材料,其中所述分散的第二颗粒包含Fe、Ni、Co或Cu或其氧化物、氮化物或碳化物,或前述材料的任意组合。

15.   权利要求1的粉末金属复合材料,其中所述纳米基体材料包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、碳化物或氮化物,或前述材料的任意组合,并且其中所述纳米基体材料具有一种化学组成,和所述颗粒芯部材料具有不同于所述纳米基体材料的化学组成的化学组成。

16.   权利要求1的粉末金属复合材料,其中所述蜂窝状纳米基体具有约50纳米至约5000纳米的平均厚度。

17.   权利要求1的粉末金属复合材料,其中由包含多个粉末颗粒的烧结粉末形成所述压块,各粉末颗粒具有在烧结时包含分散颗粒和布置在其上的单一金属涂覆层的颗粒芯部,并且其中在多个分散颗粒的相邻颗粒之间的所述蜂窝状纳米基体包含一种粉末颗粒的单一金属涂覆层、所述接合层和另一粉末颗粒的单一金属涂覆层。

18.   权利要求17的粉末金属复合材料,其中所述分散颗粒包含Mg,所述蜂窝状纳米基体包含Al或Ni或其组合。

19.   权利要求1的粉末金属复合材料,其中由包含多个粉末颗粒的烧结粉末形成所述压块,各粉末颗粒具有在烧结时包含分散颗粒和布置在其上的多个金属涂覆层的颗粒芯部,并且其中在多个分散颗粒的相邻颗粒之间的所述蜂窝状纳米基体包含一种粉末颗粒的多个金属涂覆层、所述接合层和另一粉末颗粒的多个金属涂覆层,并且其中多个金属涂覆层的相邻涂覆层具有不同的化学组成。

20.   权利要求19的粉末金属复合材料,其中所述多个层包含布置在所述颗粒芯部上的第一层和布置在所述第一层上的第二层。

21.   权利要求20的粉末金属复合材料,其中所述分散颗粒包含Mg,且所述第一层包含Al或Ni或其组合,且所述第二层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其组合,其中所述第一层具有不同于所述第二层的化学组成的化学组成。

22.   权利要求21的粉末金属复合材料,权利要求18的金属粉末,进一步包含布置在第二层上的第三层。

23.   权利要求22的粉末金属复合材料,其中所述第一层包含Al或Ni或其组合,所述第二层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、氮化物或碳化物,或前述第二层材料的任意组合,且所述第三层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其组合,其中所述第二层具有不同于所述第三层的化学组成的化学组成。

24.   权利要求23的粉末金属复合材料,进一步包含布置在第三层上的第四层。

25.   权利要求24的粉末金属复合材料,其中所述第一层包含Al或Ni或其组合,所述第二层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、氮化物或碳化物,或前述第二层材料的任意组合,所述第三层包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、氮化物或碳化物,或前述第三层材料的任意组合,并且所述第四层包含Al、Mn、Fe、Co或Ni或其组合,其中所述第二层具有不同于所述第三层的化学组成的化学组成,所述第三层具有不同于所述第三层的化学组成的化学组成。

26.   权利要求1的粉末金属复合材料,其中所述碳纳米颗粒包括石墨烯、富勒烯或纳米金刚石纳米颗粒或其组合。

27.   权利要求26的粉末金属复合材料,其中所述芯部材料包含富勒烯,所述富勒烯包括单壁纳米管、多壁纳米管、巴基球或巴基球团簇或其组合。

28.   权利要求26的粉末金属复合材料,其中所述分布的碳纳米颗粒具有约0.1纳米至约100纳米的至少一种尺寸。

29.   权利要求26的粉末金属复合材料,其中所述碳纳米颗粒基本均匀地分散在所述分散颗粒中。

30.   权利要求26的粉末金属复合材料,其中所述碳纳米颗粒基本不均匀地分散在所述分散颗粒中。

31.   权利要求30的粉末金属复合材料,其中所述碳纳米颗粒分散在所述分散颗粒周边附近。

32.   粉末金属复合材料,包含:
包含纳米基体材料的基本连续的蜂窝状纳米基体;
分散在所述蜂窝状纳米基体中的多个包含颗粒芯部材料的分散颗粒,所述颗粒芯部材料包含标准氧化电位低于Zn的金属、陶瓷、玻璃或碳或其组合,所述分散颗粒的芯部材料包含多个分布的碳纳米颗粒;和
在分散颗粒之间遍及蜂窝状纳米基体延伸的接合层。

33.   权利要求32的粉末金属复合材料,其中所述纳米基体材料包含Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、碳化物或氮化物,或前述材料的任意组合,并且其中所述纳米基体材料具有一种化学组成,和所述芯部材料具有不同于所述纳米基体材料的化学组成的化学组成。

34.   权利要求32的粉末金属复合材料,其中所述碳纳米颗粒包括石墨烯、富勒烯或纳米金刚石纳米颗粒或其组合。

35.   权利要求34的粉末金属复合材料,其中所述芯部材料包含富勒烯,所述富勒烯包括单壁纳米管、多壁纳米管、巴基球或巴基球团簇或其组合。

36.   权利要求32的粉末金属复合材料,其中所述接合层包含固态接合层。

37.   权利要求36的粉末金属复合材料,其中所述纳米基体材料具有熔化温度(TM),所述颗粒芯部材料具有熔化温度(TDP);其中所述压块在烧结温度(TS)下以固态可烧结,并且TS低于TM和TDP。

38.   权利要求32的粉末金属复合材料,其中所述接合层包含部分熔化并再凝固的接合层。

说明书

说明书纳米基体粉末金属复合材料
相关申请的交叉参考
本申请要求2010年10月27日提交的美国申请号12/913321的优先权,其内容通过引用以其全文并入本文。
本申请包含涉及下列共同未决申请的主题的主题:美国专利申请系列号12,633,682;12/633,686;12/633,688;12/633,678;12/633,683;12/633,662;12/633,677和12/633,668,其均于2009年12月8日提交;2010年7月30日提交的12/847,594以及与该申请同日提交的律师案卷号OMS4‑48966‑US,其委派给本申请的同一受让人,Baker Hughes Incorporated of Houston,Texas;其内容通过引用以其全文并入本文。
发明背景
石油和天然气井常常使用井眼部件或工具,因其功能它们仅需具有远低于井使用寿命的使用寿命。在部件或工具的使用功能完结后,必须将其除去或处理以恢复流体通路的原始尺寸以用于包括油气生产、CO2封存等等。部件或工具的处理传统上通过将部件或工具铣削或钻削出井眼来实现,此类操作通常耗时且昂贵。
为了消除对铣削或钻削操作的需要,已经提出了通过用各种井眼流体溶解可降解的聚乳酸聚合物除去部件或工具。但是,这些聚合物通常不具有在井眼的工作温度范围内实施井眼部件或工具的功能所需的机械强度、断裂韧性和其它机械性质,因此,它们的应用受到限制。
已经提出了其它可降解材料,包括来自占主要部分的某些反应性金属(如铝)以及某些占次要部分的其它合金成分(如镓、铟、铋、锡及其混合物和组合)且不排除某些二次合金化元素(如锌、铜、银、镉、铅及其混合物和组合)的可降解的金属合金。这些材料可以通过熔化组分的粉末并随后凝固熔体以形成合金来形成。它们还可以采用粉末冶金法,通过将上述量的反应性金属和其它合金组分的粉末混合物挤压、压制、烧结等等来形成。这些材料包括使用可能不适于随材料降解而释放到环境中的金属,如铅、镉等等的许多组合。同样,它们的形成可以涉及导致合金组织的多种熔化现象,该合金组织由各合金组分的相平衡和凝固特征决定,并且这不会导致最佳或合意的合金显微组织、机械性质和溶解特征。
因此,开发可用于形成井眼部件和工具的具有实施其预期功能所必须的机械性质并随后用井眼流体通过受控溶解从井眼除去的材料是非常合意的。
发明概述
公开了粉末金属复合材料的示例性实施方案。该粉末金属复合材料包括包含纳米基体材料的基本连续的蜂窝状纳米基体。该压块(compact)还包括分散在该纳米基体中的包含颗粒芯部材料的多个分散颗粒和在分散颗粒之间遍及纳米基体延伸的接合层,所述颗粒芯部材料包含Mg、Al、Zn或Mn或其组合,所述分散颗粒的芯部材料包含多个分布的碳纳米颗粒。
还公开了粉末金属复合材料的另一示例性实施方案。该粉末金属复合材料包括包含纳米基体材料的基本连续的蜂窝状纳米基体。该压块还包括分散在该纳米基体中的包含颗粒芯部材料的多个分散颗粒和在分散颗粒之间遍及纳米基体延伸的接合层,所述颗粒芯部材料包含标准氧化电位低于Zn的金属、陶瓷、玻璃或碳或其组合,所述分散颗粒的芯部材料包含多个分布的碳纳米颗粒。
附图概述
下面参考附图,其中多个图片中的同样元件编号相同:
图1是已经嵌在环氧树脂样品安装材料中并切片的本文公开的粉末10的显微照片;
图2是粉末颗粒12的示例性实施方案的示意图,如它在图1的2‑2部分所代表的示例性截面图中所呈现的那样;
图3是粉末颗粒12的第二示例性实施方案的示意图,如它在图1的2‑2部分所代表的第二示例性截面图中所呈现的那样;
图4是粉末颗粒12的第三示例性实施方案的示意图,如它在图1的2‑2部分所代表的第三示例性截面图中所呈现的那样;
图5是粉末颗粒12的第四示例性实施方案的示意图,如它在图1的2‑2部分所代表的第四示例性截面图中所呈现的那样;
图6是具有多峰颗粒尺寸分布的本文公开的粉末的第二示例性实施方案的示意图;
图7是具有多峰颗粒尺寸分布的本文公开的粉末的第三示例性实施方案的示意图;
图8是如本文中公开的粉末制造方法的示例性实施方案的流程图;
图9是本文公开的粉末压块的示例性实施方案的显微照片;
图10是描述用具有单层涂覆粉末颗粒的粉末制得的图9的粉末压块的示例性实施方案的示意图,如其沿着界面10‑10所呈现的那样;
图11是本文中公开的粉末压块的示例性实施方案的示意图,其具有均匀的多峰颗粒尺寸分布;
图12是本文中公开的粉末压块的示例性实施方案的示意图,其具有不均匀的多峰颗粒尺寸分布;
图13是本文中公开的粉末压块的示例性实施方案的示意图,所述粉末压块由第一粉末和第二粉末形成并具有均匀的多峰颗粒尺寸分布;
图14是本文中公开的粉末压块的示例性实施方案的示意图,所述粉末压块由第一粉末和第二粉末形成并具有不均匀的多峰颗粒尺寸分布;
图15是描述用具有多层涂覆粉末颗粒的粉末制得的图9的粉末压块的另一示例性实施方案的示意图,如其沿着界面10‑10所呈现的那样;
图16是前体粉末压块的示例性实施方案的横截面示意图;和
图17是如本文中公开的制造粉末压块的方法的示例性实施方案的流程图。
发明详述
公开了轻重量、高强度金属材料,其可用于多种用途和应用环境,包括用于各种井眼环境以制造各种可选且可控地可处置或可降解的轻重量、高强度井下工具或其它井下部件,以及用于耐用的且可处置或可降解的制品的许多其它用途。这些轻重量、高强度和可选且可控地降解的材料包括由涂覆的粉末材料形成的完全致密的烧结粉末压块,所述涂覆的粉末材料包括各种轻重量颗粒芯部和具有多个单层和多层纳米级涂层的芯部材料。这些粉末压块由涂覆的金属粉末制成,所述金属粉末包括各种电化学活性的(例如具有相对更高的标准氧化电位)轻重量、高强度颗粒芯部和芯部材料,如电化学活性金属,其以分散颗粒形式分散在由金属涂覆层材料的各种纳米级金属涂覆层形成的蜂窝状纳米基体中,并特别可用于井眼用途。分散颗粒的芯部材料还包括多个分布的碳纳米颗粒。这些粉末压块提供机械强度性质(如抗压强度和剪切强度)、低密度和可选且可控的腐蚀性质(特别是在各种井眼流体中快速和受控的溶解)的独特与有利的组合。例如,可以选择这些粉末的颗粒芯部和涂覆层以提供适于用作高强度工程材料的烧结粉末压块,其具有可以与各种其它工程材料(包括碳、不锈钢和合金钢)相比的抗压强度和剪切强度,但是其还具有可以与各种聚合物、弹性体、低密度多孔陶瓷和复合材料相比的低密度。作为再一种实例,可以配置这些粉末和粉末压块材料以提供响应于环境条件变化的可选和可控的降解或处置,例如响应于由该压块形成的制品附近的井眼性质或条件的改变(包括与该粉末压块接触的井眼流体的性质变化)由极低溶解速率向极快溶解速率的转变。所述可选和可控的降解或处置特征还允许由这些材料制成的制品,如井眼工具或其它部件保持尺寸稳定性和强度,直到不再需要它们,此时可以改变预定的环境条件,如井眼条件,包括井眼流体温度、压力或pH值以促进通过快速溶解将其除去。下面进一步描述这些涂覆的粉末材料和粉末压块和由它们形成的工程材料,以及制造它们的方法。分布的碳纳米颗粒提供分散颗粒的芯部材料的进一步强化,由此与例如具有不包括它们的分散颗粒的粉末压块相比提供提高的粉末强化。同样地,某些分布的碳纳米颗粒的密度可低于分散金属颗粒芯部材料,由此使粉末压块材料与例如具有不包括它们的分散颗粒的粉末压块相比具有更低的密度。因此,在纳米基体金属复合材料压块中使用分布的碳纳米颗粒可以提供具有比不包括分布的碳纳米颗粒的纳米基体金属压块相比甚至更高的强度与重量比。
参照图1‑5,金属粉末10包括多个金属的涂覆的粉末颗粒12。粉末颗粒12可以成形以提供粉末10,包括自由流动的粉末,其可以倾倒或以其它方式布置在具有各种形状与尺寸的各种模型(forms)或模具(未显示)并且其可以用于形成前体粉末压块100(图16)和粉末压块200(图10‑15),如本文中所述,其可以用作或用于制造各种制品,所述制品制造包括各种井眼工具和部件。
粉末10的各个金属的涂覆的粉末颗粒12包括颗粒芯部14和布置在该颗粒芯部14上的金属涂覆层16。该颗粒芯部14包括芯部材料18。该芯部材料18可以包括用于形成颗粒芯部14的任何合适的材料,所述颗粒芯部14提供可以烧结以形成具有可选并可控的溶解特性的轻重量、高强度粉末压块200的粉末颗粒12。合适的芯部材料包括标准氧化电位大于或等于Zn的标准氧化电位的电化学活性金属,包括Mg、Al、Mn或Zn或其组合。这些电化学活性金属与许多常见井眼流体的反应性非常高,所述常见井眼流体包括任意数量的离子液体或高极性液体,如含有各种氯化物的那些。实例包括包含氯化钾(KCl)、盐酸(HCl)、氯化钙(CaCl2)、溴化钙(CaBr2)或溴化锌(ZnBr2)的液体。芯部材料18还可以包括与Zn相比电化学活性较低的其它金属或非金属材料或其组合。合适的非金属材料包括陶瓷、复合材料或玻璃。该芯部材料18包括如本文中所述的多个分布的碳纳米颗粒90。本文中所用的至少一部分粉末10的粉末颗粒12将包括具有芯部材料18的颗粒芯部14,所述芯部材料18包括多个分布的碳纳米颗粒90。因此,在各粉末颗粒12中或仅在一部分粉末颗粒12中可以存在多个分布的碳纳米颗粒90。此外,虽然在一种实施方案中,包括分布的碳纳米颗粒90的粉末颗粒12包括多个碳纳米颗粒90,但还可在颗粒芯部14中分布单个碳纳米颗粒90。可以选择芯部材料18以提供在预定的井眼流体中的高溶解速率,但是还可以选择芯部材料18以提供相对低的溶解速率,包括零溶解,其中纳米基体材料的溶解导致颗粒芯部14被快速侵蚀并与井眼流体一起在界面处从该颗粒压块上释放,使得使用这些芯部材料18的颗粒芯部14制得的颗粒压块的有效溶解速率是高的,即使芯部材料18本身可具有低溶解速率,包括基本不可溶于井眼流体的芯部材料20。
关于作为芯部材料18的电化学活性金属(包括Mg、Al、Mn或Zn),这些金属可以以纯金属形式使用,或以彼此的任意组合使用,包括这些材料的各种合金组合,包括这些材料的二元、三元或四元合金。这些组合还可以包括这些材料的复合材料。此外,除了彼此的组合之外,该Mg、Al、Mn或Zn芯部材料18还可以包括其它成分,包括各种合金化添加元素以改变颗粒芯部14的一种或多种性质,例如通过改善芯部材料18的强度、降低密度或改变其溶解特性。
在所述电化学活性金属中,Mg(纯金属或合金或复合材料形式)是特别有用的,因为其低密度和形成高强度合金的能力,以及其高电化学活性程度(因为Mg具有高于Al、Mn或Zn的标准氧化电位)。Mg合金包括具有Mg作为合金成分的所有合金。结合如本文中所述的其它电化学活性金属作为合金成分的Mg合金是特别用用的,包括二元的Mg‑Zn、Mg‑Al和Mg‑Mn合金,以及三元的Mg‑Zn‑Y和Mg‑Al‑X合金,其中X包括Zn、Mn、Si、Ca或Y或其组合。这些Mg‑Al‑X合金可以按重量计包括最多约85%的Mg、最多约15%的Al和最多约5%的X。颗粒芯部14和芯部材料18,以及特别是包括Mg、Al、Mn或Zn或其组合的电化学活性金属,还可以包括稀土元素或稀土元素的组合。如本文中所用,稀土元素包括Sc、Y、La、Ce、Pr、Nd或Er或稀土元素的组合。当存在时,稀土元素或稀土元素的组合按重量计可以以约5%或更少的量存在。
颗粒芯部14和芯部材料18(包括分布的碳纳米颗粒90)具有熔化温度(TP)。如本文中所用,TP包括在芯部材料18中发生初熔或熔析或其它形式的部分熔化时的最低温度,而不考虑是否芯部材料18包含纯金属、具有熔化温度不同的多个相的合金或具有不同熔化温度的材料的复合材料。
颗粒芯部14可以具有任何合适的颗粒尺寸或颗粒尺寸范围或颗粒尺寸分布。例如,可以选择该颗粒芯部14以提供由通常如图1所示的在平均或平均数颗粒尺寸附近的正态或高斯型单峰分布所代表的平均颗粒尺寸。在另一实施例中,可以选择或混合颗粒芯部14以提供多峰颗粒尺寸分布,其包括多个平均颗粒芯部尺寸,例如通常在图6中示意性显示的平均颗粒尺寸的均匀的双峰分布。颗粒芯部尺寸分布的选择可用于确定例如该粉末10的颗粒12的颗粒尺寸和颗粒间间距15。在一种示例性实施方案中,该颗粒芯部14可以具有单峰分布和约5微米至约300微米、更特别约80微米至约120微米、甚至更特别约100微米的平均颗粒直径。
颗粒芯部14可以具有任何合适的颗粒形状,包括任何规则或不规则几何形状,或其组合。在一种示例性实施方案中,颗粒芯部14为基本球形的电化学活性金属颗粒。在另一种示例性实施方案中,颗粒芯部14是陶瓷颗粒,包括规则和不规则形状的陶瓷颗粒。在再一种示例性实施方案中,颗粒芯部14是中空的玻璃微球。
粉末10的金属的覆的粉末颗粒12的颗粒芯部14还包括分散在该芯部材料18中的多个分布的碳纳米颗粒90。分布的碳纳米颗粒90可以包括碳的任何合适的同素异形体的纳米颗粒。合适的同素异形体包括金刚石的纳米颗粒(纳米金刚石)、石墨(包括各种石墨烯);富勒烯(包括各种巴基球、巴基球团簇、纳米芽或纳米管,并包括单壁或多壁纳米管);无定形碳;玻璃碳;碳纳米泡沫;六方碳(lonsdaleite);或赵击石(chaoite)或其组合。分布的碳纳米颗粒90可以具有任何合适的纳米颗粒形状或尺寸。如本文中所用,纳米颗粒可以包括各种规则和不规则的颗粒形状,包括平面形状、球形、椭球形和管形或柱形,具有约100纳米或更低的至少一个颗粒尺寸,更特别具有为约0.1纳米至约100纳米且更特别约1.0纳米至约100纳米的至少一个颗粒尺寸。分布的碳纳米颗粒90还可以包括具有布置在其上的金属(例如布置在碳纳米颗粒外表面上的金属层)的金属化纳米颗粒。合适的碳纳米颗粒包括各种石墨烯;富勒烯或纳米金刚石或其组合。合适的富勒烯可以包括巴基球、巴基球团簇、巴基纸、纳米芽或纳米管,包括单壁和多壁纳米管。富勒烯还包括上述任何种类的三维聚合物。合适的富勒烯还可以包括金属富勒烯包合物(metallofullerene),或包含各种金属或金属离子的那些富勒烯。
本文中公开的基本球形的中空多面体或巴基球形式的富勒烯可以包括任何已知的具有多面体结构的碳的笼形中空同素异形形式。巴基球可以包含例如约20至约100个碳原子。例如,C60是具有60个碳原子和高对称性(D5h)的富勒烯,并且是相对常见的市售富勒烯。示例性富勒烯包括例如C30、C32、C34、C38、C40、C42、C44、C46、C48、C50、C52、C60、C70、C76或C84等等,或其组合。巴基球或巴基球团簇可以包括任何合适的球尺寸或直径,包括具有任意碳原子数的基本球形构造。
纳米管是碳基管状或筒形的具有开放或封闭末端的富勒烯结构,其可以是无机的或完全或部分由碳制成,并还可以包括其它元素,如金属或类金属。单壁和多壁纳米管是基本筒形的,可以具有任何预定的管长度或管直径或其组合。多壁纳米管可以具有任何预定的壁数量。
纳米石墨是石墨的平板状片材的簇,其中一层或多层石墨的堆叠结构(其具有稠合六元环的平板状二维结构,所述稠合六元环具有扩展的离域π电子体系),分层并通过π‑π堆叠相互作用彼此微弱键合。通常石墨烯(包括纳米石墨烯)可以是具有纳米级尺寸的石墨的单个片材或几个片材,所述纳米级尺寸例如小于约例如500纳米的平均颗粒尺寸(平均最大尺寸),或者在其它实施方案中可以具有大于约1微米的平均最大尺寸。纳米石墨烯可以通过如下方式制备:剥离纳米石墨或通过使纳米管中一系列碳‑碳键的催化的键断裂以通过“解开(unzipping)”法形成纳米石墨烯带,并接着衍生该纳米石墨烯以制备例如纳米石墨烯氧化物。石墨烯纳米颗粒可以具有任何合适的预定平面尺寸,包括任何预定的长度或预定的宽度,并由此可以包括任何预定的碳原子数量。
本文中所用的纳米金刚石可以来自天然生成的来源,如天然金刚石的铣削或其它处理的副产物,或可以是合成的,通过任何合适的工业方法制备,所述工业方法例如但不限于高压高温(HPHT)、爆炸冲击(也称为爆轰,缩写为DTD)、化学气相沉积(CVD)、物理气相沉积(PVD)、超声空化等等。纳米金刚石可以以接受状态使用,或可以通过各种方法分选并清洁以除去污染物和可能存在的非金刚石碳相(如无定形碳或石墨的残余物)。纳米金刚石可以是单晶或多晶的。纳米金刚石可以包括各种规则和不规则的形状,包括基本球形的形状。该纳米金刚石可以是单分散的,其中所有颗粒具有几乎没有变化的相同尺寸,或者可以是多分散的,其中该颗粒具有一定范围的尺寸并且是取平均的。通常使用多分散纳米金刚石。可以使用具有不同平均颗粒尺寸的纳米金刚石,因此,纳米金刚石的颗粒尺寸分布可以是如本文中所述的单峰分布(表现出单一分布)、表现出两个分布的双峰分布或表现出超过一个颗粒尺寸分布的多峰分布。
分布的碳纳米颗粒90可以均匀或非均匀地分布在芯部材料18中。例如,在均匀分布的示例性实施方案中,多个相同类型的碳纳米颗粒(包括具有相同尺寸和形状的那些)可以均匀地在各颗粒芯部14中并遍布其芯部材料18分布或分散。在非均匀分布的另一种示例性实施方案中,多个不同类型的碳纳米颗粒(包括具有不同的尺寸和/或形状的那些)可以均匀或不均匀地在各颗粒芯部14中并遍布其芯部材料18分布。在非均匀分布的另一种示例性实施方案中,分布的碳纳米颗粒90可以优先(例如以较高的体积浓度)分布在例如颗粒芯部14的外周,或朝向颗粒芯部14内部。
分布的碳纳米颗粒90可以以任何合适的相对于它们分布于其中的颗粒芯部14的量使用,无论是按重量、体积或原子百分比计。在一种示例性实施方案中,该分布的碳纳米颗粒92可以占约20重量%或更低、更特别约10重量%或更低和甚至更特别约5重量%或更低。
粉末10的各金属的涂覆的粉末颗粒12还包括金属涂覆层16,其布置在颗粒芯部14上。金属涂覆层16包括金属涂覆材料20。金属涂覆材料20将其金属性质赋予该粉末颗粒12和粉末10。金属涂覆层16是纳米级涂覆层。在一种示例性实施方案中,金属涂覆层16可以具有约25纳米至约2500纳米的厚度。金属涂覆层16的厚度可以在颗粒芯部14的表面上变化,但是优选在颗粒芯部14的表面上具有基本均匀的厚度。金属涂覆层16可以如图2中所示包括单个层,或如图3‑5中所示以多层涂层结构形式包括最多四个层的多个层。在单层涂层中,或在多层涂层的各层中,该金属涂覆层16可以包括单一成分化学元素或化合物,或可以包括多种化学元素或化合物。当层包括多种化学成分或化合物时,它们可以具有所有均匀或非均匀分布的方式,包括冶金相的均匀或非均匀分布。这可以包括其中相对量的化学成分或化合物在整个层厚度上根据各成分分布图变化的梯度分布。在单层和多层涂覆层16中,各个层或它们的组合可用于向粉末颗粒12或由此形成的烧结粉末压块提供预定的性质。例如,该预定的性质可以包括颗粒芯部14与涂覆材料20之间的冶金接合的接合强度;颗粒芯部14与金属涂覆层16之间相互扩散特性,包括在多层涂覆层16的层之间的任何相互扩散;在多层涂覆层16的各层之间的相互扩散特性;一个粉末颗粒的金属涂覆层16与相邻粉末颗粒12的金属涂覆层之间的相互扩散特性;相邻的烧结粉末颗粒12的金属涂覆层(包括多层涂覆层的最外层)之间的冶金接合的接合强度;以及涂覆层16的电化学活性。
金属涂覆层16和涂覆材料20具有熔化温度(Tc)。如本文中所用,Tc包括在涂覆材料20中发生初熔或熔析或其它形式的部分熔化时的最低温度,而不考虑是否涂覆材料20包含纯金属、具有熔化温度不同的多个相的合金或复合材料,包括包含多个具有不同熔化温度的涂覆材料层的复合材料。
金属涂覆材料20可以包括提供可烧结外表面21的任何合适的金属涂覆材料20,所述可烧结外表面21构造为烧结到同样具有金属涂覆层16和可烧结外表面21的相邻粉末颗粒12上。在还包括如本文中所述的第二或附加(涂覆或未涂覆的)颗粒32的粉末10中,金属涂覆层16的可烧结外表面21同样构造为烧结到第二颗粒32的可烧结外表面21上。在一种示例性实施方案中,该粉末颗粒12在随芯部材料18和涂覆材料20而变的预定烧结温度(Ts)下可烧结,使得粉末压块200的烧结完全在固态下实现,并且其中Ts低于Tp和Tc。固态下烧结将颗粒芯部14/金属涂覆层16相互作用限制为固态扩散过程和冶金传递现象,并限制了它们的生长和在它们之间所得界面上方提供控制。相比之下,例如,引入液相烧结提供颗粒芯部14/金属涂覆层16材料的快速相互扩散,并难以限制它们的生长和在它们之间所得界面上提供控制,并由此妨碍了如本文中所述的颗粒压块200的合意的显微组织的形成。
在一种示例性实施方案中,将选择芯部材料18以提供芯部化学组成并将选择涂覆材料20以提供涂料化学组成,还可以选择化学组成以彼此不同。在另一种示例性实施方案中,选择芯部材料18以提供芯部化学组成并将选择涂覆材料20以提供涂料化学组成并且将选择这些化学组成以便在它们的界面处彼此不同。可以选择涂覆材料20与芯部材料18(包括分布的碳纳米颗粒90)的化学组成差异以提供粉末压块200的不同的溶解速率和可选且可控的溶解,在所述粉末压块200中混入它们使其可选且可控地可溶。这包括响应于井眼中变化(包括井眼流体的间接或直接改变)的条件而不同的溶解速率。在一种示例性实施方案中,由具有使压块200可选地响应于变化的井眼条件(包括井眼流体的温度变化、压力变化、流量变化、pH变化或化学组成变化或其组合)可溶解于井眼流体中的芯部材料18和涂覆材料20的化学组成的粉末10形成的粉末压块200。响应于变化的条件的可选溶解可以是由于促进不同溶解速率的实际化学反应或过程,但也包括与物理反应或过程有关的溶解响应方面的变化,如井眼流体压力或流量的变化。
在粉末10的一种示例性实施方案中,颗粒芯部14包括Mg、Al、Mn或Zn或其组合作为芯部材料18,并且更特别可以包括纯Mg和Mg合金,并且金属涂覆层16包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、氮化物或碳化物,或前述材料的任意组合作为涂覆材料20。
在粉末10的另一种示例性实施方案中,如图2中所示,颗粒芯部14包括Mg、Al、Mn或Zn或其组合作为芯部材料18,更特别可包括纯Mg和Mg合金,并且金属涂覆层16包括Al或Ni或其组合的单个层作为涂覆材料20。其中金属涂覆层16包括两种或更多种成分,如Al和Ni的组合,该组合可以包括这些材料的各种阶梯式或共沉积式结构,其中各成分的量并因此该层的组成如图2中所示那样在该层的整个厚度上改变。
在再一种示例性实施方案中,如图3中所示,颗粒芯部14包括Mg、Al、Mn或Zn或其组合作为芯部材料18,更特别可以包括纯Mg和Mg合金,并且该涂覆层16包括两个层作为芯部材料20。如本文中所述,该第一层22布置在颗粒芯部14的表面上并包括Al或Ni或其组合。第二层24布置在该第一层的表面上并包括Al、Zn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其组合,并且第一层的化学组成与第二层的化学组成不同。通常,选择第一层22以提供对颗粒芯部14的强冶金接合并限制颗粒芯部14与涂覆层16,特别是第一层22之间的相互渗透。可以选择第二层24以提高金属涂覆层16的强度和/或提供强的冶金接合并促进与相邻粉末颗粒12的第二层24的烧结。在一种示例性实施方案中,选择金属涂覆层16的各个层以便促进如本文中所述的涂覆层16响应于井眼(包括井眼流体)的性质变化的选择性和可控的溶解。但是,这仅是示例性的,要理解的是,对各个层的其它选择条标准也可使用。例如,可以选择任意各层以促进如本文中所述的涂覆层16响应于井眼(包括井眼流体)的性质变化的选择性和可控的溶解。用在包含Mg的颗粒芯部14上的双层金属涂覆层16的示例性实施方案包括包含的Al/Ni和Al/W的第一/第二层组合。
在又一种实施方案中,颗粒芯部14包括Mg、Al、Mn或Zn或其组合作为芯部材料18,并且更特别可以包括纯Mg和Mg合金,并且涂覆层16如图4所示包括三个层。该第一层22布置在颗粒芯部14上并可以包括Al或Ni或其组合。第二层24布置在第一层22上并可以包括Al、Zn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni,或其氧化物、氮化物或碳化物,或前述第二层材料的任意组合。第三层26布置在第二层24上并可以包括Al、Mn、Fe、Co、Ni或其组合。在三层构造中,相邻层的组成不同,使得该第一层具有不同于第二层的化学组成,第二层具有不同于第三层的化学组成。在一种示例性实施方案中,可以选择第一层22以提供对颗粒芯部14的强冶金接合并限制颗粒芯部14与涂覆层16,特别是第一层22之间的相互扩散。可以选择第二层24以提高金属涂覆层16的强度、或限制颗粒芯部14或第一层22和外部或第三层26之间的相互扩散,或促进第三层26与第一层22之间的接合和强冶金接合,或它们的任意组合。可以选择第三层26以提供与相邻粉末颗粒12的第三层26的强冶金接合并促进与之烧结。但是,这仅是示例性的,要理解的是,对各个层的其它选择标准也可使用。例如,可以选择任意各层以促进如本文中所述的涂覆层16响应于井眼(包括井眼流体)的性质变化的选择性和可控的溶解。用在包含Mg的颗粒芯部上的三层涂覆层的示例性实施方案包括包含Al/Al2O3/Al的第一/第二/第三层组合。
在又一种实施方案中,颗粒芯部14包括Mg、Al、Mn或Zn或其组合作为芯部材料18,并且更特别可以包括纯Mg和Mg合金,并且涂覆层16如图5所示包括四个层。在该四层构造中,如本文所述,该第一层22可以包括Al或Ni或其组合。第二层24可以包括Al、Zn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、氮化物、碳化物或前述第二层材料的组合。第三层26还可以包括Al、Zn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、氮化物或碳化物或前述第三层材料的任意组合。该第四层28可以包括Al、Mn、Fe、Co、Ni或其组合。在四层构造中,相邻层的组成不同,使得该第一层22的化学组成不同于第二层24的化学组成,第二层24的化学组成不同于第三层26的化学组成,并且第三层26的化学组成不同于第四层28的化学组成。在一种示例性实施方案中,各个层的选择类似于上文对三层构造所述的那样,关于内(第一)层和外(第二)层,该第二和第三层可用于提供提高的层间粘合、整个金属涂覆层16的强度、有限的层间扩散或可选和可控的溶解或其组合。但是,这仅是示例性的,要理解的是,对各个层的其它选择标准也可使用。例如,可以选择任意各层以促进如本文所述的涂覆层16响应于井眼(包括井眼流体)的性质变化的选择性和可控的溶解。
多层构造中各个层的厚度可以在各层之间以任何方式分配,只要层厚度的总和提供纳米级涂覆层16,包括如本文中所述的层厚度。在一种实施方案中,该第一层22和外层(24、26或28,取决于层数量)可以比其它层(如果存在的话)更厚,因为在烧结粉末压块200的过程中需要提供足够的材料以促进第一层22与颗粒芯部14的所需结合,或与相邻粉末颗粒12的外层的结合。
如图7所示,粉末10还可以包括散布在多个粉末颗粒12中的附加或第二粉末30。在一种示例性实施方案中,该第二粉末30包括多个第二粉末颗粒32。可以选择这些第二粉末颗粒32以改变由粉末10和第二粉末30形成的粉末颗粒压块200的物理性质、化学性质、机械性质或其它性质,或此类性质的组合。在一种示例性实施方案中,性质变化可以包括由粉末10和第二粉末30形成的粉末压块200的抗压强度的提高。在另一种示例性实施方案中,可以选择该第二粉末30以促进如本文所述的粉末10和第二粉末30形成的颗粒压块200响应于井眼(包括井眼流体)的性质变化的选择性和可控的溶解。第二粉末颗粒32可以是未涂覆的,或涂覆有金属涂覆层36。当涂覆时,包括单层或多层涂层,该第二粉末颗粒32的涂覆层36可以包含与粉末颗粒12的涂覆材料20相同的涂覆材料40,或者该涂覆材料40可以不同。该第二粉末颗粒32(未涂覆)或颗粒芯部34可以包括任何合适的材料以提供所需益处,包括许多金属。该第二粉末颗粒32(未涂覆)的芯部材料或颗粒芯部34还可以包括如本文所述分散的多个分散的第二碳纳米颗粒92。第二分布的碳纳米颗粒92可以是本文中所述那些的任意种类,并且可以与第一碳纳米颗粒是相同的纳米颗粒和分布,或是不同的纳米颗粒和/或不同的分布。类似于第一碳纳米颗粒90,第二碳纳米颗粒92还可以包括布置在其上的金属层93。可以选择金属层93的组成以包括与第二芯部材料38相同的组成以改善第二碳纳米颗粒92向熔体中的混合,或可以选择具有不同于第二芯部材料38的组成,并且可以选择以便例如与第二芯部材料38合金化和混合,或避免与第二芯部材料38合金化和混合。金属层93还可以通过任何合适的方法布置在第二碳纳米颗粒92上,所述方法包括各种化学或物理沉积法,更特别包括镀覆、化学气相沉积或物理气相沉积法,甚至更特别通过各种FBCVD法。在一种示例性实施方案中,当使用包含Mg、Al、Mn或Zn或其组合的涂覆的粉末颗粒12时,合适的第二粉末颗粒32可以包括Ni、W、Cu、Co或Fe或其组合。由于第二粉末颗粒32也将配置用于在预定烧结温度(TS)下固态烧结为粉末颗粒12,颗粒芯部34(包括任何分布的第二碳纳米颗粒92)将具有熔化温度TAP,而任何涂覆层36将具有第二熔化温度TAC,其中TS低于TAP和TAC。还将理解的是,第二粉末30不限于一种附加粉末颗粒32类型(即第二粉末颗粒),而是可以以任意数量包括多种粉末颗粒32(即第二、第三、第四等等类型的附加粉末颗粒32),它们各自还可以包括分布的第二碳纳米颗粒92。
参照图8,公开了制造金属粉末10的方法300的示例性实施方案。方法300包括形成310如本文所述的包括分布的碳纳米颗粒90的多个颗粒芯部14。方法300还包括在多个颗粒芯部14的每一个上沉积320金属涂覆层16。沉积320是由此如本文中所述在颗粒芯部14上布置涂覆层16的方法。
颗粒芯部14的形成310可以通过用于形成所需芯部材料18的多个颗粒芯部14的任何合适方法实施,其基本上包括形成芯部材料18的粉末的方法。合适的粉末形成方法包括机械方法,包括机加工、铣削、冲击和用于形成金属粉末的其它机械方法;化学方法,包括化学分解、由液体或气体中沉淀、固体‑固体反应性合成和其它化学粉末形成法;雾化方法,包括气体雾化、液体和水雾化、离心雾化、等离子体雾化和用于形成粉末的其它雾化方法;以及各种蒸发和冷凝方法。分布的碳纳米颗粒90可以通过任何合适的分布或分散方法分散在颗粒芯部14与芯部材料18中,该方法可以与形成该颗粒芯部14的方法相容。在一种示例性实施方案中,可以使用雾化方法,如真空喷雾成形或惰性气体喷雾成形来制造包含Mg的颗粒芯部14。分布的碳纳米颗粒90可以在雾化以形成颗粒芯部14之前分布在芯部材料18的熔体中,例如通过使用各种混合方法将碳纳米颗粒90添加到熔体中。在一种示例性实施方案中,碳纳米颗粒90可以包括布置在其上的金属层91。可以选择金属层91的组成以包括与芯部材料18相同的组合以改善碳纳米颗粒90向熔体中的混合,或可以选择以具有不同于芯部材料18的组成,并且可以选择以便例如与芯部材料18合金化和混合,或避免与芯部材料18混合和合金化。金属层91可以通过任何合适的方法布置在碳纳米颗粒90上,包括各种化学或物理沉积方法,更特别包括镀覆、化学气相沉积或物理气相沉积法,甚至更特别通过各种FBCVD方法。
在多个颗粒芯部14上沉积320金属涂覆层16可以使用任何合适的沉积方法实施,所述沉积方法包括各种薄膜沉积方法,例如化学气相沉积和物理气相沉积法。在一种示例性实施方案中,金属涂覆层16的沉积320使用流化床化学气相沉积(FBCVD)实施。通过FBCVD沉积320金属涂覆层16包括使反应性流体作为涂覆介质(其包括所需金属涂覆材料20)在合适条件下流过在反应器容器中硫化的颗粒芯部14的床层,所述条件包括足以引发涂覆介质的化学反应以产生所需金属涂覆材料20并引发其在颗粒芯部14表面上沉积以形成涂覆的粉末颗粒12的温度、压力和流量条件等等。所选的反应性流体将取决于所需的金属涂覆材料20,并通常包含包括待沉积的金属材料的有机金属化合物,如四羰基镍(Ni(CO)4)、六氟化钨(WF6)和三乙基铝(C6H15Al),其在载流流体(如氦气或氩气)中输送。该反应性流体,包括载流流体,导致多个颗粒芯部14的至少一部分悬浮在该流体中,由此使得悬浮的颗粒芯部14的整个表面暴露于该反应性流体,所述反应性流体包括例如所需有机金属成分,并能够在颗粒芯部14的整个表面上沉积金属涂覆材料20和涂覆层16,使得它们能够各自变成本文中所述的具有金属涂覆层16的封闭成形的涂覆的颗粒12。如本文中也描述的那样,各金属涂覆层16可以包括多个涂覆层。涂覆材料20可以通过以下方法以多个层沉积以形成多层金属涂覆层16:重复上述沉积320步骤并改变330反应性流体以便对各相继层(其中各相继层沉积在颗粒芯部14外表面上,其已经包括构成金属涂覆层16的任何预先沉积的涂覆层或层)提供所需金属涂覆材料20。各个层(例如22、24、26、28等)的金属涂覆材料20可以彼此不同,并且可以通过使用构造成在流化床反应器中在颗粒芯部14上制造所需金属涂覆层16的不同反应性介质提供这种差异。
如图1和9中所示,可以选择包括分布的碳纳米颗粒90的颗粒芯部14和芯部材料18,以及金属涂覆层16和涂覆材料20以提供配制用于压制和烧结以提供粉末压块200的粉末颗粒12和粉末10,所述粉末压块200为轻重量(即具有相对低的密度)、高强度并可以响应于井眼性质变化可选并可控地从井眼中除去,所述性质变化包括可选并可控地溶解在适当的井眼流体,包括本文中公开的各种井眼流体中。粉末压块200包括纳米基体材料220的基本连续的蜂窝状纳米基体216,其具有分散遍及蜂窝状纳米基体216的多个分散颗粒214。烧结金属涂覆层16形成的基本连续的蜂窝状纳米基体216和纳米基体材料220通过压制和烧结多个金属粉末颗粒12的多个金属涂覆层16来形成。由于与本文中所述的烧结相关的扩散效果,纳米基体材料220的化学组成可以不同于涂覆材料20。粉末金属复合材料200还包括多个分散的颗粒214,所述分散的颗粒214包含颗粒芯部材料218。当金属涂覆层16烧结在一起形成纳米基体216时,分散的颗粒芯部214和芯部材料218对应于多个粉末颗粒12的颗粒芯部14和芯部材料18并由其形成。由于与本文中所述的烧结相关的扩散效果,芯部材料218的化学组成可以不同于芯部材料18的。分布的碳纳米颗粒290如本文中所述分布在分散的颗粒214中,并如本文中所述可以包含在所有分散的颗粒214中,或仅包含在其一部分中。由具有布置在其上的金属层91的碳纳米颗粒90形成的分布的碳纳米颗粒290在该压块中可以保留该层的全部或一部分作为分布的碳纳米颗粒291。
如本文中所用,使用术语基本连续的蜂窝状纳米基体216并不意味着粉末压块的主要成分,而是指一种次要成分或多种次要成分,无论按重量还是按体积计。这不同于大多数基体复合材料,其中该基体包含按重量或体积计的主要成分。使用术语基本连续的蜂窝状纳米基体想要描述纳米基体材料220在粉末压块200中的分布的广泛、规则、连续或互连的性质。如本文中所用,“基本连续”描述了纳米基体材料遍及整个粉末压块200延伸,使得其在几乎所有分散颗粒214之间延伸并遮盖了几乎所有分散颗粒214。基本连续用于表明在各分散颗粒214周围的纳米基体不需要具有完全连续性和规则次序(regular order)。例如,在某些粉末颗粒12上的颗粒芯部14上的涂覆层16中的缺陷可以导致在烧结粉末压块200过程中颗粒芯部14的桥连,由此导致在蜂窝状纳米基体216中的局部不连续性结果,即使在该粉末压块的其它部分中,该纳米基体是基本连续的并表现出本文中所述的结构。如本文中所用,“蜂窝状”用于表示该纳米基体限定了包含分散颗粒214并与之互连的通常重复的、互连的纳米基体材料220隔室或胞室的网络。如本文中所用,“纳米基体”用于描述基体的尺寸或规模,特别是相邻的分散颗粒214之间的基体厚度。烧结在一起形成该纳米基体的金属涂覆层本身是纳米级厚度的涂覆层。由于大多数位置处(除了超过两个分散颗粒214的交会处)的纳米基体通常包含来自具有纳米级厚度的相邻粉末颗粒12的两个涂覆层16的相互扩散和接合,因此形成的基体也具有纳米级厚度(如本文中所述,例如为涂覆层厚度的约两倍)并由此描述为纳米基体。此外,使用术语“分散颗粒214”并不意味着粉末压块200的次要成分,而是指一种主要成分或多种主要成分,无论按重量还是按体积计。使用术语分散颗粒想要描述颗粒芯部材料218在粉末压块200中的不连续和离散的分布。
粉末压块200可以具有任何所需的形状或尺寸,包括可以机加工或以其它方式用于形成可用制品,包括各种井眼工具和部件的柱形坯段或棒的形状或尺寸。用于形成前体粉末压块100的压制和用于形成粉末压块200并使包括颗粒芯部14和涂覆层16的粉末颗粒12变形以提供真密度和粉末压块200的所需宏观形状与尺寸以及其显微组织的烧结与压制。粉末压块200的显微组织包括分散颗粒214(包括分布的碳纳米颗粒290)的等轴构造,所述分散颗粒遍及烧结涂层的基本连续的蜂窝状纳米基体216分散并嵌入到其中。这种显微组织略微类似于具有连续晶界相的等轴晶粒显微组织,除了其不需要使用能够制造此类结构的具有热力学相平衡性质的合金成分。相比之下,这种等轴的分散颗粒结构与烧结的金属涂覆层16的蜂窝状纳米基体216可以使用其中热力学相平衡条件不会产生等轴结构的成分制得。所述分散颗粒214的等轴形态和颗粒层的蜂窝状网络216是由于粉末颗粒12被压缩并相互扩散和变形以填充颗粒间空间15(图1)时粉末颗粒12的烧结与变形。可以选择烧结温度与压力以确保粉末压块200的密度达到基本理论真密度。
在图1和9所示的一种示例性实施方案中,分散颗粒214由分散在烧结金属涂覆层16的蜂窝状纳米基体216中的颗粒芯部14形成,并且该纳米基体216包括冶金接合217,如固态冶金接合,或如图10中示意性描述的遍及蜂窝状纳米基体216在所述分散颗粒214之间延伸的接合层219,其在烧结温度(TS)下形成,其中TS低于TC和TP。如所示那样,冶金接合217通过如本文中所述的在用于形成粉末压块200的压制和烧结工艺过程中压缩至紧密接触(touching contact)的相邻粉末颗粒12的涂覆层16之间的受控相互扩散而形成。在一种实施方案中,这可以包括通过如本文中所述的在用于形成粉末压块200的压制和烧结工艺过程中压缩至紧密接触的相邻粉末颗粒12的涂覆层16之间的固态相互扩散以固态形成的固态冶金接合217。这样,蜂窝状纳米基体216的烧结涂覆层16包括接合层219,其具有由金属涂覆层16的涂覆材料20的相互扩散程度限定的厚度(t),其又由涂覆层16的性质限定,包括它们是单一涂层还是多层涂层,是否已选择它们是用于促进还是限制此类相互扩散,和其它因素,如本文中所述,以及烧结和压制条件,包括用于形成粉末压块200的烧结时间、温度和压力。
当纳米基体216形成时,包括接合217和接合层219,金属涂覆层16的化学组成和/或相分布可以改变。纳米基体216还具有熔化温度(TM)。如本文中所用,TM包括在纳米基体216中发生初熔或熔析或其它形式的部分熔化时的最低温度,而不考虑是否纳米基体材料220包含纯金属、具有熔化温度不同的多个相的合金或复合材料(包括多个具有不同熔化温度的各种涂料层的复合材料)或其组合,或其它。当分散颗粒214与颗粒芯部材料218与纳米基体216与纳米基体216一起形成时,金属涂覆层16的成分向颗粒芯部14中的扩散也是可能的,这可导致颗粒芯部14的化学组成和/或相分布的变化。结果,分散颗粒214与颗粒芯部材料218(包括分布的碳纳米颗粒290)可以具有不同于TP的熔化温度(TDP)。如本文中所用,TDP包括在分散颗粒214中发生初熔或熔析或其它形式的部分熔化时的最低温度,而不考虑是否颗粒芯部材料218包含纯金属、具有熔化温度各自不同的多个相的合金或复合材料或其它。在一种示例性实施方案中,粉末压块200在烧结温度(TS)下形成,其中TS低于TC、TP、TM和TDP,并且烧结完全在固态下进行,产生固态接合层。在另一种示例性实施方案中,粉末压块200在烧结温度(TS)下形成,其中TS高于或等于TC、TP、TM或TDP中的一个或多个,并且烧结包括如本文中所述的在粉末压块200中的有限或部分熔化,并进一步可以包括液态或液相烧结,导致至少部分熔化并再凝固的接合层。在这种实施方案中,可以选择预定TS与预定烧结时间(tS)的组合以保持包含该蜂窝状纳米基体216和分散颗粒214的所需显微组织。例如,如通过选择不会导致颗粒芯部完全熔化的颗粒芯部14、TS和tS,可以例如在全部或一部分纳米基体216中允许发生局部熔析或熔化,只要保持该蜂窝状纳米基体216/分散颗粒214的形态。类似地,如通过选择不是为涂覆层16完全熔化而提供的金属涂覆层16、TS和tS,可以例如在全部或一部分分散颗粒214中允许发生局部熔析,只要保持该蜂窝状纳米基体216/分散颗粒214的形态。金属涂覆层16的熔化例如可以在烧结过程中沿着金属层16/颗粒芯部14界面,或沿着多层涂覆层16的相邻层之间的界面发生。要理解的是,超过预定值的TS和tS的组合可产生其它显微组织,如平衡熔体/再凝固显微组织,如果例如纳米基体216(即金属涂覆层16的结合)和分散颗粒214(即颗粒芯部14)都熔化,由此使得这些材料可以快速相互扩散。
分散颗粒214可以包含本文中对颗粒芯部14所述的任何材料,即使分散颗粒214的化学组成因本文中所述的扩散效应而不同。在一种示例性实施方案中,分散颗粒214由颗粒芯部14形成,所述颗粒芯部14包含标准氧化电位大于或等于Zn的材料,包括Mg、Al、Zn或Mn或其组合,可以包括各种二元、三元和四元合金或本文中结合颗粒芯部14所公开的这些成分的其它组合。在这些材料中,本文中所述的具有包含Mg的分散颗粒214和由金属涂料16形成的纳米基体216的那些是特别有用的。如本文中结合颗粒芯部14所公开的那样,Mg、Al、Zn或Mn或其组合的分散颗粒214和颗粒芯部材料218还可以包括稀土元素或稀土元素的组合。
在另一种示例性实施方案中,分散颗粒214由包含金属的颗粒芯部14形成,所述金属电化学活性比Zn低,或是非金属材料。如本文中所述,合适的非金属材料包括陶瓷、玻璃(例如中空玻璃微球)或碳或其组合。
粉末压块200的分散颗粒214可以具有任何合适的颗粒尺寸,包括本文中对颗粒芯部14所述的平均颗粒尺寸。
分散颗粒214可以具有任何合适的形状,取决于对颗粒芯部14和粉末颗粒12所选的形状,以及用于烧结和压制粉末10的方法。在一种示例性实施方案中,粉末颗粒12可以是球形或基本球形的,而分散颗粒214可以包括如本文中所述的等轴颗粒构造。
可以通过选择用于制造颗粒压块200的粉末10来影响分散颗粒214的分散的性质。在一种示例性实施方案中,可以选择具有粉末颗粒12尺寸的单峰分布的粉末10以形成粉末压块200,并通常如图9中所示将在蜂窝状纳米基体216中产生分散颗粒214的颗粒尺寸的基本均匀的单峰分散。在另一种示例性实施方案中,可以选择具有多个粉末颗粒(其具有颗粒芯部14,所述颗粒芯部具有相同的芯部材料18和不同的芯尺寸和相同的涂覆材料20)的多个粉末10并如本文中所述均匀混合以提供具有粉末颗粒12尺寸的均匀的多峰分布的粉末10,并如图6和11中示意性描述的那样可用于形成在蜂窝状纳米基体216中具有分散颗粒214的颗粒尺寸的均匀的多峰分散的粉末压块200。类似地,在再一种示例性实施方案中,可以选择具有多个颗粒芯部14(其可以具有相同的芯部材料18和不同的芯部尺寸和相同的涂覆材料20)的多个粉末10并以非均匀方式分布以提供粉末颗粒尺寸的不均匀的多峰分布,并如图12中示意性描述的那样可用于形成在蜂窝状纳米基体216中具有分散颗粒214的颗粒尺寸的不均匀的多峰分散的粉末压块200。颗粒芯部尺寸分布的选择可用于确定例如由粉末10制成的粉末压块200的蜂窝状纳米基体216中所述分散颗粒214的颗粒尺寸和颗粒间间距。
如通常在图7和13中所示那样,粉末金属复合材料200还可以如本文中所述使用涂覆的金属粉末10和附加或第二粉末30形成。如本文中所述,使用附加粉末30提供了还包括多个分散的第二颗粒234的粉末压块200,所述第二颗粒234分散在该纳米基体216中,并还相对于所述分散颗粒214分散。分散的第二颗粒234可以如本文中所述由涂覆或未涂覆的第二粉末颗粒32形成,并还可以如本文中所述包括第二分布的碳纳米颗粒92。在一种示例性实施方案中,涂覆的第二粉末颗粒32可以用涂覆层36涂覆,该涂覆层36与粉末颗粒12的涂覆层16相同,使得涂覆层36也贡献于该纳米基体216。在另一种示例性实施方案中,该第二粉末颗粒232可以是未涂覆的,使得分散的第二颗粒234嵌在纳米基体216中。第二分布的碳纳米颗粒292可以如本文中所述分布在分散的第二颗粒234中,并可以包括在所有分散的第二颗粒234中,或仅包括在其一部分中,如本文中所述。由具有布置在其上的金属层93的第二碳纳米颗粒92形成的分布的第二碳纳米颗粒292可以在压块中作为分布的第二碳纳米颗粒293保留该层的全部或一部分。如本文中公开的那样,粉末10和附加粉末30可以混合,以便如图13所示形成分散颗粒214和分散的第二颗粒234的均匀分散体,或如图14所示形成这些颗粒的不均匀分散体。由于颗粒芯部34和/或涂覆层36中的组成差异,该分散的第二颗粒234可以由不同于粉末10的任何合适的附加粉末30形成,并可以包括本文中公开的用作第二粉末30的任何材料,所述第二粉末30不同于选择以形成粉末压块200的粉末10。在一种示例性实施方案中,分散的第二颗粒234可以包括Fe、Ni、Co或Cu或其氧化物、氮化物或碳化物,或前述材料的任意组合。
纳米基体216是彼此烧结的金属涂覆层16的基本连续的蜂窝状网络。纳米基体216的厚度将取决于用于形成粉末压块200的粉末10的性质以及任何第二粉末30的混入,特别是与这些颗粒相关的涂层的厚度。在一种示例性实施方案中,纳米基体216的厚度在粉末压块200的整个显微组织中是基本均匀的,并包含粉末颗粒12的涂覆层16厚度的约两倍。在另一种示例性实施方案中,该蜂窝状网络216具有约50纳米至约5000纳米的在分散颗粒214之间的基本均匀的平均厚度。
通过将相邻颗粒的金属涂覆层16经本文中所述的相互扩散与接合层219的生成而相互烧结来形成该纳米基体216。金属涂覆层16可以是单一层结构或多层结构,可以选择它们以促进和/或抑制在该层中的或在金属涂覆层16的多个层之间的,或在金属涂覆层16与颗粒芯部14之间的,或在金属涂覆层16与相邻粉末颗粒的金属涂覆层16之间的扩散,烧结过程中金属涂覆层16的相互扩散程度可以是受限的,或极大依赖于涂层厚度、所选的一种或多种涂覆材料、烧结条件和其它因素。鉴于成分的相互扩散和相互作用的潜在复杂性,纳米基体216和纳米基体材料220的所得化学组成的描述可以简单地理解为还可包括分散颗粒214的一种或多种成分的涂覆层16成分的组合,取决于在所述分散颗粒214与纳米基体216之间发生的相互扩散的程度(如果有任何相互扩散的话)。类似地,分散颗粒214与颗粒芯部材料218的化学组成可以简单地理解为是还可以包括纳米基体216和纳米基体材料220的一种或多种成分的颗粒芯部14成分的组合,取决于在所述分散颗粒214与纳米基体216之间发生的相互扩散的程度(如果有任何相互扩散的话)。
在一种示例性实施方案中,该纳米基体材料220具有一种化学组成,该颗粒芯部材料218具有不同于纳米基体材料220的化学组成的化学组成,并且如本文中所述可以配置化学组成方面的差异以提供响应于压块200附近的井眼性质或条件的受控变化(包括与粉末压块200接触的井眼流体的性质变化)的可选和可控的溶解速率,包括从极低溶解速率可选择地转为极快速的溶解速率。纳米基体216可以由具有单层和多层涂覆层16的粉末颗粒12形成。这种设计灵活性提供了大量的材料组合,特别是在多层涂覆层16的情况下,其可用于通过控制在给定层中、以及在涂覆层16和与之相关的颗粒芯部14之间的或涂覆层16与相邻粉末颗粒12的涂覆层16之间的涂覆层成分的相互作用调整该蜂窝状纳米基体216以及纳米基体材料220的组成。下面提供证明这种灵活性的几个示例性实施方案。
如图10中所示,在一种示例性实施方案中,粉末压块200由粉末颗粒12形成,在粉末颗粒12中,该涂覆层16包含单一层,在多个分散颗粒214的相邻颗粒之间的所得纳米基体216包含一个粉末颗粒12的单一金属涂覆层16、接合层219和另一相邻粉末颗粒12的单一涂覆层16。接合层219的厚度(t)通过单一金属涂覆层16之间相互扩散的程度来确定,并可包括纳米基体216的整个厚度或仅包括其一部分。在使用单层粉末10形成粉末压块200的一种示例性实施方案中,粉末压块200可以包括如本文中所述包含Mg、Al、Zn或Mn或其组合的分散颗粒214,并且纳米基体216可以包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、碳化物或氮化物,或前述材料的任意组合,包括其中蜂窝状纳米基体216的纳米基体材料220(包括接合层219)具有一种化学组成,分散颗粒214的芯部材料218具有不同于纳米基体材料216的化学组成的化学组成的组合。如本文中所述,纳米基体材料220与芯部材料218的化学组成方面的差异可用于提供响应于井眼(包括井眼流体)的性质变化的可选和可控的溶解。在由具有单一涂覆层构造的粉末10形成粉末压块200的另一示例性实施方案中,分散颗粒214包括Mg、Al、Zn或Mn或其组合,蜂窝状纳米基体216包括Al或Ni或其组合。
如图15所示,在另一种示例性实施方案中,粉末压块200由其中涂覆层16包含具有多个涂覆层的多层涂覆层16的粉末颗粒12形成,并且在多个分散颗粒214的相邻颗粒之间获得的纳米基体216包含多个层(t),所述多个层包含一个颗粒12的涂覆层16、接合层219和包含另一粉末颗粒12的涂覆层16的多个层。在图15中,这用双层金属涂覆层16来例示,但是要理解,多层金属涂覆层16的多个层可以包括任意所需数量的层。接合层219的厚度(t)也通过各涂覆层16的多个层之间相互扩散的程度来确定,并可包括纳米基体216的整个厚度或仅包括其一部分。在这种实施方案中,包括各涂覆层16的多个层可用于控制接合层219的相互扩散与形成以及厚度(t)。
在使用具有多层涂覆层16的粉末颗粒12制得粉末压块200的一种示例性实施方案中,该压块包括如本文中所述包含Mg、Al、Zn或Mn或其组合的分散颗粒214,并且如图3中所示,纳米基体216包含烧结的双层涂覆层16的蜂窝状网络,所述双层涂覆层16包含布置在所述分散颗粒214上的第一层22和布置在第一层22上的第二层24。该第一层22包括Al或Ni或其组合,第二层24包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其组合。在这些构造中,选择分散颗粒214和用于构成纳米基体216的多层涂覆层16的材料,使得相邻材料的化学组成不同(例如分散颗粒/第一层和第一层/第二层)。
在使用具有多层涂覆层16的粉末颗粒12制得粉末压块200的另一种示例性实施方案中,该压块包括如本文中所述包含Mg、Al、Zn或Mn或其组合的分散颗粒214,并且如图4中所示,纳米基体216包含烧结的三层金属涂覆层16的蜂窝状网络,所述三层金属涂覆层16包含布置在所述分散颗粒214上的第一层22、布置在第一层22上的第二层24和布置在第二层24上的第三层26。第一层22包括Al或Ni或其组合;第二层24包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、氮化物或碳化物,或前述第二层材料的任意组合;第三层包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其组合。材料的选择类似于本文中对使用双层涂覆层粉末制得的粉末压块200所述的选择考量,但是必须扩展至包括用于第三涂覆层的材料。
在使用具有多层涂覆层16的粉末颗粒12制得粉末压块200的又一种示例性实施方案中,该压块包括如本文中所述包含Mg、Al、Zn或Mn或其组合的分散颗粒214,并且纳米基体216包含烧结的四层涂覆层16的蜂窝状网络,所述四层涂覆层16包含布置在所述分散颗粒214上的第一层22;布置在第一层22上的第二层24;布置在第二层24上的第三层26和布置在第三层26上的第四层28。第一层22包括Al或Ni或其组合;第二层24包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、氮化物或碳化物,或前述第二层材料的任意组合;第三层包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、氮化物或碳化物,或前述第三层材料的任意组合;第四层包括Al、Mn、Fe、Co或Ni或其组合。材料的选择类似于本文中对使用双层涂覆层粉末制得的粉末压块200所述的选择考量,但是必须扩展至包括用于第三和第四涂覆层的材料。
在粉末压块200的另一种示例性实施方案中,分散颗粒214如本文中所述包含标准氧化电位低于Zn的金属或非金属材料或其组合,纳米基体216包含烧结金属涂覆层16的蜂窝状网络。合适的非金属材料包括各种陶瓷、玻璃或各种形式的碳或其组合。此外,在包括包含这些金属或非金属材料的分散颗粒214的粉末压块200中,纳米基体216可以包括Al、Zn、Mn、Mg、Mo、W、Cu、Fe、Si、Ca、Co、Ta、Re或Ni或其氧化物、碳化物或氮化物,或前述材料的任意组合作为纳米基体材料220。
参照图16,烧结的粉末压块200可以包含烧结的前体粉末压块100,其如本文中所述包括多个变形的、机械接合的粉末颗粒。通过如下方式形成前体粉末压块100:将粉末10压制至粉末颗粒12压入彼此中的程度,由此使它们变形并形成与这种形变相关的颗粒间机械或其它接合110,所述颗粒间机械或其它接合足以导致变形的粉末颗粒12彼此粘连和形成具有低于粉末10的完全致密压块的理论密度的生坯密度(部分由于颗粒间空隙15)的生坯状态粉末压块。例如,可以通过在室温下等静压粉末10以提供形成前体粉末压块100所必要的粉末颗粒12的变形和颗粒间接合来实施压制。
如本文中所述,包括包含Mg的分散颗粒214和包含各种纳米基体材料的纳米基体216的烧结和锻造的粉末压块200已经示范了机械强度与低密度的极佳组合,这例证了本文中公开的轻重量、高强度材料。可以构造这些材料以提供宽范围的由极低腐蚀速率至极高腐蚀速率的可选和可控的腐蚀或溶解行为,特别是比没有混入该蜂窝状纳米基体的粉末压块(例如与包括在各种本文中所述蜂窝状纳米基体中的纯Mg分散颗粒的那些相比,通过相同压制和烧结过程由纯Mg粉末形成的压块)更低和更高的腐蚀速率。还可以构造这些粉末压块200以提供与由纯Mg颗粒形成的粉末压块(不包括本文中所述的纳米级涂层)相比极大提高的性质。例如,本文中所述包括包含Mg的分散颗粒214和包含各种纳米基体材料220的纳米基体216的粉末压块200已经示范了至少约37ksi的室温抗压强度,并已经进一步示范了超过约50ksi的室温抗压强度,其是干燥的和浸没在200 的3%KCl溶液中的。混入分布的碳纳米颗粒,如分布的碳纳米颗粒90,预期会进一步提高这些粉末压块200的抗压强度值。相比之下,由纯Mg粉末形成的粉末压块具有约20ksi或更低的抗压强度。该纳米基体粉末金属复合材料200的强度可以通过优化粉末10,特别是用于形成蜂窝状纳米基体216的纳米级金属涂覆层16的重量百分比来进一步改善。例如,改变氧化铝涂层的重量百分比(重量%)——即厚度——改变了由纯Mg颗粒芯部14上包括多层(Al/Al2O3/Al)金属涂覆层16的涂覆的粉末颗粒12形成的蜂窝状纳米基体216的粉末压块200的室温抗压强度。在该实例中,在4重量%的氧化铝下达到了最佳强度,即与0重量%氧化铝相比表现出21%的提高。
如本文中所述包含包括Mg的分散颗粒214和包括各种纳米基体材料的纳米基体216的粉末压块200已经示范了至少约20ksi的室温剪切强度。这与纯Mg粉末形成的粉末压块形成对照,其具有约8ksi的室温剪切强度。混入分布的碳纳米颗粒90预期进一步提高了这些粉末压块200的室温剪切强度值。
本文中公开的类型的粉末压块200能够实现基本等于以粉末10的组合物为基础的压块材料(包括相对量的颗粒芯部14与金属涂覆层16的成分)的预定理论密度的实际密度,并在本文中还描述为完全致密粉末压块。如本文中所述包含包括Mg的分散颗粒214和包括各种纳米基体材料的纳米基体216的粉末压块200已经示范了约1.738克/立方厘米至约2.50克/立方厘米的实际密度,这基本上等于预定的理论密度,与预定理论密度相差最多4%。混入分布的碳纳米颗粒92(包括具有更低的密度的那些,包括约1.3至约1.4克/立方厘米的密度)将降低这些密度,降低量取决于所用的分布的碳纳米颗粒92的相对量。
可以将如本文中公开的粉末压块200进行构造以便响应于井眼中变化的条件而可选和可控地可溶于井眼流体。可用于提供可选和可控溶解性的变化条件的实例包括温度的变化、压力的变化、流量的变化、pH的变化或井眼流体的化学组成的变化或其组合。包含温度变化的变化条件的实例包括井眼流体温度的变化。如本文中所述包含包括Mg的分散颗粒214和包括各种纳米基体材料的蜂窝状纳米基体216的粉末压块200在室温下在3%的KCl溶液中与在200 下相对高的腐蚀速率(其为约1至约246毫克/平方厘米/小时,取决于不同的纳米级涂覆层16)相比具有相对较低的腐蚀速率(其为约0至约11毫克/平方厘米/小时)。包含化学组成变化的变化条件的实例包括井眼流体的氯离子浓度和/或pH值的变化。例如,如本文中所述包含包括Mg的分散颗粒214和包括各种纳米级涂层的纳米基体216的粉末压块200在15%HCl中示范了约4750毫克/平方厘米/小时至约7432毫克/平方厘米/小时的腐蚀速率。因此,响应于井眼中变化的条件(即井眼流体化学组成由KCl改变为HCl)的可选和可控的溶解性可用于实现特征响应,使得在所选择的预定临界使用时间(CST)时,变化的条件可以在粉末压块应用于给定用途(如井眼环境)时施加于该粉末压块200,这会导致响应于应用粉末压块的环境中的条件变化,粉末压块200的性质发生可控的变化。例如,在预定的CST改变时,与粉末压块200接触的井眼流体由提供随时间改变的第一腐蚀速率和相关重量损失或强度的第一流体(例如KCl)改变成提供随时间改变的第二腐蚀速率和相关重量损失与强度的第二井眼流体(例如HCl),其中与第一流体相关的腐蚀速率远低于与第二流体相关的腐蚀速率。对井眼流体条件的特征响应例如可用于将临界使用时间与特定用途所需的尺寸损失限制或最小强度关联在一起,使得当由本文中公开的粉末压块200形成的井眼工具或部件不再需要在井眼中使用时(例如CST),可以改变井眼中的条件(例如,井眼流体的氯离子浓度)以导致粉末压块200的快速溶解并将其从井眼中除去。在上述实施例中,粉末压块200可选地可以以约0至约7000毫克/平方厘米/小时的速率溶解。该响应范围使得能够例如通过改变井眼流体而在少于一小时内从井眼中除去3英寸直径的由该材料形成的球。上述可选和可控的溶解性行为(与本文中所述的优异的强度和低密度性质结合)定义了一种新的分散颗粒‑纳米基体工程材料,其构造用于与流体接触并构造为提供随与流体接触的时间变化而由第一强度条件向低于功能强度阈值的第二强度条件,或由第一重量损失量向高于重量损失极限的第二重量损失量的可选和可控地过渡。该分散颗粒‑纳米基体复合材料是本文中所述粉末压块200的特性,包括纳米基体材料220的蜂窝状纳米基体216、分散在该基体中的多个包括颗粒芯部材料218的分散颗粒214。纳米基体216的特征在于接合层219,如固态接合层,其遍及纳米基体延伸。与上述流体接触的时间可以包括上述CST。该CST可以包括溶解与流体接触的粉末压块200的预定部分所需或要求的预定时间。该CST还可以包括相应于该工程材料或流体或其组合的性质变化的时间。在工程材料性质变化的情况下,该变化可以包括工程材料的温度变化。在其中流体性质发生变化的情况下,该变化可以包括流体温度、压力、流量、化学组成或pH或其组合的变化。可以调整该工程材料以及该工程材料或流体或其组合的性质变化以提供所需的CST响应特性,包括在CST之前和在CST之后该特定性质变化(例如重量损失、强度损失)的速率。
参照图17,制造粉末压块200的方法400。方法400包括形成410包含具有颗粒芯部14的粉末颗粒12的涂覆金属粉末10,所述颗粒芯部14具有布置在其上的纳米级金属涂覆层16,其中该金属涂覆层16具有一种化学组成,该颗粒芯部14具有不同于该金属涂料16的化学组成的化学组成。如本文中所述,方法400还包括通过向该涂覆粉末颗粒施加预定温度和预定压力形成420粉末压块,所述预定温度和预定压力足以通过固相烧结多个涂覆颗粒粉末12的涂覆的层以形成纳米基体材料220的基本连续的蜂窝状纳米基体216和分散在纳米基体216中的多个分散颗粒214。
包含具有颗粒芯部14(具有布置在其上的纳米级金属涂覆层16)的粉末颗粒12的涂覆金属粉末10的形成410可以通过任何合适的方法实施。在一种示例性实施方案中,形成410包括使用如本文中所述的流化床化学气相沉积(FBCVD)将如本文中所述的金属涂覆层16施加到如本文中所述的颗粒芯部14上。施加该金属涂覆层16可以包括施加如本文中所述的单层金属涂覆层16或多层金属涂覆层16。施加该金属涂覆层16还可以包括在施加它们时控制单个层的厚度,以及控制金属涂覆层16的总厚度。可以如本文中所述形成颗粒芯部14。
粉末压块200的成形420可以包括成形粉末10的全致密压块的任何合适的方法。在一种示例性实施方案中,成形420包括生坯密度前体粉末压块100的动态锻造成形以施加预定温度和预定压力,该预定温度和预定压力足以使该粉末颗粒烧结和变形并形成如本文中所述的全致密纳米基体216与分散颗粒214。本文中所述的动态锻造指的是在一定温度下动态施加载荷一段足以促进相邻粉末颗粒12的金属涂覆层16的烧结的时间,并优选包括在预定加载速率下和在足以形成烧结和全致密粉末压块200的温度下施加动态锻造载荷一段时间。在一种示例性实施方案中,动态锻造包括:1)将前体或生坯状态粉末压块100加热至预定固相烧结温度,例如足以促进相邻粉末颗粒12的金属涂覆层16之间的相互扩散的温度;2)将前体粉末压块100保持在该烧结温度下一段预定的保持时间,例如足以确保在整个前体压块100中烧结温度基本均匀的时间;3)将前体粉末压块100锻造至全密度,例如,通过在将压块保持在预定烧结温度下的同时根据预定压力进程或斜变速率施加足以快速实现全密度的预定锻造压力;和4)将该压块冷却至室温。在成形420过程中施加的预定压力和预定温度将包括烧结温度TS和锻造压力PF,如本文中所述,这将确保粉末颗粒12的烧结(如固态烧结)和变形以形成全致密粉末压块200(包括接合217,如固态接合,和接合层219)。加热并将前体粉末压块100保持在预定烧结温度下一段预定时间的步骤可以包括温度与时间的任何合适的组合,并将取决于例如所选的粉末10(包括用于颗粒芯部14和金属涂覆层16的材料)、前体粉末压块100的尺寸、所用的加热方法和影响在前体粉末压块100中达到所需温度和温度均匀性所需的时间的其它因素。在锻造步骤中,预定压力可以包括任何合适的压力和足以获得全密度粉末压块200的压力施加进程或压力斜变速率,并将取决于例如所选粉末颗粒12的材料性质,包括随温度变化的应力/应变特性(例如应力/应变特征)、相互扩散和冶金热力学和相平衡特性、位错动力学和其它材料性质。例如,动态锻造的最大锻造压力和锻造进程(即符合所用应变率的压力斜变速率)可用于调整粉末压块的机械强度与韧性。最大锻造压力和锻造斜变速率(即应变率)是刚好低于压块开裂压力的压力,即,其中动态回复过程不能释放压块显微组织中的应变能而又不会在压块中生成裂纹。例如,对于需要粉末压块具有相对较高的强度和较低的韧性的应用,可以使用相对较高的锻造压力和斜变速率。如果需要粉末压块具有相对较高的韧性,可以使用相对较低的锻造压力和斜变速率。
对于本文中所述的粉末10和具有足以形成许多井眼工具和部件的尺寸的前体压块100的某些示例性实施方案来说,可以使用约1至约5小时的预定保持时间。优选如本文中所述选择该预定烧结温度TS以避免颗粒芯部14(包括分布的碳纳米颗粒90)或金属涂覆层16在方法400的过程中转变以提供分散颗粒214和纳米基体216时熔化。对于这些实施方案,动态锻造可以包括施加锻造压力,例如以约0.5至约2ksi/秒的压力斜变速率动态压制至最高约80ksi。
在其中颗粒芯部14包括Mg和金属涂覆层16包括如本文中所述的各种单层和多层涂覆层,如包含Al的各种单层和多层涂层的示例性实施方案中,通过以下步骤实施动态锻造:在不施加锻造压力的情况下在约450℃至约470℃的温度TS下烧结最多约1小时,接着通过以约0.5至约2ksi/秒的压力斜变速率施加等静压力至约30ksi至约60ksi的最大压力PS(这导致15秒至约120秒的锻造周期)进行动态锻造。可以根据包括在颗粒芯部14中的分布的碳纳米颗粒90的量来影响该锻造周期,因为混入该纳米颗粒可以在锻造过程中改变粉末颗粒12的动态响应,如通过限制(例如减少)相关位错运动和滑动机制。锻造周期的短持续时间是显著的优点,因为这将相互扩散(包括在给定的金属涂覆层16中的相互扩散,在相邻金属涂覆层16之间的相互扩散和在金属涂覆层16与颗粒芯部14之间的相互扩散)限制在形成冶金接合217与接合层219所需的相互扩散,同时还保持了所需的等轴的分散颗粒214形状与蜂窝状纳米基体216强化相的完整性。动态锻造周期的持续时间远短于常规粉末压块成形方法所需的成形周期和烧结时间,如热等静压(HIP)、压力辅助烧结或扩散烧结。
方法400还可以任选包括通过如下方式成形430前体粉末压块:在成形420粉末压块前将多个涂覆粉末颗粒12压制到足以使颗粒变形并形成彼此的颗粒间接合,并形成前体粉末压块100。压制可以包括将多个粉末颗粒12在室温下挤压(如热等静压)以形成前体粉末压块100。压制430可以在室温下实施。在一种示例性实施方案中,粉末10可以包括包含Mg的颗粒芯部14,并且成形430前体粉末压块可以在室温下在约10ksi至约60ksi的等静压下实施。
方法400还可任选包括在成形420粉末压块或成形430前体粉末压块之前如本文中所述将第二粉末30混合440到粉末10中。
在不受理论束缚的情况下,由涂覆粉末颗粒12形成粉末压块200,所述粉末颗粒12包括颗粒芯部14和相关芯部材料18以及金属涂覆层16和相关金属涂覆材料20,以便形成基本连续的三维的蜂窝状纳米基体216,所述蜂窝状纳米基体216包括烧结和相关扩散接合各涂覆层16形成的纳米基体材料220,其包括多个颗粒芯部材料218的分散颗粒214。这种独特的结构可以包括材料的亚稳组合,所述材料的亚稳组合极难或不可能通过凝固由具有相同的相对量组成材料的熔体形成。可以选择该涂覆层和相关的涂覆材料以提供在预定流体环境(如井眼环境)中可选和可控的溶解,其中预定流体是通常使用的井眼流体,其注入井眼或从井眼中提出。如从本文中的描述进一步理解的是,纳米基体的受控溶解暴露出该芯部材料的所述分散颗粒。也可以选择颗粒芯部材料以提供在井眼流体中的可选和可控的溶解。或者,还可以选择它们以便向粉末压块200提供特定的机械性质,如抗压强度或剪切强度,而不必提供芯部材料本身的可选和受控的溶解,因为这些颗粒周围的纳米基体材料的可选和受控溶解将必须释放它们,使得它们被井眼流体带走。具有分散颗粒214(可以对其选择以提供等轴分散颗粒214)的基本连续的蜂窝状纳米基体216(对其选择以提供强化相材料)的显微组织形态提供了具有提高的机械性质的这些粉末压块,所述机械性质包括抗压强度和剪切强度,因为可以通过类似于传统强化机理(例如晶粒尺寸减小、通过使用杂质原子的固溶硬化、沉淀或时效硬化和强度/加工硬化机理)的方法控制该纳米基体/分散颗粒的所得形态以提供强化。如本文中所述,该纳米基体/分散颗粒结构倾向于通过大量的颗粒纳米基体界面、纳米基体材料中的离散层之间的界面和混入分布的碳纳米颗粒90或第二分布的碳纳米颗粒92限制位错运动。响应于足以引发失效的剪切应力,这些材料的粉末压块的断裂行为可以表现出不规则断裂。相比之下,如本文中所述,使用具有形成分散颗粒214的纯Mg粉末颗粒芯部14和形成纳米基体216的包括Al的金属涂覆层16的粉末颗粒12制得并施以足以引发失效的剪切应力的粉末压块200显示出穿晶断裂和显著更高的断裂应力。因为这些材料具有高强度特性,所以可以选择该芯部材料和涂覆材料以利用无法以其它方式提供用于所需用途(包括井眼工具和部件)的必要强度特性的低密度材料或其它低密度材料,如低密度金属、陶瓷或玻璃。
虽然已经显示和描述了一种或多种实施方案,单可以在不偏离本发明的精神与范围的情况下进行改变和置换。因此,要理解的是已经通过例示而非限制的方式描述了本发明。

纳米基体粉末金属复合材料.pdf_第1页
第1页 / 共32页
纳米基体粉末金属复合材料.pdf_第2页
第2页 / 共32页
纳米基体粉末金属复合材料.pdf_第3页
第3页 / 共32页
点击查看更多>>
资源描述

《纳米基体粉末金属复合材料.pdf》由会员分享,可在线阅读,更多相关《纳米基体粉末金属复合材料.pdf(32页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 103189154 A (43)申请公布日 2013.07.03 CN 103189154 A *CN103189154A* (21)申请号 201180052095.6 (22)申请日 2011.10.27 12/913,321 2010.10.27 US B22F 1/00(2006.01) B22F 1/02(2006.01) B82B 1/00(2006.01) (71)申请人 贝克休斯公司 地址 美国得克萨斯 (72)发明人 徐志跃 S查克拉伯蒂 G阿格拉瓦尔 (74)专利代理机构 中国国际贸易促进委员会专 利商标事务所 11038 代理人 李跃龙 (54)。

2、 发明名称 纳米基体粉末金属复合材料 (57) 摘要 公开了粉末金属复合材料。该粉末金属复合 材料包括包含纳米基体材料的基本连续的蜂窝状 纳米基体。该压块还包括分散在该纳米基体中的 多个包含颗粒芯部材料的分散颗粒以及在所述分 散颗粒之间在整个纳米基体中延伸的接合层, 所 述颗粒芯部材料包含 Mg、 Al、 Zn 或 Mn 或其组合, 所述分散颗粒的芯部材料包含多个分布的碳纳米 颗粒。该纳米基体粉末金属复合材料是独特的轻 重量高强度材料, 还可以提供独特地可选且可控 的腐蚀性质, 包括非常快的腐蚀速率, 可用于制造 多种可降解或可处置制品, 包括各种井下工具和 部件。 (30)优先权数据 (85。

3、)PCT申请进入国家阶段日 2013.04.27 (86)PCT申请的申请数据 PCT/US2011/058099 2011.10.27 (87)PCT申请的公布数据 WO2012/058433 EN 2012.05.03 (51)Int.Cl. 权利要求书 3 页 说明书 20 页 附图 8 页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书3页 说明书20页 附图8页 (10)申请公布号 CN 103189154 A CN 103189154 A *CN103189154A* 1/3 页 2 1. 粉末金属复合材料, 包含 : 包含纳米基体材料的基本连续的蜂窝状纳米。

4、基体 ; 分散在所述蜂窝状纳米基体中的包含颗粒芯部材料的多个分散颗粒, 所述颗粒芯部材 料包含Mg、 Al、 Zn或Mn或其组合, 所述分散颗粒的芯部材料包含多个分布的碳纳米颗粒 ; 和 在分散颗粒之间遍及蜂窝状纳米基体延伸的接合层。 2. 权利要求 1 的粉末金属复合材料, 其中所述接合层包含固态接合层。 3. 权利要求 2 的粉末金属复合材料, 其中所述纳米基体材料具有熔化温度 (TM) , 所述 颗粒芯部材料具有熔化温度 (TDP) ; 其中压块在烧结温度 (TS) 下以固态可烧结, 并且 TS低于 TM和 TDP。 4. 权利要求 1 的粉末金属复合材料, 其中所述接合层包含部分熔化并。

5、再凝固的接合 层。 5.权利要求1的粉末金属复合材料, 其中所述颗粒芯部材料包含Mg-Zn、 Mg-Zn、 Mg-Al、 Mg-Mn 或 Mg-Zn-Y。 6.权利要求1的粉末金属复合材料, 其中所述芯部材料包含Mg-Al-X合金, 其中X包含 Zn、 Mn、 Si、 Ca 或 Y 或其组合。 7. 权利要求 6 的粉末金属复合材料, 其中所述 Mg-Al-X 合金包含按重量计至多约 85% 的 Mg、 至多约 15% 的 Al 和至多约 5% 的 X。 8. 权利要求 1 的粉末金属复合材料, 其中所述分散颗粒进一步包含稀土元素。 9. 权利要求 1 的粉末金属复合材料, 其中所述分散颗粒具。

6、有约 5 微米至约 300 微米的 平均颗粒尺寸。 10. 权利要求 1 的粉末金属复合材料, 其中分散颗粒的分散包括在所述蜂窝状纳米基 体中的基本均质的分散。 11. 权利要求 1 的粉末金属复合材料, 其中分散颗粒的分散包括在所述蜂窝状纳米基 体中的颗粒尺寸的多峰分布。 12. 权利要求 1 的粉末金属复合材料, 其中所述分散颗粒具有等轴的颗粒形状。 13. 权利要求 1 的粉末金属复合材料, 进一步包含多个分散的第二颗粒, 其中所述分散 的第二颗粒也分散在所述蜂窝状纳米基体中并相对于所述分散颗粒。 14. 权利要求 13 的粉末金属复合材料, 其中所述分散的第二颗粒包含 Fe、 Ni、 。

7、Co 或 Cu 或其氧化物、 氮化物或碳化物, 或前述材料的任意组合。 15. 权利要求 1 的粉末金属复合材料, 其中所述纳米基体材料包含 Al、 Zn、 Mn、 Mg、 Mo、 W、 Cu、 Fe、 Si、 Ca、 Co、 Ta、 Re 或 Ni 或其氧化物、 碳化物或氮化物, 或前述材料的任意组合, 并 且其中所述纳米基体材料具有一种化学组成, 和所述颗粒芯部材料具有不同于所述纳米基 体材料的化学组成的化学组成。 16. 权利要求 1 的粉末金属复合材料, 其中所述蜂窝状纳米基体具有约 50 纳米至约 5000 纳米的平均厚度。 17. 权利要求 1 的粉末金属复合材料, 其中由包含多个。

8、粉末颗粒的烧结粉末形成所述 压块, 各粉末颗粒具有在烧结时包含分散颗粒和布置在其上的单一金属涂覆层的颗粒芯 部, 并且其中在多个分散颗粒的相邻颗粒之间的所述蜂窝状纳米基体包含一种粉末颗粒的 单一金属涂覆层、 所述接合层和另一粉末颗粒的单一金属涂覆层。 权 利 要 求 书 CN 103189154 A 2 2/3 页 3 18. 权利要求 17 的粉末金属复合材料, 其中所述分散颗粒包含 Mg, 所述蜂窝状纳米基 体包含 Al 或 Ni 或其组合。 19. 权利要求 1 的粉末金属复合材料, 其中由包含多个粉末颗粒的烧结粉末形成所述 压块, 各粉末颗粒具有在烧结时包含分散颗粒和布置在其上的多个金。

9、属涂覆层的颗粒芯 部, 并且其中在多个分散颗粒的相邻颗粒之间的所述蜂窝状纳米基体包含一种粉末颗粒的 多个金属涂覆层、 所述接合层和另一粉末颗粒的多个金属涂覆层, 并且其中多个金属涂覆 层的相邻涂覆层具有不同的化学组成。 20. 权利要求 19 的粉末金属复合材料, 其中所述多个层包含布置在所述颗粒芯部上的 第一层和布置在所述第一层上的第二层。 21. 权利要求 20 的粉末金属复合材料, 其中所述分散颗粒包含 Mg, 且所述第一层包含 Al 或 Ni 或其组合, 且所述第二层包含 Al、 Zn、 Mn、 Mg、 Mo、 W、 Cu、 Fe、 Si、 Ca、 Co、 Ta、 Re 或 Ni 或其。

10、组合, 其中所述第一层具有不同于所述第二层的化学组成的化学组成。 22. 权利要求 21 的粉末金属复合材料, 权利要求 18 的金属粉末, 进一步包含布置在第 二层上的第三层。 23.权利要求22的粉末金属复合材料, 其中所述第一层包含Al或Ni或其组合, 所述第 二层包含 Al、 Zn、 Mn、 Mg、 Mo、 W、 Cu、 Fe、 Si、 Ca、 Co、 Ta、 Re 或 Ni 或其氧化物、 氮化物或碳化 物, 或前述第二层材料的任意组合, 且所述第三层包含 Al、 Zn、 Mn、 Mg、 Mo、 W、 Cu、 Fe、 Si、 Ca、 Co、 Ta、 Re 或 Ni 或其组合, 其中所述。

11、第二层具有不同于所述第三层的化学组成的化学组成。 24. 权利要求 23 的粉末金属复合材料, 进一步包含布置在第三层上的第四层。 25. 权利要求 24 的粉末金属复合材料, 其中所述第一层包含 Al 或 Ni 或其组合, 所述 第二层包含 Al、 Zn、 Mn、 Mg、 Mo、 W、 Cu、 Fe、 Si、 Ca、 Co、 Ta、 Re 或 Ni 或其氧化物、 氮化物或碳 化物, 或前述第二层材料的任意组合, 所述第三层包含 Al、 Zn、 Mn、 Mg、 Mo、 W、 Cu、 Fe、 Si、 Ca、 Co、 Ta、 Re 或 Ni 或其氧化物、 氮化物或碳化物, 或前述第三层材料的任意组。

12、合, 并且所述第 四层包含 Al、 Mn、 Fe、 Co 或 Ni 或其组合, 其中所述第二层具有不同于所述第三层的化学组 成的化学组成, 所述第三层具有不同于所述第三层的化学组成的化学组成。 26. 权利要求 1 的粉末金属复合材料, 其中所述碳纳米颗粒包括石墨烯、 富勒烯或纳米 金刚石纳米颗粒或其组合。 27. 权利要求 26 的粉末金属复合材料, 其中所述芯部材料包含富勒烯, 所述富勒烯包 括单壁纳米管、 多壁纳米管、 巴基球或巴基球团簇或其组合。 28. 权利要求 26 的粉末金属复合材料, 其中所述分布的碳纳米颗粒具有约 0.1 纳米至 约 100 纳米的至少一种尺寸。 29. 权利。

13、要求 26 的粉末金属复合材料, 其中所述碳纳米颗粒基本均匀地分散在所述分 散颗粒中。 30. 权利要求 26 的粉末金属复合材料, 其中所述碳纳米颗粒基本不均匀地分散在所述 分散颗粒中。 31. 权利要求 30 的粉末金属复合材料, 其中所述碳纳米颗粒分散在所述分散颗粒周边 附近。 32. 粉末金属复合材料, 包含 : 包含纳米基体材料的基本连续的蜂窝状纳米基体 ; 权 利 要 求 书 CN 103189154 A 3 3/3 页 4 分散在所述蜂窝状纳米基体中的多个包含颗粒芯部材料的分散颗粒, 所述颗粒芯部材 料包含标准氧化电位低于 Zn 的金属、 陶瓷、 玻璃或碳或其组合, 所述分散颗粒。

14、的芯部材料 包含多个分布的碳纳米颗粒 ; 和 在分散颗粒之间遍及蜂窝状纳米基体延伸的接合层。 33. 权利要求 32 的粉末金属复合材料, 其中所述纳米基体材料包含 Al、 Zn、 Mn、 Mg、 Mo、 W、 Cu、 Fe、 Si、 Ca、 Co、 Ta、 Re 或 Ni 或其氧化物、 碳化物或氮化物, 或前述材料的任意组合, 并 且其中所述纳米基体材料具有一种化学组成, 和所述芯部材料具有不同于所述纳米基体材 料的化学组成的化学组成。 34. 权利要求 32 的粉末金属复合材料, 其中所述碳纳米颗粒包括石墨烯、 富勒烯或纳 米金刚石纳米颗粒或其组合。 35. 权利要求 34 的粉末金属复合。

15、材料, 其中所述芯部材料包含富勒烯, 所述富勒烯包 括单壁纳米管、 多壁纳米管、 巴基球或巴基球团簇或其组合。 36. 权利要求 32 的粉末金属复合材料, 其中所述接合层包含固态接合层。 37. 权利要求 36 的粉末金属复合材料, 其中所述纳米基体材料具有熔化温度 (TM) , 所 述颗粒芯部材料具有熔化温度 (TDP) ; 其中所述压块在烧结温度 (TS) 下以固态可烧结, 并且 TS低于 TM和 TDP。 38. 权利要求 32 的粉末金属复合材料, 其中所述接合层包含部分熔化并再凝固的接合 层。 权 利 要 求 书 CN 103189154 A 4 1/20 页 5 纳米基体粉末金属。

16、复合材料 0001 相关申请的交叉参考 0002 本申请要求 2010 年 10 月 27 日提交的美国申请号 12/913321 的优先权, 其内容通 过引用以其全文并入本文。 0003 本申请包含涉及下列共同未决申请的主题的主题 : 美国专利申请系列 号 12,633,682 ; 12/633,686 ; 12/633,688 ; 12/633,678 ; 12/633,683 ; 12/633,662 ; 12/633,677 和 12/633,668, 其 均 于 2009 年 12 月 8 日 提 交 ; 2010 年 7 月 30 日 提 交 的 12/847,594 以及与该申请。

17、同日提交的律师案卷号 OMS4-48966-US, 其委派给本申请的同一 受让人, Baker Hughes Incorporated of Houston,Texas ; 其内容通过引用以其全文并入本 文。 0004 发明背景 0005 石油和天然气井常常使用井眼部件或工具, 因其功能它们仅需具有远低于井使用 寿命的使用寿命。在部件或工具的使用功能完结后, 必须将其除去或处理以恢复流体通路 的原始尺寸以用于包括油气生产、 CO2封存等等。 部件或工具的处理传统上通过将部件或工 具铣削或钻削出井眼来实现, 此类操作通常耗时且昂贵。 0006 为了消除对铣削或钻削操作的需要, 已经提出了通过用各。

18、种井眼流体溶解可降解 的聚乳酸聚合物除去部件或工具。但是, 这些聚合物通常不具有在井眼的工作温度范围内 实施井眼部件或工具的功能所需的机械强度、 断裂韧性和其它机械性质, 因此, 它们的应用 受到限制。 0007 已经提出了其它可降解材料, 包括来自占主要部分的某些反应性金属 (如铝) 以及 某些占次要部分的其它合金成分 (如镓、 铟、 铋、 锡及其混合物和组合) 且不排除某些二次合 金化元素 (如锌、 铜、 银、 镉、 铅及其混合物和组合) 的可降解的金属合金。这些材料可以通过 熔化组分的粉末并随后凝固熔体以形成合金来形成。它们还可以采用粉末冶金法, 通过将 上述量的反应性金属和其它合金组分。

19、的粉末混合物挤压、 压制、 烧结等等来形成。 这些材料 包括使用可能不适于随材料降解而释放到环境中的金属, 如铅、 镉等等的许多组合。同样, 它们的形成可以涉及导致合金组织的多种熔化现象, 该合金组织由各合金组分的相平衡和 凝固特征决定, 并且这不会导致最佳或合意的合金显微组织、 机械性质和溶解特征。 0008 因此, 开发可用于形成井眼部件和工具的具有实施其预期功能所必须的机械性质 并随后用井眼流体通过受控溶解从井眼除去的材料是非常合意的。 0009 发明概述 0010 公开了粉末金属复合材料的示例性实施方案。 该粉末金属复合材料包括包含纳米 基体材料的基本连续的蜂窝状纳米基体。该压块 (c。

20、ompact) 还包括分散在该纳米基体中的 包含颗粒芯部材料的多个分散颗粒和在分散颗粒之间遍及纳米基体延伸的接合层, 所述颗 粒芯部材料包含 Mg、 Al、 Zn 或 Mn 或其组合, 所述分散颗粒的芯部材料包含多个分布的碳纳 米颗粒。 0011 还公开了粉末金属复合材料的另一示例性实施方案。 该粉末金属复合材料包括包 含纳米基体材料的基本连续的蜂窝状纳米基体。 该压块还包括分散在该纳米基体中的包含 说 明 书 CN 103189154 A 5 2/20 页 6 颗粒芯部材料的多个分散颗粒和在分散颗粒之间遍及纳米基体延伸的接合层, 所述颗粒芯 部材料包含标准氧化电位低于 Zn 的金属、 陶瓷、。

21、 玻璃或碳或其组合, 所述分散颗粒的芯部 材料包含多个分布的碳纳米颗粒。 0012 附图概述 0013 下面参考附图, 其中多个图片中的同样元件编号相同 : 0014 图 1 是已经嵌在环氧树脂样品安装材料中并切片的本文公开的粉末 10 的显微照 片 ; 0015 图 2 是粉末颗粒 12 的示例性实施方案的示意图, 如它在图 1 的 2-2 部分所代表的 示例性截面图中所呈现的那样 ; 0016 图 3 是粉末颗粒 12 的第二示例性实施方案的示意图, 如它在图 1 的 2-2 部分所代 表的第二示例性截面图中所呈现的那样 ; 0017 图 4 是粉末颗粒 12 的第三示例性实施方案的示意图。

22、, 如它在图 1 的 2-2 部分所代 表的第三示例性截面图中所呈现的那样 ; 0018 图 5 是粉末颗粒 12 的第四示例性实施方案的示意图, 如它在图 1 的 2-2 部分所代 表的第四示例性截面图中所呈现的那样 ; 0019 图 6 是具有多峰颗粒尺寸分布的本文公开的粉末的第二示例性实施方案的示意 图 ; 0020 图 7 是具有多峰颗粒尺寸分布的本文公开的粉末的第三示例性实施方案的示意 图 ; 0021 图 8 是如本文中公开的粉末制造方法的示例性实施方案的流程图 ; 0022 图 9 是本文公开的粉末压块的示例性实施方案的显微照片 ; 0023 图 10 是描述用具有单层涂覆粉末颗。

23、粒的粉末制得的图 9 的粉末压块的示例性实 施方案的示意图, 如其沿着界面 10-10 所呈现的那样 ; 0024 图 11 是本文中公开的粉末压块的示例性实施方案的示意图, 其具有均匀的多峰 颗粒尺寸分布 ; 0025 图 12 是本文中公开的粉末压块的示例性实施方案的示意图, 其具有不均匀的多 峰颗粒尺寸分布 ; 0026 图 13 是本文中公开的粉末压块的示例性实施方案的示意图, 所述粉末压块由第 一粉末和第二粉末形成并具有均匀的多峰颗粒尺寸分布 ; 0027 图 14 是本文中公开的粉末压块的示例性实施方案的示意图, 所述粉末压块由第 一粉末和第二粉末形成并具有不均匀的多峰颗粒尺寸分布。

24、 ; 0028 图 15 是描述用具有多层涂覆粉末颗粒的粉末制得的图 9 的粉末压块的另一示例 性实施方案的示意图, 如其沿着界面 10-10 所呈现的那样 ; 0029 图 16 是前体粉末压块的示例性实施方案的横截面示意图 ; 和 0030 图 17 是如本文中公开的制造粉末压块的方法的示例性实施方案的流程图。 0031 发明详述 0032 公开了轻重量、 高强度金属材料, 其可用于多种用途和应用环境, 包括用于各种井 眼环境以制造各种可选且可控地可处置或可降解的轻重量、 高强度井下工具或其它井下部 件, 以及用于耐用的且可处置或可降解的制品的许多其它用途。 这些轻重量、 高强度和可选 说。

25、 明 书 CN 103189154 A 6 3/20 页 7 且可控地降解的材料包括由涂覆的粉末材料形成的完全致密的烧结粉末压块, 所述涂覆的 粉末材料包括各种轻重量颗粒芯部和具有多个单层和多层纳米级涂层的芯部材料。 这些粉 末压块由涂覆的金属粉末制成, 所述金属粉末包括各种电化学活性的 (例如具有相对更高 的标准氧化电位) 轻重量、 高强度颗粒芯部和芯部材料, 如电化学活性金属, 其以分散颗粒 形式分散在由金属涂覆层材料的各种纳米级金属涂覆层形成的蜂窝状纳米基体中, 并特别 可用于井眼用途。分散颗粒的芯部材料还包括多个分布的碳纳米颗粒。这些粉末压块提供 机械强度性质 (如抗压强度和剪切强度)。

26、 、 低密度和可选且可控的腐蚀性质 (特别是在各种 井眼流体中快速和受控的溶解) 的独特与有利的组合。例如, 可以选择这些粉末的颗粒芯部 和涂覆层以提供适于用作高强度工程材料的烧结粉末压块, 其具有可以与各种其它工程材 料 (包括碳、 不锈钢和合金钢) 相比的抗压强度和剪切强度, 但是其还具有可以与各种聚合 物、 弹性体、 低密度多孔陶瓷和复合材料相比的低密度。作为再一种实例, 可以配置这些粉 末和粉末压块材料以提供响应于环境条件变化的可选和可控的降解或处置, 例如响应于由 该压块形成的制品附近的井眼性质或条件的改变 (包括与该粉末压块接触的井眼流体的性 质变化) 由极低溶解速率向极快溶解速率。

27、的转变。所述可选和可控的降解或处置特征还允 许由这些材料制成的制品, 如井眼工具或其它部件保持尺寸稳定性和强度, 直到不再需要 它们, 此时可以改变预定的环境条件, 如井眼条件, 包括井眼流体温度、 压力或 pH 值以促进 通过快速溶解将其除去。 下面进一步描述这些涂覆的粉末材料和粉末压块和由它们形成的 工程材料, 以及制造它们的方法。分布的碳纳米颗粒提供分散颗粒的芯部材料的进一步强 化, 由此与例如具有不包括它们的分散颗粒的粉末压块相比提供提高的粉末强化。 同样地, 某些分布的碳纳米颗粒的密度可低于分散金属颗粒芯部材料, 由此使粉末压块材料与例如 具有不包括它们的分散颗粒的粉末压块相比具有更。

28、低的密度。因此, 在纳米基体金属复合 材料压块中使用分布的碳纳米颗粒可以提供具有比不包括分布的碳纳米颗粒的纳米基体 金属压块相比甚至更高的强度与重量比。 0033 参照图 1-5, 金属粉末 10 包括多个金属的涂覆的粉末颗粒 12。粉末颗粒 12 可以 成形以提供粉末 10, 包括自由流动的粉末, 其可以倾倒或以其它方式布置在具有各种形状 与尺寸的各种模型 (forms) 或模具 (未显示) 并且其可以用于形成前体粉末压块 100(图 16) 和粉末压块 200(图 10-15) , 如本文中所述, 其可以用作或用于制造各种制品, 所述制品制 造包括各种井眼工具和部件。 0034 粉末 10。

29、 的各个金属的涂覆的粉末颗粒 12 包括颗粒芯部 14 和布置在该颗粒芯部 14 上的金属涂覆层 16。该颗粒芯部 14 包括芯部材料 18。该芯部材料 18 可以包括用于形 成颗粒芯部 14 的任何合适的材料, 所述颗粒芯部 14 提供可以烧结以形成具有可选并可控 的溶解特性的轻重量、 高强度粉末压块 200 的粉末颗粒 12。合适的芯部材料包括标准氧 化电位大于或等于 Zn 的标准氧化电位的电化学活性金属, 包括 Mg、 Al、 Mn 或 Zn 或其组合。 这些电化学活性金属与许多常见井眼流体的反应性非常高, 所述常见井眼流体包括任意数 量的离子液体或高极性液体, 如含有各种氯化物的那些。。

30、实例包括包含氯化钾 (KCl) 、 盐酸 (HCl) 、 氯化钙 (CaCl2) 、 溴化钙 (CaBr2) 或溴化锌 (ZnBr2) 的液体。芯部材料 18 还可以包括 与 Zn 相比电化学活性较低的其它金属或非金属材料或其组合。合适的非金属材料包括陶 瓷、 复合材料或玻璃。该芯部材料 18 包括如本文中所述的多个分布的碳纳米颗粒 90。本文 中所用的至少一部分粉末10的粉末颗粒12将包括具有芯部材料18的颗粒芯部14, 所述芯 说 明 书 CN 103189154 A 7 4/20 页 8 部材料 18 包括多个分布的碳纳米颗粒 90。因此, 在各粉末颗粒 12 中或仅在一部分粉末颗 粒 。

31、12 中可以存在多个分布的碳纳米颗粒 90。此外, 虽然在一种实施方案中, 包括分布的碳 纳米颗粒90的粉末颗粒12包括多个碳纳米颗粒90, 但还可在颗粒芯部14中分布单个碳纳 米颗粒90。 可以选择芯部材料18以提供在预定的井眼流体中的高溶解速率, 但是还可以选 择芯部材料 18 以提供相对低的溶解速率, 包括零溶解, 其中纳米基体材料的溶解导致颗粒 芯部 14 被快速侵蚀并与井眼流体一起在界面处从该颗粒压块上释放, 使得使用这些芯部 材料 18 的颗粒芯部 14 制得的颗粒压块的有效溶解速率是高的, 即使芯部材料 18 本身可具 有低溶解速率, 包括基本不可溶于井眼流体的芯部材料 20。 。

32、0035 关于作为芯部材料 18 的电化学活性金属 (包括 Mg、 Al、 Mn 或 Zn) , 这些金属可以以 纯金属形式使用, 或以彼此的任意组合使用, 包括这些材料的各种合金组合, 包括这些材料 的二元、 三元或四元合金。这些组合还可以包括这些材料的复合材料。此外, 除了彼此的组 合之外, 该 Mg、 Al、 Mn 或 Zn 芯部材料 18 还可以包括其它成分, 包括各种合金化添加元素以 改变颗粒芯部14的一种或多种性质, 例如通过改善芯部材料18的强度、 降低密度或改变其 溶解特性。 0036 在所述电化学活性金属中, Mg(纯金属或合金或复合材料形式) 是特别有用的, 因 为其低密度。

33、和形成高强度合金的能力, 以及其高电化学活性程度 (因为 Mg 具有高于 Al、 Mn 或 Zn 的标准氧化电位) 。Mg 合金包括具有 Mg 作为合金成分的所有合金。结合如本文中所 述的其它电化学活性金属作为合金成分的 Mg 合金是特别用用的, 包括二元的 Mg-Zn、 Mg-Al 和 Mg-Mn 合金, 以及三元的 Mg-Zn-Y 和 Mg-Al-X 合金, 其中 X 包括 Zn、 Mn、 Si、 Ca 或 Y 或其组 合。这些 Mg-Al-X 合金可以按重量计包括最多约 85% 的 Mg、 最多约 15% 的 Al 和最多约 5% 的 X。颗粒芯部 14 和芯部材料 18, 以及特别是包。

34、括 Mg、 Al、 Mn 或 Zn 或其组合的电化学活性 金属, 还可以包括稀土元素或稀土元素的组合。如本文中所用, 稀土元素包括 Sc、 Y、 La、 Ce、 Pr、 Nd 或 Er 或稀土元素的组合。当存在时, 稀土元素或稀土元素的组合按重量计可以以约 5% 或更少的量存在。 0037 颗粒芯部 14 和芯部材料 18(包括分布的碳纳米颗粒 90) 具有熔化温度 (TP) 。如 本文中所用, TP包括在芯部材料 18 中发生初熔或熔析或其它形式的部分熔化时的最低温 度, 而不考虑是否芯部材料 18 包含纯金属、 具有熔化温度不同的多个相的合金或具有不同 熔化温度的材料的复合材料。 0038。

35、 颗粒芯部 14 可以具有任何合适的颗粒尺寸或颗粒尺寸范围或颗粒尺寸分布。例 如, 可以选择该颗粒芯部14以提供由通常如图1所示的在平均或平均数颗粒尺寸附近的正 态或高斯型单峰分布所代表的平均颗粒尺寸。在另一实施例中, 可以选择或混合颗粒芯部 14 以提供多峰颗粒尺寸分布, 其包括多个平均颗粒芯部尺寸, 例如通常在图 6 中示意性显 示的平均颗粒尺寸的均匀的双峰分布。 颗粒芯部尺寸分布的选择可用于确定例如该粉末10 的颗粒 12 的颗粒尺寸和颗粒间间距 15。在一种示例性实施方案中, 该颗粒芯部 14 可以具 有单峰分布和约 5 微米至约 300 微米、 更特别约 80 微米至约 120 微米。

36、、 甚至更特别约 100 微米的平均颗粒直径。 0039 颗粒芯部 14 可以具有任何合适的颗粒形状, 包括任何规则或不规则几何形状, 或 其组合。在一种示例性实施方案中, 颗粒芯部 14 为基本球形的电化学活性金属颗粒。在另 一种示例性实施方案中, 颗粒芯部 14 是陶瓷颗粒, 包括规则和不规则形状的陶瓷颗粒。在 说 明 书 CN 103189154 A 8 5/20 页 9 再一种示例性实施方案中, 颗粒芯部 14 是中空的玻璃微球。 0040 粉末 10 的金属的覆的粉末颗粒 12 的颗粒芯部 14 还包括分散在该芯部材料 18 中 的多个分布的碳纳米颗粒 90。分布的碳纳米颗粒 90 。

37、可以包括碳的任何合适的同素异形体 的纳米颗粒。合适的同素异形体包括金刚石的纳米颗粒 (纳米金刚石) 、 石墨 (包括各种石墨 烯) ; 富勒烯 (包括各种巴基球、 巴基球团簇、 纳米芽或纳米管, 并包括单壁或多壁纳米管) ; 无 定形碳 ; 玻璃碳 ; 碳纳米泡沫 ; 六方碳 (lonsdaleite) ; 或赵击石 (chaoite) 或其组合。分布 的碳纳米颗粒 90 可以具有任何合适的纳米颗粒形状或尺寸。如本文中所用, 纳米颗粒可以 包括各种规则和不规则的颗粒形状, 包括平面形状、 球形、 椭球形和管形或柱形, 具有约 100 纳米或更低的至少一个颗粒尺寸, 更特别具有为约 0.1 纳米。

38、至约 100 纳米且更特别约 1.0 纳米至约 100 纳米的至少一个颗粒尺寸。分布的碳纳米颗粒 90 还可以包括具有布置在其 上的金属 (例如布置在碳纳米颗粒外表面上的金属层) 的金属化纳米颗粒。合适的碳纳米颗 粒包括各种石墨烯 ; 富勒烯或纳米金刚石或其组合。 合适的富勒烯可以包括巴基球、 巴基球 团簇、 巴基纸、 纳米芽或纳米管, 包括单壁和多壁纳米管。富勒烯还包括上述任何种类的三 维聚合物。合适的富勒烯还可以包括金属富勒烯包合物 (metallofullerene) , 或包含各种 金属或金属离子的那些富勒烯。 0041 本文中公开的基本球形的中空多面体或巴基球形式的富勒烯可以包括任何。

39、已知 的具有多面体结构的碳的笼形中空同素异形形式。巴基球可以包含例如约 20 至约 100 个 碳原子。例如, C60是具有 60 个碳原子和高对称性 (D5h) 的富勒烯, 并且是相对常见的市售 富勒烯。示例性富勒烯包括例如 C30、 C32、 C34、 C38、 C40、 C42、 C44、 C46、 C48、 C50、 C52、 C60、 C70、 C76或 C84等等, 或其组合。巴基球或巴基球团簇可以包括任何合适的球尺寸或直径, 包括具有任 意碳原子数的基本球形构造。 0042 纳米管是碳基管状或筒形的具有开放或封闭末端的富勒烯结构, 其可以是无机的 或完全或部分由碳制成, 并还可以。

40、包括其它元素, 如金属或类金属。 单壁和多壁纳米管是基 本筒形的, 可以具有任何预定的管长度或管直径或其组合。多壁纳米管可以具有任何预定 的壁数量。 0043 纳米石墨是石墨的平板状片材的簇, 其中一层或多层石墨的堆叠结构 (其具有稠 合六元环的平板状二维结构, 所述稠合六元环具有扩展的离域 电子体系) , 分层并通过 - 堆叠相互作用彼此微弱键合。通常石墨烯 (包括纳米石墨烯) 可以是具有纳米级尺寸 的石墨的单个片材或几个片材, 所述纳米级尺寸例如小于约例如 500 纳米的平均颗粒尺寸 (平均最大尺寸) , 或者在其它实施方案中可以具有大于约 1 微米的平均最大尺寸。纳米石 墨烯可以通过如下。

41、方式制备 : 剥离纳米石墨或通过使纳米管中一系列碳 - 碳键的催化的键 断裂以通过 “解开 (unzipping) ” 法形成纳米石墨烯带, 并接着衍生该纳米石墨烯以制备例 如纳米石墨烯氧化物。石墨烯纳米颗粒可以具有任何合适的预定平面尺寸, 包括任何预定 的长度或预定的宽度, 并由此可以包括任何预定的碳原子数量。 0044 本文中所用的纳米金刚石可以来自天然生成的来源, 如天然金刚石的铣削或其它 处理的副产物, 或可以是合成的, 通过任何合适的工业方法制备, 所述工业方法例如但不限 于高压高温 (HPHT) 、 爆炸冲击 (也称为爆轰, 缩写为 DTD) 、 化学气相沉积 (CVD) 、 物理。

42、气相沉 积 (PVD) 、 超声空化等等。纳米金刚石可以以接受状态使用, 或可以通过各种方法分选并清 洁以除去污染物和可能存在的非金刚石碳相 (如无定形碳或石墨的残余物) 。纳米金刚石 说 明 书 CN 103189154 A 9 6/20 页 10 可以是单晶或多晶的。纳米金刚石可以包括各种规则和不规则的形状, 包括基本球形的形 状。 该纳米金刚石可以是单分散的, 其中所有颗粒具有几乎没有变化的相同尺寸, 或者可以 是多分散的, 其中该颗粒具有一定范围的尺寸并且是取平均的。通常使用多分散纳米金刚 石。 可以使用具有不同平均颗粒尺寸的纳米金刚石, 因此, 纳米金刚石的颗粒尺寸分布可以 是如本文。

43、中所述的单峰分布 (表现出单一分布) 、 表现出两个分布的双峰分布或表现出超过 一个颗粒尺寸分布的多峰分布。 0045 分布的碳纳米颗粒 90 可以均匀或非均匀地分布在芯部材料 18 中。例如, 在均匀 分布的示例性实施方案中, 多个相同类型的碳纳米颗粒 (包括具有相同尺寸和形状的那些) 可以均匀地在各颗粒芯部 14 中并遍布其芯部材料 18 分布或分散。在非均匀分布的另一种 示例性实施方案中, 多个不同类型的碳纳米颗粒 (包括具有不同的尺寸和 / 或形状的那些) 可以均匀或不均匀地在各颗粒芯部 14 中并遍布其芯部材料 18 分布。在非均匀分布的另一 种示例性实施方案中, 分布的碳纳米颗粒9。

44、0可以优先 (例如以较高的体积浓度) 分布在例如 颗粒芯部 14 的外周, 或朝向颗粒芯部 14 内部。 0046 分布的碳纳米颗粒90可以以任何合适的相对于它们分布于其中的颗粒芯部14的 量使用, 无论是按重量、 体积或原子百分比计。在一种示例性实施方案中, 该分布的碳纳米 颗粒 92 可以占约 20 重量 % 或更低、 更特别约 10 重量 % 或更低和甚至更特别约 5 重量 % 或 更低。 0047 粉末 10 的各金属的涂覆的粉末颗粒 12 还包括金属涂覆层 16, 其布置在颗粒芯部 14 上。金属涂覆层 16 包括金属涂覆材料 20。金属涂覆材料 20 将其金属性质赋予该粉末 颗粒 。

45、12 和粉末 10。金属涂覆层 16 是纳米级涂覆层。在一种示例性实施方案中, 金属涂覆 层 16 可以具有约 25 纳米至约 2500 纳米的厚度。金属涂覆层 16 的厚度可以在颗粒芯部 14 的表面上变化, 但是优选在颗粒芯部 14 的表面上具有基本均匀的厚度。金属涂覆层 16 可 以如图 2 中所示包括单个层, 或如图 3-5 中所示以多层涂层结构形式包括最多四个层的多 个层。在单层涂层中, 或在多层涂层的各层中, 该金属涂覆层 16 可以包括单一成分化学元 素或化合物, 或可以包括多种化学元素或化合物。 当层包括多种化学成分或化合物时, 它们 可以具有所有均匀或非均匀分布的方式, 包括。

46、冶金相的均匀或非均匀分布。这可以包括其 中相对量的化学成分或化合物在整个层厚度上根据各成分分布图变化的梯度分布。 在单层 和多层涂覆层 16 中, 各个层或它们的组合可用于向粉末颗粒 12 或由此形成的烧结粉末压 块提供预定的性质。例如, 该预定的性质可以包括颗粒芯部 14 与涂覆材料 20 之间的冶金 接合的接合强度 ; 颗粒芯部 14 与金属涂覆层 16 之间相互扩散特性, 包括在多层涂覆层 16 的层之间的任何相互扩散 ; 在多层涂覆层 16 的各层之间的相互扩散特性 ; 一个粉末颗粒的 金属涂覆层 16 与相邻粉末颗粒 12 的金属涂覆层之间的相互扩散特性 ; 相邻的烧结粉末颗 粒 1。

47、2 的金属涂覆层 (包括多层涂覆层的最外层) 之间的冶金接合的接合强度 ; 以及涂覆层 16 的电化学活性。 0048 金属涂覆层 16 和涂覆材料 20 具有熔化温度 (Tc) 。如本文中所用, Tc 包括在涂覆 材料 20 中发生初熔或熔析或其它形式的部分熔化时的最低温度, 而不考虑是否涂覆材料 20 包含纯金属、 具有熔化温度不同的多个相的合金或复合材料, 包括包含多个具有不同熔 化温度的涂覆材料层的复合材料。 0049 金属涂覆材料 20 可以包括提供可烧结外表面 21 的任何合适的金属涂覆材料 20, 说 明 书 CN 103189154 A 10 7/20 页 11 所述可烧结外表。

48、面 21 构造为烧结到同样具有金属涂覆层 16 和可烧结外表面 21 的相邻粉 末颗粒 12 上。在还包括如本文中所述的第二或附加 (涂覆或未涂覆的) 颗粒 32 的粉末 10 中, 金属涂覆层 16 的可烧结外表面 21 同样构造为烧结到第二颗粒 32 的可烧结外表面 21 上。在一种示例性实施方案中, 该粉末颗粒 12 在随芯部材料 18 和涂覆材料 20 而变的预定 烧结温度 (Ts) 下可烧结, 使得粉末压块 200 的烧结完全在固态下实现, 并且其中 Ts低于 Tp 和 Tc。固态下烧结将颗粒芯部 14/ 金属涂覆层 16 相互作用限制为固态扩散过程和冶金传 递现象, 并限制了它们的。

49、生长和在它们之间所得界面上方提供控制。相比之下, 例如, 引入 液相烧结提供颗粒芯部14/金属涂覆层16材料的快速相互扩散, 并难以限制它们的生长和 在它们之间所得界面上提供控制, 并由此妨碍了如本文中所述的颗粒压块 200 的合意的显 微组织的形成。 0050 在一种示例性实施方案中, 将选择芯部材料 18 以提供芯部化学组成并将选择涂 覆材料 20 以提供涂料化学组成, 还可以选择化学组成以彼此不同。在另一种示例性实施方 案中, 选择芯部材料 18 以提供芯部化学组成并将选择涂覆材料 20 以提供涂料化学组成并 且将选择这些化学组成以便在它们的界面处彼此不同。可以选择涂覆材料 20 与芯部材料 18(包括分布的碳纳米颗粒 90) 的化学组成差异以提供粉末压块 200 的不同的溶解速率和 可选且可控的溶解, 在所述粉末压块 200 中混入它们使其可选且可控地可溶。这包括响应 于井眼中变化 (包括井眼流体的间接或直接改变) 的条件而不同的溶解速率。在一种示例性 实施方案中, 由具有使压块 200 可选地响应于变化的井眼条件 (包括井眼流体的温度变化、 压力变化、 流量变化、。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 作业;运输 > 铸造;粉末冶金


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1