低氧化氮燃烧器 【技术领域】
本发明涉及一种低NOX(氧化氮)燃烧器。更具体地说,本发明涉及一种可有效地降低NOX含量的低NOX(氧化氮)燃烧器,该燃烧器利用蓄热体的排出气体和燃烧用空气之间的直接热交换,用排出气体预热空气进行燃烧,此时,不光是在高温燃烧区,且也在以往难以有效降低NOX含量的中温燃烧区域,也可有效地降低NOX含量。
背景技术
以往,为降低燃烧器的燃烧气体中的NOX含量,采用如特开平6-50508号公报(USP5403181)上所揭示的、图8所示的燃料的二段燃烧法等。该燃料二段燃烧法对于流经燃烧器喷管口101内的燃烧用空气A,将燃料经一次喷嘴102和二次喷嘴103分成二段供给,由此,在以一次燃料和总量的燃烧用空气形成一次火焰的同时,以二次燃料和一次火焰的高温混合气体地反应形成二次火焰。在二次燃料喷嘴附近的氧气浓度较低,产生还原反应,由此降低了一次火焰中的NOX含量。
然而,在该燃料二段燃烧法中所用的喷嘴中,形成主要火焰的二次燃料的喷射方向是与燃烧用空气的流向大致平行的,所以,其低温燃烧时的二次火焰的稳定性差,在1000℃以上的高温燃烧时,如不对燃烧用空气进行预热,则所产生的火焰不稳定。因此,为了提高低温燃烧时的二次火焰的稳定性,将燃料的喷射方向接近于与燃烧用空气的流向垂直的方向。这样,火焰虽然稳定,但是,发生局部的燃烧,使局部温度升高,NOX含量增大。从而,火焰的稳定性和低NOX含量难以二者兼得。
因此,在作为熔融铝液的保温炉的热源使用时,在700-800℃左右的较低温度的中温区操作,及该炉开始升温的低温操作时,火焰的稳定性变差,很难实施以往的燃料二段燃烧法。另外,由于形成主要火焰的燃料喷射方向与燃烧用空气的流向大致平行,由此形成的火焰形状较长,要在熔融铝液的保温炉内的坩埚四周或其下方的空间等狭窄的空间内燃烧是有困难的。
发明的揭示
本发明的目的在于,提供一种可有效地降低NOX含量的低NOX(氧化氮)燃烧器,该燃烧器利用蓄热体的排出气体和燃烧用空气之间的直接热交换,用排出气体预热空气进行燃烧,由此,不光是在高温燃烧区,且在以往难以有效降低NOX含量的中温燃烧区,也可有效地降低NOX含量。
为达到上述目的,本发明提供这样一种低NOX(氧化氮)燃烧器,该低NOX燃烧器使排出气体和燃烧用空气交互通过蓄热体形成直接热交换,并利用该热交换预热燃烧用空气,从该燃烧用空气流周围喷射燃料,进行燃烧,其中,在喷射经预热的燃烧用空气流的空气喷管口的出口处,设置炉砖(燃烧器耐火砖),该炉砖扩径部的直径大于该喷管口的直径,同时,设置从该炉砖的扩径部喷射燃料进行燃烧的燃料喷嘴。
在这低NOX(氧化氮)燃烧器中,由于从空气喷管口喷射出的燃烧用空气流的作用,在其四周的炉砖的扩径部内侧,即在由炉砖的扩径部构成的副燃烧室内产生负压,发生强烈的炉内排出气体的再循环。又,在炉砖内急速扩散的一部分燃料和一部分经预热的燃烧用空气形成火焰稳定区,由于燃烧用空气流的作用,炉内的排出空气被强烈地吸引至炉砖内,与一部分燃料混合,引起炉内排出气体的再循环燃烧。而且,稳定火焰同时,由于在炉砖外的残余氧与炉内排出气体再循环的燃烧中产生的不完全燃烧气体发生缓慢的燃烧,可以实现低氧化氮的稳定的燃烧。另外,所述的稳定的低氧化氮的燃烧火焰形状较短。
从而,为了提高低温时的火焰稳定性,将燃料喷射方向靠近相对于燃烧用空气流为垂直的方向时,一部分燃料也可引起排出气体的再循环燃烧,抑制高温时的NOX的发生。而且,在使用高温的燃烧用空气时,火焰的稳定性高不庸置言,且由于其燃烧可在抑制NOX发生的同时,形成较短的火焰形状,因此,可在有限的狭小的空间内进行燃烧。另外,其在低温时的燃烧也稳定。这对于在较高温度下,例如在1000℃以上的温度下进行操作的铁系加热炉等,在其升温过程中降低NOX是很有效的,且,对于在较上述温度低的低温下,特别是,对于在以往难以有效降低NOX含量的中温燃烧区操作的非铁金属的溶化炉,也可有效地降低NOX含量和稳定火焰。因而,即使在熔融铝液的保温炉内的坩埚四周或其下方的空间狭窄处燃烧,也能抑制NOX的发生。
又,在本发明的低NOX(氧化氮)燃烧器中,最好使燃料相对于燃烧用空气流的流向作斜向喷射,使燃料与燃烧用空气流碰撞。此时,与燃料相对于燃烧用空气流作垂直喷射的场合比较起来,可以促进炉内排出气体的再循环燃烧及在炉砖外侧的缓慢燃烧,更加减少NOX的发生量。
这里,如将燃烧器设置于曲面构成的炉壁上或是倾斜地设置于炉壁上等时,由炉砖的扩径部形成的副燃烧室的离开炉内壁面的进深方向上的深度有所不同。这时,由炉砖的扩径部形成的副燃烧室的离开炉内壁面的进深方向上的深度较浅的地方,炉内的排出气体易于被吸入炉砖的扩径部内,形成活泼的再循环燃烧;而在由炉砖的扩径部形成的副燃烧室的离开炉内壁面的进深方向上的深度较深的地方,炉内的排出气体则很难进入该扩径部内。因此,在本发明的低NOX(氧化氮)燃烧器中,在由炉砖的扩径部形成的副燃烧室的离开炉内壁面的进深方向上的深度不同的场合,在其深度最深处设置燃料喷嘴。此时,炉内排出气体很少侵入燃料喷射的部分,不会降低氧浓度,从而具有优异的着火稳定性。
另外,本发明的低NOX(氧化氮)燃烧器中,燃料喷嘴兼用作引燃喷嘴。此时,引燃的火焰沿着燃料喷流形成,其火焰稳定,且燃烧器的结构也简单。而且,由于燃烧用空气流仅流入处于炉砖扩径部上游的空气喷管口内,因此可以缩小空气喷管口的出口部分,以提高喷出的燃烧用空气流的流速,或将用于预热燃烧用空气的蓄热体不受限制地设置于空气喷管口的近出口处。
又,在本发明的低NOX(氧化氮)燃烧器中,将引燃喷嘴设置于与燃料喷嘴不同的炉砖的扩径部。此时,点火由独立于燃料喷嘴、受控的引燃喷嘴进行,其着火稳定性好,在调节(turn down)比大时也容易控制。另外,由于空气喷管口中不设置引燃喷嘴和燃料喷嘴,而仅有燃烧用空气流过,因此,可缩小空气喷管口的出口部分,提高喷出的燃烧用空气的流速,产生于燃烧用空气流四周的炉砖的扩径部内的排出气体的再循环更加增强,促进降低NOX(氧化氮)。又,由于在空气喷管口的近出口处设有蓄热体,蓄热体的、未经对燃烧用空气的预热而直接放出于大气中的热量减少,同时,导入蓄热体的排出气体的温度也可不用降低,因此,热损失减少。再有,不需要高温管道,由此可大幅度地降低设备费用,节约空间。另外,由于燃烧用空气流仅流入处于炉砖扩径部上游的空气喷管口内,因此,可以缩小空气喷管口的出口,以提高喷出的燃烧用空气的流速,或将用于预热燃烧用空气的蓄热体不受限制地设置于空气喷管口的近出口。
又,在本发明的低NOX(氧化氮)燃烧器中,使引燃燃料在炉砖的扩径部的上游侧的空气喷管口内喷射。此时,由于引燃燃料在炉砖的扩径部的上游侧的空气喷管口内喷射,可以形成稳定的火焰区,该火焰成为种火,即使燃烧用空气的温度降低,也可使火焰燃烧稳定。例如,将该种火用作如熔融铝保温炉那样的700-800℃的中温区操作的加热炉的热源时,其火焰也稳定,且NOX的发生量也少。
再有,本发明的低NOX(氧化氮)燃烧器设置有第一燃料喷嘴和第二燃料喷嘴,在低温操作时,该第一燃料喷嘴在炉砖上游的空气喷管口内以与燃烧用空气流大致垂直的方向喷射燃料;而当炉温达设定的温度后,该第二喷嘴从炉砖的扩径部喷射燃料。此处,设定温度并不一定意指炉子的操作温度,而是指仅由第二燃料喷嘴的燃料喷射即可维持火焰的温度或在其之上的温度。
在本发明的场合,当炉温低,燃烧难以稳定时,可从第一燃料喷嘴喷射燃料,使燃烧用空气和燃料因垂直方向的碰撞而急速地混合、扩散,进行稳定的燃烧。此时,燃烧用空气即使处于低温,从第一燃料喷嘴喷射的燃料仍与燃烧用空气作即刻混合,并作稳定的扩散燃烧。然而,因炉温低,此时发生的NOX的量也少,且在可允许的范围内。而且,当炉温达到设定温度时,仅使炉砖扩径部的第二燃料喷嘴喷射燃料,使发生上述的排出气体的再循环燃烧及其不完全燃烧气体与残存氧的缓慢燃烧,降低NOX的发生量。因此,在将炉温升至额定运转温度期间,也可减少NOX的发生量。
附图的简单说明
图1为说明本发明的低NOX燃烧器的结构示意图和燃烧状况的原理图。
图2A为说明本发明的其它实施例的低NOX燃烧器的结构示意图和燃烧状况的原理图。
图2B为说明图2A的低NOX燃烧器的燃料喷嘴部分的截面图。
图3为显示本发明的低NOX燃烧器的另外一些实施例的结构示意图。
图4为显示本发明的低NOX燃烧器的另外一些实施例的结构示意图。
图5为显示使用了本发明的低NOX燃烧器的非铁金属、熔融铝的保温炉的一个实施例的纵向截面图。
图6为图5的横截面图。
图7为显示使用了本发明的低NOX燃烧器的一个实施例的示意图。
图8为以往的用作低NOX燃烧器的一般的燃料二段燃烧法燃烧器的原理图。
实施发明的最佳形态
以下,根据附图所示的实施例,详细说明本发明的结构。
图1概略显示了本发明的低NOX燃烧器的一个实施例。该低NOX燃烧器为这样一种燃烧器,它利用由蓄热体组成的热交换媒体,以与排出气体的蓄热式热交换预热燃烧用空气流,同时,对该燃烧用空气流从该空气流四周喷射燃料,在空气喷管口24的出口处设置其扩径部23的直径大于该出口处直径的炉砖22,设置燃料喷嘴19,使该燃料喷嘴从炉砖的扩径部23喷射燃料。在本实施例的场合,燃烧用空气并不限于预热至800-1000℃、或预热至更高高温,在使用预热的温度远远低于排出气体的温度的燃烧用空气时,也可发挥本发明的效果。但是,在本实施例的场合,使用的燃烧用空气,其温度预热至近于排出气体的温度。例如,附图中虽未图示,将排出气体和燃烧用空气交互地以一定的时间间隔通过由蜂窝状陶瓷组成的蓄热体,由这样的直接的热交换将燃烧用空气预热至大致接近排出气体的温度。因此,在炉子升温之时,或是炉内的设定温度原本较低的时候,在低温,或炉子达到在700-800℃的中温区或在该中温区以上的高温区操作时,预热的燃烧用空气的温度成为较高的高温。另外,燃料只要从炉砖的扩径部23向炉砖22内的、由炉砖扩径部23形成的副燃烧室25内喷射即可。燃料的喷射方向没有特别的限制,最好是向着燃烧用空气流的方向喷射,更好的是,对着燃烧用空气流斜向喷射,使燃料及该燃烧用空气流发生碰撞。此时,比起燃料对着燃烧用空气流以垂直向喷射的场合来,可以促进炉内排出气体的再循环燃烧及在炉砖22外侧的缓慢燃烧,可以更加减少NOX发生量。
又,为了使引燃燃料向着空气喷管口24内喷射,在炉砖扩径部23的上游侧设置有引燃喷嘴16。该引燃喷嘴16在约1000℃以上的高温下供给燃烧用空气时,没有必要在炉砖扩径部23的近侧保持经常燃烧、它也可设置于该扩径部的更上游侧,依场合的不同,也可设置于炉砖扩径部23的燃料喷嘴19的附近。
根据如此结构的低NOX(氧化氮)燃烧器,如图1所示,从炉砖的扩径部23斜向喷射的燃料的一部分和从空气喷管口24作全量喷射的燃烧用空气的一部分扩散、混合后,形成稳定的火焰。在供给高温的燃烧用空气的场合自毋庸言,在炉子升温时等,供给的燃烧用空气的温度较低之时,火焰也很稳定。而且,炉内的排出气体因从空气喷管口24高速喷出的燃烧用空气而被强烈的吸入炉砖的扩径部23内,与来自炉砖扩径部23的角落部分作斜向喷射的一部分燃料混合,导致排出气体的再循环燃烧,形成因空气不足而燃烧的排出气体再循环燃烧区域X2。再有,炉砖22之外侧,残留于稳定火焰区X1的燃烧气体中的氧和在炉砖扩径部23内的排出气体的再循环燃烧区X2中发生的不完全燃烧气体反应,形成发生缓慢燃烧区X3。为此,在高温供给燃烧用空气时,局部成为高温,发生热NOX(thermal NOX),由于排出气体的再循环燃烧和缓慢燃烧,NOX被还原,其在整体上含量降低。又,此时,燃料直接喷射于炉砖22内,由此可抑制气体过多地由火焰的轴向向外扩散,因而,可以将燃烧时未燃烧的气体量限制于最小。
另外,在如图1的实施例的场合,例示了分别设一段的燃料喷嘴19和引燃喷嘴(燃烧器)16的例子,但是,本发明并不限于这些,也可采用如图2A及图2B所示的引燃喷嘴兼用的燃料喷嘴,省去引燃喷嘴。例如,燃烧器喷管口扩径部23的燃料喷嘴19作成如图2A及图2B所示的兼用作引燃喷嘴的燃料喷嘴26时,在喷射至副燃烧室25的燃料喷流的四周,沿着该燃料喷流形成一次火焰。该兼用作引燃喷嘴的燃料喷嘴26由燃料喷嘴26a和该燃料喷嘴26a四周的、流经一次空气的一次空气管道26b组成,在燃料喷嘴26a的四周流有占约二次空气的10%左右的一次空气。再有,在燃料喷嘴26a上,除了其前端的主喷射口27之外,还开有构成引燃喷嘴的燃料喷射口28。该喷射口28向着四周的一次空气管道26b的内周壁面喷射一部分燃料,使该燃料与一次空气碰撞。喷射的一部分燃料作为引燃燃料,碰撞在一次空气管道26b的内周壁面上后,扩散,得到与一次空气的良好的混合状态。因此,设置了图中未示的点火器,使在燃烧中可形成稳定的一次火焰。
另外,如图4所示,也可将引燃喷嘴16设于炉砖扩径部23上,以可独立于燃料喷嘴19地进行控制。引燃喷嘴16在炉砖扩径部23上的设置范围应使其可足够将火苗移至从燃料喷嘴19喷出的燃料上。此时,由引燃喷嘴16得到种火,着火的稳定性良好,增大调节比时也容易控制。再有,在空气喷管口24上不设置引燃喷嘴和燃料喷嘴,而是仅流经燃烧用空气,所以,可以充分地设计提高燃烧用空气的喷射速度,不必因将蓄热体设置在空气喷管口24的出口附近而受其控制。例如,可缩小空气喷管口24的出口直径,将燃烧用空气流的流速提高至高于实施例1的速度等。此时,发生在燃烧用空气流的四周的炉砖扩径部23内的排出气体的再循环更加增强,促进了降低NOX。又,在空气喷管口24内,特别是,在空气喷管口24的出口处附近可内装蓄热体7。为此,蓄热体7的未被用于燃烧空气的预热,而直接放入大气中的热量减少,同时,经由由炉砖扩径部23构成的副燃烧室25及空气喷管口24导入蓄热体7的燃烧排出气体的温度也可不必下降,其热损失减少。另外,由炉砖22的一部分构成的空气喷管口24上可内装蓄热体7,因此,不需要高温管道,即可大幅度地降低设备费,又可节省空间。
此外,当燃烧器设置于如图6所示的弯曲状炉壁上时,或者,当燃烧器作倾斜设置时,由炉砖扩径部23形成的副燃烧室25的、离开炉内壁面29伸向进深方向的深度并不一定,依场合的不同,离开炉内壁面29伸向进深方向的深度有不同。此时,如图3所示,最好将引燃兼用的喷嘴26设置于该炉砖扩径部23的、离开炉内壁面29的最深之处。在不是使用引燃兼用喷嘴26,而是使用通常的燃烧喷嘴和引燃喷嘴的场合也是同样。此时,在副燃烧室25的离开炉内壁面深度较浅的地方,易引起炉内的排出气体被吸进炉砖扩径部23的内侧的副燃烧室25中,导致排出气体的活泼的再循环燃烧,但是,该炉内排出气体很难进入副燃烧室25的离开炉内壁面的深度较深的地方。因此,如果将燃烧喷嘴19或引燃喷嘴兼用的喷嘴26设置于由炉砖的扩径部23构成的副燃烧室25的离开炉内壁面29的较深之处,则由于燃料被喷射的部分的氧浓度并不降低,而具有优异的着火稳定性。
又,如图3中的虚线所示,与燃烧器喷管口的扩径部23的燃料喷嘴19不同地,也可在其更上游处设置向空气喷管口24内喷射燃料的第一燃料喷嘴15。在该实施例的情况下,在经预热的燃烧用空气流中,在燃烧器喷管口的扩径部23的燃料喷嘴19的更上游处,另外设置向空气喷管口24内喷射燃料的第一燃料喷嘴15,在炉内温度达到设定温度之前,从第一燃料喷嘴15喷射出全部的燃料,使其扩散燃烧,也可在炉内温度达到设定温度之后,停止从第一燃料喷嘴15喷射燃料,而是从第二燃料喷嘴19喷射出燃料。这里,图中虽未显示,在可将火苗移至第一燃料喷嘴15喷射出的燃料的范围内,通常设置有引燃喷嘴或点火器等。还有,设定的温度并不一定是炉子的操作温度,也可指仅以从第二燃料喷嘴喷射燃料即可维持火焰燃烧的温度及其以上的温度。
具有如上所述的结构的燃烧器,可以用作形成低NOX、短火焰的各种设备用的热源。例如,图5-图7显示了本发明的将低NOX燃烧器用作非铁金属熔融液的保温炉的热源的例子。另外,作为非铁金属熔融液的保温炉,例举了熔融铝保温炉,作为燃烧器例举了具有第一燃料喷嘴和第二燃料喷嘴的燃烧器例子。
熔融铝保温炉由炉体1、坩埚3和作为热源的蓄热型的燃烧系统4构成。炉体1在其钢板制的炉体内侧衬以耐火绝热材料,坩埚3以悬吊状置于该炉体1的中心。在本实施例中,设置了一个系统的蓄热型燃烧器系统4,但也可设置2个以上的该系统。炉体1作围绕状支承放入熔融铝液中的坩埚3,坩埚3及其四周保持了适于熔融铝保温的温度,如图所示,成为大致有底的圆筒形,中间悬置有坩埚3。坩埚3由容纳熔融铝的石墨等耐火材料制的坩埚筒体3a和容纳该坩埚耐火构件的金属制坩埚筒体3b构成。金属制坩埚筒体3b上端的凸缘部分3c载持于炉体1上,其凸缘3c以下的部分插入炉体1内,成悬吊状设置。而且,在炉体1的底部,悬吊的坩埚3之下,设计有燃烧空间2。又,在燃烧空间2的部分,设置有隔板20,将炉体1内作大致C字形的划分。再有,在炉体1的内壁面上设有非常时用的电加热器21,以在如周末等的仃炉期间,由电加热将坩埚内的熔融铝保持在最低温度下。另外,图中虽未显示,坩埚3上也可设置有对熔融金属液加压、从坩埚底部取出用的盖子和洗熔液筒。
炉体1的底部的燃烧空间2的部分至少设置有一个系统以上的蓄热型燃烧器系统4。在本实施例的场合,设置有一对燃烧器5,6,该对燃烧器夹着所述的隔板20而构成燃烧系统。该蓄热型燃烧器系统4在本实施例中使用的结构是,将蓄热体7内置于燃烧器体14内,组成2组由蓄热体7和燃烧器5,6组成一体的组合,交互进行燃烧,通过未进行燃烧的燃烧器及蓄热体排出排出气体。例如,可以设计成如图5所示,对于2组燃烧器5,6各自的蓄热体7,7,通过四通阀10,可有选择地连接供给燃烧用空气的燃烧用空气系统8和排出燃烧气体的排气系统9,在另一个燃烧器5(或6)上通过蓄热体7供给燃烧用空气,同时,从另一个燃烧器6(或5)通过蓄热体7排出排出气体。燃烧用空气由图中未示的吹气风扇等供给,而排气由图中未示的吸气风扇等的排气设备从炉内吸出,排放于大气中。又,燃烧用空气和燃料的一部分分配至引燃喷枪16。引燃喷枪16设置在炉砖23扩径部23的更上游侧,使其可向着空气喷管口24内喷射燃料。在空气喷管口24的出口处配制有其直径大于空气喷管口24的、具有炉砖扩径部23的炉砖22。此外,图中的符号14表示燃烧器主体,17表示火焰检测器,18表示引燃喷嘴点火用的变压器,在各个线路上虽未图示,但都设置有控制流体流动的各种电磁阀和手动阀等。
又,燃料供给系统11通过如三通阀12,有选择的交互地连接至燃烧器5,6中之任一个,并供给燃料。燃料喷嘴由第一燃料喷嘴15和第二燃料喷嘴19组成,同一时间内,只能由该2个燃料喷嘴中之一个喷射燃料,第一燃料喷嘴15向着空气喷管口24内配置,第二燃料喷嘴19由设于空气管道24的出口处的炉砖22的扩径部23喷射燃料燃烧。第一燃料喷嘴15以与燃烧用空气流垂直相交的方向上,设置在通过蓄热体供给全部燃烧用空气的空气喷管口24的外周面,从空气喷管口24的外周面与燃烧用空气成垂直的喷射。又,燃料喷嘴19的设置使其可从设于空气喷管口24的出口处的炉砖22的扩径部23向着炉砖22内喷射。在本实施例的场合,该第二燃料喷嘴19向内倾斜地设置于炉砖22的扩径部23的角落上,使其喷射的燃料可对着喷射自空气喷管口24的燃烧用空气作倾斜的碰撞。
这里,作为加热设备的燃烧器5,6和电气加热装置21使用了同一的温度检测设备,例如,热电偶及温度调节器,在加热装置运转时,将调节器的输出电信号直接引导至可控硅,以控制通电量,在燃烧器燃烧时,再以A/D变换器变换为开关信号,控制燃料调节阀及空气调节阀。
另外,蓄热体7,7最好使用其压力损失较小、但热容量大、耐用性好的材料,例如,使用由陶瓷成型的众多蜂窝状小孔的简体。此时,在从燃烧排出气体中回收热量时,排出气体的温度即使下降至酸露点的温度以下,燃料中的硫分子和化学变化物质也不会被收集在陶瓷内,不会对其下游的排气系统的管道等发生低温腐蚀。当然,并不是特别限于上述,也可使用如陶瓷珠(球)制和矿块(nugget)等的其它的蓄热体。
根据如上所述结构的熔融铝保温炉,可以将坩埚3按如下所述地在熔融铝液中保持在适当的温度。
首先,从第一燃料喷嘴15喷射全量的燃料进行燃烧,使炉内达到设定的温度。并加热坩埚3及炉体1。此时,燃烧用空气即使处于低温,但从第一燃料喷嘴15喷射的燃料与燃烧用空气立即混合,并由设于近旁的引燃火焰作稳定的燃烧。
其次,在达到设定的温度时,停止第一燃料喷嘴15的燃料喷射,从第二燃料喷嘴19喷射燃料。这里,设定的温度并不一定指炉子的操作温度,而是指仅以来自第二燃料喷嘴的喷射燃料即可维持火焰的温度及其以上的温度。此时,即使在如铝保温炉那样的700-800℃左右的中温区内操作的炉,由于喷射自第二燃料喷嘴19的燃料向内喷射,该燃料与喷射自空气喷管口24的高温燃烧用空气发生冲撞,当燃料在炉砖22内斜向对着高温的燃烧用空气喷射,发生碰撞时,则急速扩散的燃料和燃烧用空气的一部分形成火焰稳定区X1,使火焰燃烧稳定,同时,因燃烧用空气流而被强烈吸进炉砖22内的炉内排出气体和燃料发生混合,形成排出气体再循环燃烧区X2,导致空气不足的燃烧,再有,在炉砖22之外,残留于来自火焰稳定区X1的燃烧气体中的氧和来自炉内排出气体再循环燃烧的不完全燃烧气体混合,发生缓慢燃烧。因此,其燃烧的火焰稳定,NOX含量也不增加。
再有,使蓄热型燃烧器系统4的另一侧燃烧器,例如,燃烧器5燃烧,则在燃烧空间2内使用于坩埚3的加热后的燃烧气体通过燃烧气体排出系统9从停用中的另一侧的燃烧器6的空气喷管口24排出。即,在另一侧的燃烧器6上,向该燃烧器6供给燃料的燃料供给系统11被三通阀12关闭,且,由四通阀10的切换与排气系统9连接,因此,该燃烧器不进行燃烧,而用作排出气体的排出通道。坩埚3由火焰及燃烧气体的辐射热而被加热。这里,供给至燃烧器5的燃烧用空气由与蓄热体7的短时间的直接接触被预热,然后供给至燃烧器本体14内,因此,其温度为高至近于排出气体温度的高温。从而,在与来自第一燃料喷嘴15或第二燃料喷嘴19的喷射燃料混合时,很少的燃料也可稳定地燃烧,得到高温的燃烧气体。并且,随着燃烧量的增减,燃烧用空气的温度也立即发生变化,所以对金属熔融液的温度调节的配合性良好。
如上所述,金属熔融液的温度变化小,次品率降低,可在短时间内将炉内及坩埚3升温至保温温度。又,燃烧和排气的切换可在例如10秒-2分的间隔,较好地,是以约1分钟以内的间隔,最好是以10-40秒左右等的极短的间隔进行。此时,可以高的温度效率进行热交换。又,经由蓄热体7排出的燃烧气体可在达到设定的温度、例如,达到200℃左右时进行切换。此时,由于火焰位置频繁变动,可使燃烧室内的加热曲线更加均匀化,减少加热不匀和保温不匀。
当炉内达到适于熔融铝保温的温度,例如,800-900℃时,调节燃烧器系统4的燃烧,使其能维持坩埚3内的熔融铝的保温的适当的温度。又,在燃料气体供给系统发生事故等的非常之时及燃烧器的操纵者因休息而无法进行监控之时,停止燃烧器系统4的运转,由电加热装置21将炉内保持于最低温度。
上述的实施例为实施本发明的一个较好的例子,但是,本发明并不限于此,在不脱离本发明的精神的范围内可以有各种变化。例如,在本实施例中,主要是就利用连接、或内设于燃烧器的蓄热体的交互燃烧而得到经预热的燃烧用空气的,但本发明并不限于此,例如,也可使用如PCT专利公开号WO94/02784所示的流路切换方法等,使蓄热体对于燃烧用空气供给系统和排气系统作相对的旋转;或是使用流路切换方法,切换流体对于蓄热体的流动方向。由此,可在蓄热体因燃烧排出气体和以一定的时间间隔作高温燃烧排出气体的放热而对燃烧用空气进行加热,预热燃烧用空气,并将其连续地供给至单一的燃烧器,使其连续地燃烧。又,在本实施例中,是就使用气体燃料的场合进行了说明,但也不限于此,例如,可以使用油等的液体燃料。再有,图1-图4所示的各实施例的燃烧器也适用于如图5-图7所示的熔融铝液保温炉。而且,此时,从起炉到中温区或高温区的操作,都可降低NOX,使火焰稳定。