用于烯烃聚合的立体有择催化剂体系.pdf

上传人:1****2 文档编号:436501 上传时间:2018-02-16 格式:PDF 页数:17 大小:846.42KB
返回 下载 相关 举报
摘要
申请专利号:

CN95193372.8

申请日:

1995.05.30

公开号:

CN1149878A

公开日:

1997.05.14

当前法律状态:

终止

有效性:

无权

法律详情:

专利权的终止(未缴年费专利权终止)授权公告日:2002.6.19|||授权|||专利申请权、专利权的转移(专利申请权的转移)变更项目:申请人变更前权利人:博雷里斯控股公司变更后权利人:博里利斯技术有限公司变更项目:地址变更前:丹麦灵比变更后:芬兰波尔沃登记生效日:2002.1.10|||公开|||

IPC分类号:

C08F4/649; C08F4/642; C08F10/00

主分类号:

C08F4/649; C08F4/642; C08F10/00

申请人:

博雷里斯控股公司;

发明人:

E·艾斯克拉; P·皮卡恩; T·里诺恩; J·图里萨洛; M·哈库恩; A-B·加拉德; T·索德比格; P·家斯克拉恩

地址:

丹麦灵比

优先权:

1994.05.31 FI 942536

专利代理机构:

中国国际贸易促进委员会专利商标事务所

代理人:

黄泽雄

PDF下载: PDF下载
内容摘要

烯烃或烯烃混合物,特别是丙烯或丙烯与优选乙烯的混合物可用齐格勒-纳塔催化剂体系聚合,该体系除含有基于过渡金属的主催化剂和为有机金属化合物的助催化剂外,还含有一种特别适合于控制生成聚合物的立体择型性的化合物。这样一种称为外供体的化合物也有其它效果。通过使用具有两个醚基的醛的缩醛衍生物,优选自二烷氧基苯基烷烃,如二甲氧基苯基丙烷,可以实现这一目的,所得到的产品具有优良的立体择型性,催化剂体系具有高的氢敏性,借此,把氢用作链传递剂,通过调整用于聚合反应的氢量可容易地控制产品的分子量。如果氢敏性明显较弱的供体,如烷氧基硅烷同缩醛衍生物一起使用,产品可得到较宽的MWD。

权利要求书

1: 用于烯烃聚合的催化剂体系,该体系包括基于钛化合物的主催化 剂组分,和有机铝助催化剂及一种或几种外电子供体,其特征是所述电 子供体之一为醛的缩醛衍生物,其中所述缩醛衍生物为按式(III)表示 的化合物。 其中R为较低级的烷基,R 1 和R 2 为相同或不同的烃基,或者为 能够一起形成环的基团,R 3 为氢或烃基。
2: 权利要求1的催化剂体系,其特征为R为甲基。
3: 权利要求1或2的催化剂体系,其特征为R 1 为较低级的烷基,R 2 为苯基。
4: 权利要求3的催化剂体系,其特征为醛衍生物为2-苯基丙醛二 甲基缩醛,即,1,1-二甲氧基-2-苯基丙烷。
5: 权利要求1或2的催化剂体系,其特征为R 1 和R 2 一起形成环己 基。
6: 权利要求1或2的催化剂体系,其特征为R 1 为甲基或乙基,R 2 为脂族C 2 -C 4 烷基。
7: 权利要求1或2的催化剂体系,其特征为R 1 为氢,R 2 为多支链 烷基。
8: 前述权利要求1-7中任何一项的催化剂体系,其特征为主催化 剂组分包括上面附有钛的卤化物或卤氧化物,优选TiCl 4 的活性二卤化镁 和一种电子供体化合物。
9: 前述权利要求1-8中任何一项的催化剂体系,其特征为有机铝 化合物为三烷基铝,优选为三乙基铝或三异丁基铝。 11.前述权利要求1-9中任何一项的催化剂体系,其特征为其它的 电子供体的氢敏性明显比缩醛衍生物低。 12.前述权利要求1-9中任何一项的催化剂体系,其特征为缩醛衍 生物在缩醛衍生物与低氢敏性的供体的混合物中含量为70-90mol%, 优选为85-95mol%。 13.权利要求11的催化剂体系,其特征为氢敏性较低的供体为烷氧 基硅烷,优选为对称的二甲氧基硅烷。 14.权利要求11的催化剂体系,其特征为氢敏性较低的供体为二环 戊基二甲氧基硅烷、二环己基二甲氧基硅烷、二异丁基二甲氧基硅烷、 二异丙基二甲氧基硅烷或二苯基二甲氧基硅烷。 15.前述权利要求1-14中任何一项的催化剂体系可用于单独的丙 烯或至少结合另一种不同的α-烯烃和/或乙烯的聚合。

说明书


用于烯烃聚合的立体有择催化剂体系

    本发明涉及适用于烯烃聚合的催化剂体系,该体系包括至少一种基于钛化合物的主催化剂(procatalyst),一种有机铝助催化剂,和至少一种为醛的缩醛衍生物的二醚化合物,以及任选的至少另一种电子供体化合物。

    烯烃通常用由主催化剂和助催化剂两个基本组分组成的齐格勒-纳塔催化剂体系来聚合。主催化剂由元素周期表中第4-8副族的过渡金属化合物制得(Hubband,IU PAC1970)。助催化剂由元素周期表中第1-3主族的金属有机化合物制得。

    过渡金属通常为钛、锆或钒的化合物,而优选的为钛化合物,而且实际上,已发现钛是一种特别优良的过渡金属。这些化合物典型的有卤化物或卤氧化物,或者是有机化合物,通常为醇盐、醇化物或卤醇盐。其它地有机化合物虽然在工艺中有必要了解,但通常很少使用。过渡金属化合物可用如下通式表示:

    (R’O)nR”mMXp-n-m    (I)

    这里,M为第4-8副族的过渡金属,优选的为Ti、Zr或V,R’和R”代表主要由1-20个碳的主链构成的相同或不同的有机基团,M为过渡金属,X为卤素,优选的为氯。R’和R”优选并通常为简单的烃基,优选的为烷基。p为金属M的氧化态,p通常为4或5。n和m为0-p之间的整数。

    最好的化合物从钛的醇盐、卤化物及卤醇盐中选出,特别是卤素为氯时。因此,适宜的化合物包括四甲氧基钛、四乙氧基钛、四丙氧基钛、四丁氧基钛及类似氧化物、其中1-3个醇氧基被卤素,特别是氯取代的相应的钛的卤醇盐、和钛的卤化物,特别是TiBr4和TiCl4。这些化合物中最常用的化合物为TiCl4。很明显,可以通过不同的混合物形式使用两种或更多的过渡金属化合物。

    助催化剂通常由第1-3主族金属的有机化合物组成。虽然常采用铝的化合物,但也已经采用硼、锌和碱金属的化合物。铝的化合物可用式(II)表示:

    RnAlX3-n            (II)

    这里,R为有机烃基,优选的为C1-C20烷基,X为卤素,n为从1到3的整数。可以通过各种各样的混合物形式同时使用不同的助催化剂。

    另外,催化剂体系还包括提高和改善催化剂性能的组分。主催化剂可于或多或少的惰性载体上制备,从而,主催化剂组分可成为固态,即使这样的过渡金属化合物不是固态。主催化剂可与所谓的能提供电子的内供体化合物络合以提高催化剂体系立体择型性和/或活性。主催化剂可用辅助组分来制备,该辅助组分可以是溶解或浆液介质,其中一部分能与主催化剂组分络合。这样一种化合物也可作为电子供体。而且助催化剂原料,它通常在聚合过程之后与主催化剂组分发生分离,可用旨在提高最终产物立体择型性的电子供体化合物来补足。那么,该电子供体称为外供体。

    为了得到非均相固态主催化剂组分,如果主催化剂的过渡金属化合物本身不能作载体,则需要一种分开的载体化合物。后者的情形对于上述过渡金属化合物是真实的。各种各样的固体无机或有机化合物均可作为载体。这些典型的化合物为硅、铝、钛、镁、铬、钍或锆的氧化物或它们的混合物,不同的无机酸盐如上述金属或碱土金属或土金属的盐,包括硅酸镁、硅酸钙、氯化钙、硫酸钙等等。(参考如FI公开专利85,710)。作为载体的重要化合物已发现为镁的化合物,包括如醇镁、氢氧化镁、羟基卤化镁、和卤化镁等,其中后者,特别是二氯化镁,对于主催化剂组分是非常重要的载体,使用前载体通常经过各种处理,可经热处理,如锻烧;可经化学处理以除去所谓的表面羟基;可经机械处理,如用球磨机或喷射机研磨(参考如,FI专利号882626)。一种重要的载体由镁的卤化物特别是MgCl2制得,它能与醇较好的络合,从而,该络合载体能通过从乳浊液靠喷淋-干燥技术或从熔体靠喷淋-结晶技术进行结晶和/或固化得到形态有利的形式(参考如,FI专利号862459)。首要的是,有机载体包含或天然形式或改性形式的不同聚合物,值得注意的是,这样的载体可以是不同的聚烯烃(由乙烯、丙烯和其它烯烃形成的聚合物),以及芳族烯烃化合物的不同聚合物(PS,ABS等)。

    如果正在聚合的烯烃单体与正在形成的聚合物分子成键时呈现各种立体构型,聚合物的形成通常需要一种特殊的能与主催化剂络合的控制化合物,这样,正在进入聚合物链中的新的单体原则上只能接纳某一特定位置。根据与主催化剂的成键方式,这样的化合物称为电子供体,或简称供体。这种供体除了具有上述的立体择型性能外也具有其它的特性;例如,该供体可以通过提高单体与聚合物分子的成键速率来提高催化剂活性,在主催化剂的制备中,这样一个通过络合结合到其中的供体称为内供体。这些供体包括各种醇、酮、醛、羧酸、羧酸衍生物如酯,酐、卤化物,以及不同的醚、硅烷、硅氧烷等。也可同时使用几种供体。已发现一些这方面较优的化合物,如芳香羧酸和脂族醇的单酯和双酯,它们与供体化合物同时使用有利于交换酯化(参考FI专利号906,282)。

    进入聚合反应器的控制立体择型的化合物只有与助催化剂结合才称为外供体,这些供体通常为那些与用作内供体相同的化合物,尽管在许多情况下在单一聚合反应中外供体最好不应是与内供体相同的化合物,这是因为特别地如果不同供体的结合能增大它们的性能效果而且它们具有协同效应,不同化合物的不同性质能够得以利用。因此,找出适宜的最佳的协同效应是各种供体选择中的首要任务。优选的外供体如各种硅烷和醚的化合物。特别是烷氧基硅烷(参考如EP专利号231,878和EP专利号261,961)和各种线形及环状醚,如三甲基甲氧基醚、二甲氧基丙烷(参考EP专利号449,302)和按树脑(参考FI专利号932,580)。而且,含氮的杂环化合物如四甲基哌啶(参考JP专利号63,105,007)也可使用。

    在聚合过程中,结合成聚合物分子的单体数从几个到几百万个不等。通常,商品级的固状聚烯烃分子量在10,000-1,000,000g/mol之间。如果聚合度较低,产品为软的塑性蜡状或浆糊状增塑溶胶,甚至是一种有特殊用途的粘性液体。聚合度超过一百万是难以达到的,而且这样的聚合物通常在大部分应用中过硬,或者难以加工。因此,控制聚合物的分子量是很重要的,这可以通过所谓的链长控制剂来实现。通常,加到聚合反应中的链长控制剂是氢,它的作用是不往分子中引入任何非理想基团。如果添加氢能够控制所生产的聚合物的分子量,该聚合催化剂则为氢敏性的。不同的催化剂体系有不同的氢敏度,依此,对于具有相同熔体流率的聚合物可要求不同量的氢。另一方面,添加氢能提高催化剂的聚合活性。

    聚合可在气相中进行,其中,气相单体或惰性气体或它们的混合物进料到反应器以使进入的气体使得正在生长的聚合物保持颗粒的形态,而在颗粒上发生聚合物分子的增长。反应温度很高,使得常态下的液态单体变成了蒸汽。在连续聚合过程中,聚合物颗粒连续地从反应器中移走,单体或单体混合物进料也是连续的。或者,反应产物的移走及前体的进料也可以是间歇式的。优选保持为流化状态的聚合物颗粒层可由机械搅拌的方法进行搅拌。可以采用许多不同的搅拌方法和搅拌体系。气相反应通常在环流式流化床反应器中进行,在该反应器中固体颗粒靠气相进料介质的上升流动形成了维持在流化状态的床层。该流体床也可由大量无机和有机化合物组成的惰性固体形成。

    若想进行液相聚合,则需要一种在聚合温度下为液体的介质,该介质可包括一种单独的聚合物或大量聚合物(通常指本体聚合),或含有能够溶解单体或/和聚合物或使其成为浆液的单独溶剂或稀释剂。这样的成浆可形成悬浮液或浆液态,聚合过程依此分别命名。这里,介质可以是烃溶剂,特别包括烷烃和环烷烃,如常被采用的丙烷、丁烷、异丁烷、戊烷、己烷,庚烷、环己烷等。机械搅拌有利于浆液的形成和稳定,同时,通常必须添加称之为悬浮物的悬浮剂和胶体稳定剂。聚合反应器可以是惯用的具有各种附加设备的混合釜反应器,或者是线圈状或环形管式反应器,在该反应器中聚合物浆液通过各种进料、终产物的移走和搅拌装置得以循环。当聚合在介质中进行以生产具有高MFR的聚合物时,氢敏性低的催化剂体系可能在需要加入的氢量上存在问题,因为氧溶解于介质时有某一最大浓度。

    用高产率的由含有钛化合物的主催化剂和有机铝助催化剂组成的齐格勒-纳塔催化剂体系所生产的聚烯烃的分子量分布(MWD)通常是相对较窄的。用上述催化剂体系通过连续聚合反应器生产的聚丙烯的多分散性(Mw/Mn)通常为4-5。当MWD扩大,如多分散性增大到6-8时,聚丙烯的硬度增加。然而,与此同时冲击强度通常降低。除了对机械性能的影响外,MWD的宽度也影响聚合物的可加工性。当硬度的提高与采用挤压技术的制造加工过程中所得到较好的加工性二者结合时,可生产出具有高市场产出且至少相似硬度的产品。

    MWD的宽度最经常是通过凝胶渗透色谱(GPC)来测定,可得到多分散性(Mw/Mn)。另一较常用的方法基于MWD对流变特性的影响。测量熔融聚合物样品的剪切稀化或弹性,如剪切稀化指数(SHI1)或弹性指数,可知MWD的宽度。宽的MWD通常使聚合物熔体的弹性和剪切稀化均增大。

    加大连续聚合反应器中聚烯烃的MWD宽度的最常用的工业方法是用两个串联的反应器生产聚合物,每个反应器产生的聚合物应有明显不同的分子量。然而,用两个串联的反应器来加宽MWD并不总是行之有效的,根据专利申请EP452916A1(Idemitsu Pertochemicale KK),可通过使用一种特殊类型的烷氧基硅烷作为外供体来加宽聚丙烯的MWD。在Mitsui石油公司的专利申请EP385765 A2中通过使用以1∶1的两种烷氧基硅烷混合物作为外供体的催化剂体系来加宽聚丙烯的MWD。

    现在意外地发现,当用由含钛的化合物的主催化剂和有机铝助催化剂组成的齐格勒-纳塔催化剂体系进行烯烃聚合时,除单体、主催化剂和助催化剂之外,用一种可提高所得到的聚合产物的立体择型性的化合物可补充该聚合反应。该化合物含有两个醚基且为缩醛衍生物,该化合物可表示为如下的式(III)。

    这里,R为低级烷基,R1和R2是相同的或不同的烃基或一起形成环的基团,R3为氢或烃基。

    除了作为立体择型控制剂外,上述化合物使得聚合反应极具氢敏性,即生产的聚合物的分子量可通过调整加到反应中的氢量以优于现有技术的方式来控制,并且上述化合物特别使得生产高熔体流率MFR的低分子量聚合物成为可能。表1列出了本发明的外供体和现有技术中用作外供体的参考化合物的化学名称、缩写、化学组成和分子结构。

    也发现,当用高产率的齐格勒-纳塔催化剂体系和至少一种式III的缩醛衍生物与至少一种氢敏性较弱的外供体的混合物(外供体)进行烯烃聚合时,较单独使用各供体成分时,能得到较宽的MWD。比在齐格勒-纳塔催化剂中用作外供体的缩醛衍生物氢敏性弱的化合物例如是许多烷氧基硅烷化合物,特别是对称的二甲氧基硅烷,如二环戊基二甲氧基硅烷、二环己基二甲氧基硅烷、二异丙基二甲氧基硅烷、二异丁基二甲氧基硅烷、二特丁基二甲氧基硅烷或二苯基二甲氧基硅烷可被采用。二环戊基二甲氧基硅烷被认为是所有对称的二甲氧基硅烷中具有代表性的例子,因为在聚合中有相似性能的硅烷化合物特点是具有两个甲氧基和两个相似的环状或支链状的脂族烃基或两个芳族烃基与硅原子相连。

    缩醛化合物与弱氢敏性的供体化合物的摩尔比没有限定。然而,意外发现把少量例如二环戊基二甲氧基硅烷添加到用作外供体的缩醛衍生物中可得到较宽的MWD。这意味着,缩醛衍生物在供体混合物中可占有主要的量(80-98mol%),但观察到了对MWD有很大影响。

    往用作外供体的缩醛衍生物中添加对称的二甲氧基硅烷也是一个进一步提高用齐格勒-纳塔催化剂体系生产的聚丙烯的全同规整度的有效方法。全同规整度的提高与得到的较宽MWD的结合对聚丙烯材料的硬度特别有利。

    在本发明中,烯烃指至少含有一个碳碳双键的烃。这样的化合物特别包含各种链烯,如线性单烯烃,包括乙烯、丙烯、丁烯、戊烯等。这些烯烃也可以是具有烃基支链的化合物,其中一个简单的例子是4-甲基-1-戊烯。

    烯烃聚合时,上述的一种或许多种化合物可在反应中采用。这里,特别重要的化合物是丙烯的均聚物和共聚物。

    几乎所有不对称的不饱和烃(通常的单烯烃中只有乙烯是对称的)可形成立体异构的聚合物分子。对于单烯烃,立体择型性由聚合物的立构规整度决定,因此,如果加到正在增长的聚合链上的后续单元总是呈现在相对于双键相似的位置上,则形成全同立构聚合物,如果后续单元总是呈现在与前面的单元相反的位置上,则形成间同聚合物,如果后续单元呈现在随意的位置,则形成无规聚合物。它们当中任何形式的聚合物在特定的应用中都可以得以最佳使用,因为聚合物性质也可由其规整度的类型控制。对于普通应用,全同形式是最理想的。其结晶度最高,也有高的机械强度,而且也最耐久且没有粘性。当聚丙烯的结晶度需降低时,丙烯可与乙烯共聚,这样的共聚物适用于要求透明度、高抗冲击性或好的密封性能的应用中。

    均聚物和共聚物出于不同的应用目的可在膜、片材、管子和各种注塑制品方面发现用途,特别是汽车工业和民用消费。

    表1.  外供体化合物

    实施例

    为了举例说明本发明的用途,用三种不同的主催化剂组成对丙烯和乙烯进行均聚和共聚实验。

    主催化剂A按FIPat.No.862,459制备如下:在惰性条件下,90kg喷淋结晶的MgCl2·3EtOH载体与300l沸点为110℃的烃混合。得到的浆液冷却到-15℃。加入600l冷却的TiCl4,温度缓慢升至20℃。加入21.8kg邻苯二甲酸二辛酯(DOP)作为内供体。温度升至130℃,半小时后液相经过滤移走。然后,加入600l TiCl4。该混合物在120℃下保持1小时,之后用热烃对主催化剂洗涤三次。主催化剂在70℃下用氮气流干燥。得到的催化剂组成经分析为:Ti 2.5wt%,Mg 13.8wt%,DOP 0.02wt%,邻苯二甲酸二乙酯(DEP)7.9wt%和氯48wt%。

    主催化剂B基本上按照FI专利公开70,028或86,472来制备。催化剂载体为MgCl2,内供体为邻苯二甲酸二烷酯,过渡金属化合物为TiCl4。

    主催化剂C按主催化剂A来制备,不同的是加入供体的量减少以及第一活化期温度在125℃下保持60分钟。得到的催化剂组成经分析为:Ti 2.6wt%,Mg 15.9wt%,DOP 0.3wt%,DEP 5.2wt%和氯54wt%。

    分别用主催化剂A、B、C在本体条件下对丙烯进行均聚,如下:

    经小心清洗的51钢制反应釜经抽真空后加热到80℃,再冷却到30℃,用氮气和丙烯吹洗。大约20mg主催化剂(精确数字看表2)和助催化剂(三乙基铝,TEA)反应,得到Al/Ti摩尔比为500,用表2中给出的外供体,又得到Al/D摩尔比,在表2中示出。外供体为根据本发明的缩醛化合物或缩醛化合物与二环戊基二甲氧基硅烷(DCPDMS)的混合物,而对比的外供体为环己基甲基二甲氧基硅烷(CHMMS),或单独的DCPDMS或者,2,4-二甲基-3,3-二甲氧基戊烷(DID12)。助催化剂与供体的混合物用戊烷稀释到30ml。将15ml这种溶液加到反应器。将主催化剂连同剩余的溶液加到反应器中。然后,如果在表3中没有其它说明,将71mmol和1400g丙烷加到反应器。聚合反应在70℃下进行1小时。

    得到的聚合物的全同规整度由戊烷萃取来测定,熔体流率MFR,也称为熔体流动指数,通过按ASTM D1238规定的标准方法测定熔体流率来确定。

    聚合实验结果在表2和表3中给出。采用不同的H2浓度来研究氢敏度。表中的结果可解释如下:实施例11表明很低的全同规整度造成相当高的熔体流率,而当全同规整度大于95%时,影响熔体流率的最重要因素是分子量。对比实施例11进一步表明,酮的缩醛衍生物即缩酮在给定的聚合条件下比相应的醛衍生物作为供体坏得多。该实施例也表明,氢敏性越高即由某一主催化剂组分得到的聚合物的分子量越低,熔体流率越高。这可通过把实施例3,5和7与对比实施例12,13和14进行对比看出。

    表3示出了缩醛与较低氢敏性的对称二甲氧基硅烷的供体混合物的聚合结果。实施例15到18表明缩醛中加入硅烷化合物比单独的缩醛得到较宽的分子量分布和较高的全同规整度。

    表2聚合实验结果  1  A  FPADM  A  20.6  10  31.7  89.7  16.1  2  A  SKD2  19.8  10  30.7  92.7  12.3  3  A  SKD2  22.8  5  23.4  95.2  10.8  4  A  EBD2  19.9  10  36.7  94.1  13.4  5  A  EBD2  22.6  5  26.7  96.2  12.6  6  A  EKD5  20.9  10  34.5  93.7  17.5  7  A  EKD5  22.2  5  34.5  95.5  15.0  8  A  TMHD2  19.1  10  24.8  <85  31  9  A  MVD2  21.9  10  27.8  87.6  22.5  10  A  IVD3  21.3  10  19.9  88.3  11.5对比实施例  11  A  DID12  21.8  10  21.9  73.3  25.7  12  A  CHMMS  22.1  20  32.5  98.5  3.8  13  B  CHMMS  21.0  20  31.1  97.2  6.6  14  C  CHMMS  23.4  20  24.0  95.8  5.8

    表3.  用两种供体时的聚合实验结果实施例号 主催 化剂  外供体 供体比* 主催化剂加 入量(mg)  铝/供体  (mol/mol)  氢气 加入量 (mmol)  活性(kg PP/g kat.)FTIR**isot.ind(%) MFR (g/10 min.) Mw/Mn  SHI1***    15  A  EKD5+  DCPDMS  95/5  22.0  5  220 22.5  96.1  16.9 7.1  14    16  A  EKD5+  DCPDMS  85/15  21.2  5  220  24  98.2  10.1  nd  17                                                                对比实施例    17  A  EKD5  20.5  5  110  33.9  90.5  20 4.4  8.1    18  A  DCPDMS  20.8  5  110  22.9  99.1  2.7 6  15*    EKD5/DCPDMS摩尔比**   用FTIR确定全同规整度***  SHI1=剪切变稀指数,η0η*(50000Pa)

    用一2l反应釜在气相中进行丙烯和乙烯的共聚,共聚之前,反应釜加热到90℃,再进行抽真空和用氮气吹洗。聚合在70℃下进行。往表4给出的主催化剂(30mg)中添加助催化剂(如实施例18和19中的三乙基铝,或实施例21和22中的三异丁基铝),得到Al/Ti摩尔比为200,用表4给出的外供体得到Al/D摩尔比为10。这些组分反应5分钟后,将催化剂浆液加到反应器中。用流量计测定气相丙烯和乙烯单体的进料速率,单体的进料比保持为常数,使得乙烯的摩尔浓度为7.4mol%(实施例19和20),或者,3.8mol%(实施例21和22),而反应压力为7巴。反应要求进行1.5小时。

    表4给出了实验结果,其中按本发明进行实施例20和21,而实施例19和22为对比实施例。得到聚合物中的乙烯含量用FTIR技术测定。

    表4.丙烯和乙烯的共聚实施例号 主催化剂  外供体      活性  [kgPP/g cat.]    MFR[g/10 min]  乙烯含量 [wt-%]    19    B  CHMMS     3.9     11     6.9    20    B  FPADMA     1.7     19     6.1    21    A  FPADMA     3.6     4.4     2.7    22    A  CHMMS     3.3     2.0     2.1

    权利要求书

    1.用于烯烃聚合的催化剂体系,该体系包括基于钛化合物的主催化剂组分,和有机铝助催化剂及一种或几种外电子供体,其特征为所述电子供体为醛的非芳烃缩醛衍生物,其中所述缩醛衍生物为按式(III)表示的化合物。

    其中R为较低级的烷基,R1和R2为相同或不同的非芳香烃基,或者为能够一起形成环的基团,R3为氢或非芳香烃基。

    2.权利要求1的催化剂体系,其特征为R为甲基。

    3.权利要求1或2的催化剂体系,其特征为R1和R2一起形成环己基。

    4.权利要求1或2的催化剂体系,其特征为R1为甲基或乙基,R2为脂族C2-C4烷基。

    5.权利要求1或2的催化剂体系,其特征为R1为氢,R2为多支链烷基。

    6.权利要求1的催化剂体系,其特征为醛衍生物为环己基二甲氧基甲烷、2-乙基-1,1-二甲基丁烷、2-乙基-1,1-二甲氧基己烷、3-甲基-5-二甲基-1,1-二甲氧基己烷、2-甲基-1,1-二甲氧基戊烷或3-甲基-1,1-二甲氧基丁烷。

    7.前述权利要求1-6中任何一项的催化剂体系,其特征为主催化剂组分包括上面附有钛的卤化物或卤氧化物,优选为TiCl4的活性二卤化镁和一种电子供体化合物。

    8.前述权利要求1-7中任何一项的催化剂体系,其特征为有机铝化合物为三烷基铝,优选为三乙基铝或三异丁基铝。

    9.前述权利要求1-8中任何一项的催化剂体系,其特征为其它的电子供体的氢敏性明显比缩醛衍生物低。

    10.前述权利要求1-9中任何一项的催化剂体系,其特征为缩醛衍生物在缩醛衍生物与氢敏性较低的供体的混合物中含量为70-90mol%,优选为85-95mol%。

    11.权利要求10的催化剂体系,其特征为氢敏性较低的供体为烷氧基硅烷,优选为对称的二甲氧基硅烷。

    12.权利要求11的催化剂体系,其特征为氢敏性较低的供体为二环戊基二甲氧基硅烷、二环己基二甲氧基硅烷、二异丁基二甲氧基硅烷、二异丙基二甲基硅烷或二苯基二甲氧基硅烷。

    13.前述权利要求1-12中任何一项的催化剂体系可用于单独的丙烯或至少结合另一种不同的α-烯烃和/或乙烯的聚合。

用于烯烃聚合的立体有择催化剂体系.pdf_第1页
第1页 / 共17页
用于烯烃聚合的立体有择催化剂体系.pdf_第2页
第2页 / 共17页
用于烯烃聚合的立体有择催化剂体系.pdf_第3页
第3页 / 共17页
点击查看更多>>
资源描述

《用于烯烃聚合的立体有择催化剂体系.pdf》由会员分享,可在线阅读,更多相关《用于烯烃聚合的立体有择催化剂体系.pdf(17页珍藏版)》请在专利查询网上搜索。

烯烃或烯烃混合物,特别是丙烯或丙烯与优选乙烯的混合物可用齐格勒-纳塔催化剂体系聚合,该体系除含有基于过渡金属的主催化剂和为有机金属化合物的助催化剂外,还含有一种特别适合于控制生成聚合物的立体择型性的化合物。这样一种称为外供体的化合物也有其它效果。通过使用具有两个醚基的醛的缩醛衍生物,优选自二烷氧基苯基烷烃,如二甲氧基苯基丙烷,可以实现这一目的,所得到的产品具有优良的立体择型性,催化剂体系具有高的氢。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 有机高分子化合物;其制备或化学加工;以其为基料的组合物


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1