形成选择性触点的方法.pdf

上传人:大师****2 文档编号:4336056 上传时间:2018-09-14 格式:PDF 页数:9 大小:338.42KB
返回 下载 相关 举报
摘要
申请专利号:

CN201180019271.6

申请日:

2011.02.21

公开号:

CN102844876A

公开日:

2012.12.26

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):H01L 31/0224申请公布日:20121226|||实质审查的生效IPC(主分类):H01L 31/0224申请日:20110221|||公开

IPC分类号:

H01L31/0224; H01L31/18

主分类号:

H01L31/0224

申请人:

艾思科集团有限公司

发明人:

蒂埃里·埃默罗

地址:

比利时哈瑟尔特

优先权:

2010.02.26 EP 10290100.6

专利代理机构:

北京安信方达知识产权代理有限公司 11262

代理人:

苗源;王漪

PDF下载: PDF下载
内容摘要

本发明针对一种用于为光伏电池形成选择性触点的方法,该方法包括:a.在一个半导体衬底的表面上形成一个掺杂的触点层;b.用激光束对所掺杂的触点层的一个部分进行退火,所述部分具有与一个对应的选择性触点网格的至少一个部分相对应的一个2D图案;其特征在于该激光束是脉冲式的并且是按该2D图案来确定形状的。另外,本发明还针对一种包括由该方法形成的选择性触点的光伏电池。

权利要求书

1.一种用于为光伏电池形成选择性触点的方法,该方法包括:a.在一个半导体衬底的表面上形成一个掺杂的触点层;b.使用一个激光束对所掺杂的触点层的一个部分进行退火,所述部分具有与一个对应的选择性触点网格的至少一个部分相对应的一个2D图案;其特征在于,该激光束是脉冲式的并且是按该2D图案来确定形状的。2.根据权利要求1所述的方法,其中该选择性触点网格包括多个并行的触点,并且其中用每个脉冲对具有一个2D图案的一个部分进行照射,该2D图案对应于该多个并行触点中的至少一个部分。3.根据权利要求1或2所述的方法,其中用每个脉冲对至少1cm2的一个部分进行照射。4.根据权利要求1至3所述的方法,其中该激光退火是以0.1到10J/cm2之间的投射激光束能量密度来进行的。5.根据权利要求1至4所述的方法,其中该脉冲激光束具有的脉冲宽度在100到200纳秒之间。6.根据权利要求1至5所述的方法,其中退火是由一个准分子激光器来进行的。7.根据权利要求1至6所述的方法,包括:在所掺杂的触点层上形成一个抗反射涂层和/或一个钝化电介质,并且在与所掺杂的触点层的部分相对应的抗反射涂层和/或钝化电介质的至少一个部分处进行激光烧蚀。8.根据权利要求1至6所述的方法,包括:在所掺杂的触点层上形成一个抗反射涂层和/或一个钝化电介质,并且穿过该抗反射涂层和/或钝化电介质进行该激光退火。9.根据权利要求8所述的方法,其中与激光退火同时,对与所掺杂的触点层的部分相对应的该抗反射涂层和/或钝化电介质的一个部分进行激光烧蚀。10.根据权利要求1至6所述的方法,其中在该半导体衬底的表面上形成所掺杂的触点层包括:在该半导体衬底上形成一个掺杂的抗反射涂层和/或一个掺杂的钝化电介质,并且对该抗反射涂层和/或所掺杂的钝化电介质进行激光退火。11.根据权利要求10所述的方法,其中与激光退火同时,对与所掺杂的触点层的部分相对应的该抗反射涂层和/或该钝化电介质的一个部分进行激光烧蚀。12.根据以上权利要求中任一项所述的方法,其中所掺杂的触点层是一个发射极层,并且其中该选择性触点层是一个选择性发射极触点。13.一种光伏电池,包括由根据以上权利要求中任一项所述的方法形成的一个选择性触点。

说明书

形成选择性触点的方法

技术领域

本发明涉及一种使用激光退火为光伏电池形成选择性触点的方法。

另外,本发明还涉及一种包括根据该方法形成的选择性触点的光伏电
池。

发明背景

在常规的光伏电池制造过程中,发射极触点的形成包含三个主要步
骤,即发射极层的形成,该发射极层是掺杂度较高的层并且位于体硅衬底
的前方,该体硅衬底的掺杂物类型与该体硅衬底的掺杂物类型不同;在发
射极层上形成抗反射涂层(ARC);以及校准金属化。

如本领域的普通技术人员所知,寻求更高电池性能的光伏电池制造商
发明了所谓的选择性发射极技术。选择性发射极触点包含一种给定类型的
发射极层,该发射极层在特定位置显示出不同的掺杂水平以及结深度。在
此类发射极触点中,只有重掺杂位置会被金属覆盖,并且实现了对外部电
路进行光生电荷提取所必需的触点。其结果是,与常规的具有完全覆盖光
伏电池前侧的高掺杂度发射极层的发射极触点相比,光伏电池的效率提高
了0.5%到1%。

一种常见的使发射极层在特定位置显示不同的掺杂水平和结深度的
技术是激光退火,因为此技术在常规的加热过程中在保持很低的总体热预
算的同时可进行很快并且区域性强的热处理,该热处理可以使在加热部分
的结深度可控,因而具有重要的优势。因此具体地,激光退火能够很好地
被适配为在100微米或甚至更小的范围内处理很细的太阳能电池。

比如,WO 2009/128679中描述了一种选择性发射极层的激光退火,其
中多个准分子激光束穿过包括多个小孔的一个掩模,然后多组激光束同时
通过这些小孔照射该发射极层与多个指状电极对应的多个部分,并且其中
激光束在这些指状电极的延伸方向上移动。

明显地,以上技术的第一个缺点是以下事实:多个激光束需要同时照
射该发射极层与这些指状电极对应的多个部分,而技术复杂并且不是成本
有效的。

第二个缺点是,此类系统的吞吐量很低,因为激光束持续不断地沿着
这些指状电极的全延伸方向进行扫描。

第三个缺点是,就有待照射的发射极层的部分的形状和大小而言,灵
活性有限。由于常规的激光束的直径较小或者与常规的指状电极列的宽度
具有相同的阶数,所以在不(i)增加穿过掩模小孔的一组激光束的激光束
的数量,这将增加复杂性和激光学系统成本,或不(ii)沿着指状电极的
延伸方向多次重复退火过程,这将导致重叠效应、更低的吞吐量和更高的
光伏制造成本的情况下,宽度不能明显地增加。

考虑到上述缺点,很明显地需要一种能够克服这些缺点的方法。

因此,作为本发明的第一个目的,提供了一种形成选择性触点的方法,
该方法不需要多个激光束同时照射掺杂的触点层的多个部分并且该方法
会降低复杂性和激光设备成本。

作为本发明的第二个目的,提供了一种形成选择性触点的方法,与常
规的方法相比,该方法可以提供吞吐量并且降低光伏电池制造成本。

作为本发明的第三个目的,提供了一种形成选择性触点的方法,该方
法会降低或者甚至使重叠效应最小化。

作为本发明的第四个目的,提供了一种形成选择性触点的方法,该方
法可以对整个触点区域中的结深度有一个更好的区域控制范围,这会提高
光伏电池效率。

作为本发明的第五个目的,提供了一种形成选择性触点的方法,其中
与常规方法相比,退火的掺杂的触点层会显示更少的瑕疵,这也提高了光
伏电池效率。

进一步地,本发明的一个目的是提供一种形成选择性触点的方法,其
中与常规方法相比,总处理步骤数量减少。

作为附加目的,本发明提供了一种制造成本降低并且效率更高的光伏
电池。

本发明通过使用脉冲激光束对触点层的一个部分退火实现了上述目
的,该部分按照与对应的选择性触点网格的至少一个部分相对应的一个2D
图案确定形状。

发明概述

本发明针对一种为光伏电池形成选择性触点的方法,该方法包括:

a.在一个半导体衬底的表面上形成一个掺杂的触点层;

b.使用一个激光束为该掺杂的触点层的一个部分退火,该部分具有与
一个对应的选择性触点网格的至少一个部分相对应的一个2D图案;

其特征在于该激光束是脉冲式的并且是按该2D图案确定形状的。

另外,本发明还针对一种包括根据该方法形成的选择性触点的光伏电
池。

发明详述

根据本发明的第一实施方案,提供了一种为光伏电池形成选择性触点
的方法,该方法包括:

a.在一个半导体衬底的表面上形成一个掺杂的触点层;

b.使用一个激光束为该掺杂的触点层的一个部分退火,该部分具有与
一个对应的选择性触点网格的至少一个部分相对应的一个2D图案;

其特征在于该激光束是脉冲式的并且是按该2D图案确定形状的。

通过使用脉冲式并且根据该2D图案确定形状的激光束,其中该2D图
案与对应的选择性触点网格的至少一个部分相对应,不再需要使用多个激
光束来实现同时照射掺杂的触点层的多个部分。明显地,这会降低复杂性
和激光设备成本。

本发明的另外一个优点是,由于该掺杂的触点层的一个显著部分可以
用一个脉冲退火,所以与常规方法相比,吞吐量可以增加到工业生产水平,
并且因此光伏电池制造成本可以降低。

进一步地,通过以下两个事实的组合:该掺杂的触点层的一个显著部
分可以用一个脉冲退火和该2D图案在形状上不受约束,可以降低重叠效
应或甚至被最小化。

在本发明的背景下,掺杂的触点层被理解成任何种类的掺杂层,位于
光伏电池大块衬底的前方或背侧,其掺杂物类型与该大块衬底(例如,如
发射极触点)的掺杂物类型不同,或者其掺杂物浓度远高于该大块衬底(例
如,如背表面场(BSF))的掺杂物浓度。在这两种情况中,掺杂的触点层
(或行为像)与该大块衬底形成一个结,并且在该大块衬底和接触电极之
间充当导电层。

在本发明的背景下,选择性触点可以被理解成光伏应用中任何种类的
触点,其掺杂的触点层根据2D图案在特定位置处表现出不同的掺杂水平
和结深度,比如前触点电池的选择性发射极触点、钝化发射极背面点接触
太阳电池(PERL)的背表面场、背触点电池(RCC)、后触点电池(BCC)、
交指式背触点电池(IBC)或钝化发射极背触点电池(PERC)的选择性发
射极触点。

2-D图案可以具有与任何类型的光伏电池中的对应的选择性触点网格
的至少一个部分布局相对应的任何形状,从而使得在退火后,掺杂的触点
层在特定位置表现出不同的掺杂水平和结深度。

具体地,该2-D图案可以包括多个并行触点,如选择性发射极触点网
格的指状电极。

在根据本发明的进一步实施方案中,提供了一种方法,其中选择性触
点网格可以包括多个并行触点,并且其中可以用每个脉冲对一个具有2D
图案的部分进行照射,该2D图案对应该多个并行触点的至少一个部分。

根据2D图案确定激光束的形状可以通过任何波束成形系统来实现,
例如像具有与该2D图案相对应的孔径的掩模。此类掩模可以是在其中制
造孔径的固体板。实质上,此孔径是激光束穿过的一个小孔或是缝隙,并
且该孔径可以限定光束光点的形状和/或大小。

可替代地,波束成形系统可以包括反射镜或透镜组件,该组件包括一
个具有由较低透射率区域围绕的对应该2D图案的更高透射率的区域的部
分传输涂层。

在另一个实施方案中,如US2009231718中所公开的,波束成形系统
可以包括一个光学系统,该光学系统被配置用来在单一激光脉冲中对单个
狭长区域进行退火,由此对对应的包括多个狭长触点的选择性触点网格的
至少一个部分退火。

可替代地,波束成形系统可以包括一个衍射光学元件,该衍射光学元
件用来在多个并行列中使波束成形,由此在单一激光脉冲中对对应的包括
多个并行触点的选择性触点网格至少一个部分退火。

激光器可以是其波长、能量和脉冲宽度被适配为该处理的任意激光
器,比如固态激光器、或准分子激光器。优选地,激光器可以是准分子层,
更优选地是氯化氙准分子激光器。

由于在那些波长下硅的高能量吸收率,激光的波长的范围可以在190
nm到600nm,190nm到550nm,190nm到480nm之间,并且优选的是
308nm。

激光的能量可以在1焦耳到25焦耳之间。为了实现这些能量,激光
器的放电体积被优化到通常10cm(电极之间的间距)x7到10cm(放电
宽度)x100到200cm(放电长度)。

在本发明一个实施方案中,激光器可以被适配为产生一个能量密度在
0.1到10J/cm2之间,优选为1到10J/cm2之间的投射激光束。

在一个优选实施方案中,激光器可以是准分子激光器,其被适配为产
生大于60cm2、80cm2,优选100cm2的大面积输出波束,并且具有通常
至少为1cm2、至少为5cm2、和高达10cm2的一个投射光束光点,该投
射光束光点的能量密度在0.1和10J/cm2之间。

根据本发明的一个具体实施方案,可以用每个脉冲照射一个至少1cm
2、至少5cm2、至少8cm2、或至少10cm2的部分,这使得本发明适用于
光伏电池的高吞吐量工业生产。

脉冲宽度与快速加热以减少掺杂物扩散和相对缓慢的冷却速度以减
少瑕疵形成之间的最佳效果相对应,并且其范围可以在100ns到1000ns
之间,或者在100ns和300ns之间,或优选地,在100和200纳秒之间。

使用这类长脉冲,在激活材料足够深处的掺杂元素时,掺杂的触点层
的烧蚀可以被最小化。长脉冲宽度也能在整个触点区域内提供一个更好的
触点结深度控制范围。此外,长脉冲在退火材料中产生比短脉冲更少的瑕
疵和更少的在短脉冲中出现的液滴或材料损耗。

在本发明的一个优选实施方案中,激光可以具有308nm的波长,100
和200纳秒之间的脉冲宽度和0.5和10J/cm2之间的能量密度。

半导体衬底表面可以是任何适用于光伏应用的材料,比如,但不限于
硅晶体、无掺杂硅或掺杂硅、多晶硅、注入硅、碳化硅、非晶硅、硅锗,
III-V复合半导体比如砷化镓、镓铝砷、氮化镓,II-VII复合半导体如碲化
镉、铜铟联硒化合物(CuInSe2)或铜铟镓硒(Cu(In,Ga)Se2)及类似物、
多结半导体堆栈、及类似物。

根据本发明的一个实施方案中,一种形成选择性触点的方法可以被提
供为进一步包括在掺杂的触点层上形成一个抗反射涂层和/或一个钝化电
介质,并且穿过该抗反射涂层和/或钝化电介质对该掺杂的触点层退火。

此抗反射涂层或钝化电介质可以是任何在光伏电池生产中的抗反射
材料或钝化电介质,例如像氮化硅和/或二氧化硅和/或两者的组合。

根据本发明,可以提供一种形成选择性触点的方法,其中该抗反射涂
层和/或钝化电介质的与该掺杂的触点层的部分相对应的至少一个部分可
以被烧蚀。在形成金属接触电极前,通过从与对应的选择性触点网格相对
应的至少一个部分烧蚀抗反射涂层和/或钝化电介质,烧蚀层下的掺杂的触
点层和随后沉积的金属电极之间的触点电阻减小,这提高了电池效率。

进一步地,接触电极可以被做得更细,因为它们至少是部分地嵌入在
抗反射涂层和/或钝化电介质中的。此外,由于抗反射涂层和/或钝化电介
质能够以宽度很小的列的形式被激光烧蚀,这些列可以充当用于自校准金
属电镀的图案,接触电极可以具有减小的宽度。更细的和/或宽度更小的接
触电极使得掩模损耗更小并且短路电流密度(Jsc)更高。

另外,由于触点形成可以在更低的温度和无触点的条件下立刻完成,
即,自校准金属电镀,从而减小晶片厚度的趋势来看,晶片破损的风险降
低。

在根据本发明的一个优选方法中,抗反射涂层和/或钝化电介质的一个
部分至少对应掺杂的触点层中可以被激光同时退火和烧蚀的部分。通过同
时对掺杂的触点层进行退火和对抗反射涂层和/或钝化电介质进行烧蚀,与
常规的方法相比,总处理步骤减少。

如本领域的普通技术人员所知,常规地,掺杂的触点层是由高温磷或
硼扩散或在高温熔炉退火后的其他掺杂处理步骤形成的,以获得高掺杂度
的触点层。然而,根据本发明,由于随后的选择性激光退火,只需要微掺
杂的触点层。因此,可以通过对大块半导体衬底的前或后表面进行掺杂处
理步骤来形成掺杂的触点层,例如像离子注入、等离子体掺杂、由磷前体
低温扩散获得的磷硅酸玻璃(PSG)形成、由硼前体的低温扩散获得的硼
硅酸玻璃(BSG)形成、掺杂的旋压玻璃形成和掺杂的介电沉积。

可替代地,根据本发明的另一个实施方案提供了一种形成选择性触点
的方法,其中在该半导体衬底的表面形成掺杂的触点层可以包括在半导体
衬底上形成一个掺杂的抗反射涂层和/或掺杂的钝化电介质以及对该抗反
射涂层和/或掺杂的钝化电介质进行激光退火。优选地,与掺杂的触点层的
所述部分对应的抗反射涂层和/或钝化电介质的一个部分可以被激光烧蚀,
与激光退火同时进行。

在后一种情形中,选择性掺杂的触点层通过对抗反射涂层和/或钝化电
介质同时进行退火和烧蚀而形成,不需要诸如像分别形成掺杂的触点层。
这明显地降低了形成选择性触点的总处理步骤的数量,甚至在与常规的方
法进行更多的比较时。

根据本发明的一种方法可以进一步地包括在XYZ方向将有待照射的
部分与投射激光束对准。

根据本发明的一种方法可以进一步包括通过物镜对有待照射的区域
上的2D图案的图像进行聚焦。

根据本发明的一种方法可以进一步包括对2D图案的图像大小和有待
照射的部分的大小进行匹配。这可以通过可变图像放大系统来获得。

进一步的调整可以通过使用照相机将半导体材料层上的光束光点形
象化、测量其大小并调整放大倍数来进行。

本发明的一种方法还可以包括图案识别。这可以通过图案识别系统实
现,该图案识别系统包括一个照相机,该照相机机械地链接到固定半导体
材料的一个平台并且位于材料层表面的上方。在一个具体的实施方案中,
照相机产生的图像可以被处理以定位多个(通常为3)在半导体材料上的
已被蚀刻或激光烧蚀的对准标记。对准标记提供了在激光设备的协调系统
中对半导体材料的精确定位。

另外,本发明提供了一种包括通过根据上述权利要求中任一项所述的
方法形成的选择性触点的光伏电池。此光伏电池可以是比如标准单晶体和
多晶体太阳能电池、N型和P型太阳能电池、在不同类型的衬底上形成的
外延硅太阳能电池、异质结构太阳能电池、钝化发射极背面点接触太阳电
池(PERL)、钝化发射极背接触电池(PERC)、后触点或背触点太阳电池
(RCC,BCC)和交指式背触电池(IBC)。

实例1

常规的发射极触点形成过程:

1)对体硅进行POCl3高温熔炉扩散以形成重掺杂n型发射极层

2)磷硅酸玻璃蚀刻

3)SiNx电弧/钝化层沉积

4)通过丝网印刷校准前侧金属化

现有技术中选择性发射极形成过程如示例WO 2009/128679所描述:

1)对体硅进行POCl3低温熔炉扩散以形成轻掺杂n型发射极层

2)对发射极层进行选择性激光退火

3)磷硅酸玻璃蚀刻

4)SiNx电弧/钝化层沉积

5)通过丝网印刷校准前侧金属化

根据本发明形成选择性发射极的过程:

1)对体硅进行POCl3低温熔炉扩散以形成轻掺杂n型发射极层

2)使用根据选择性发射极触点网格中的2D图案确定形状的脉冲激光
束进行选择性激光退火;

3)磷硅酸玻璃蚀刻

4)SiNx电弧/钝化层沉积

5)通过丝网印刷校准前侧金属化

根据本发明形成选择性发射极的过程的替代方案:

1)对体硅进行POCl3低温熔炉扩散以形成轻掺杂n型发射极层

2)使用根据选择性发射极触点网格中的2D图案确定形状的脉冲激光
束进行选择性激光退火;

3)磷硅酸玻璃蚀刻

4)SiNx电弧/钝化层沉积

5)使用根据选择性发射极触点网格中的2D图案确定形状的脉冲激光
束进行激光烧蚀;

6)通过自校准金属电镀对前侧金属化

根据本发明形成选择性发射极的过程的另一个替代方案:

1)对体硅进行POCl3低温熔炉扩散以形成轻掺杂n型发射极层

2)磷硅酸玻璃蚀刻

3)SiNx电弧/钝化层沉积

4)使用根据选择性发射极触点网格中的2D图案确定形状的脉冲激光
束进行选择性激光退火和激光烧蚀;

5)通过自校准金属电镀对前侧金属化

根据本发明形成选择性发射极的过程的另一个替代方案:

1)掺杂的SiNx电弧/钝化层沉积

2)使用根据选择性发射极触点网格中的2D图案确定形状的脉冲激光
束进行选择性激光退火和激光烧蚀;

3)通过自校准金属电镀对前侧金属化

实例2

下面描述的是常规的交指式背触(IBC)太阳能电池的制造流程,有6
步光刻法和一个最后的熔结和退火步骤(如Elsevier中Tom Markvart和Luis 
Castaner的光伏,基本法则和应用实用手册中所描述):

1)开始氧化寿命长的<100>FZ晶片

2)N+发射极光刻

3)氧化物蚀刻打开N+发射极区

4)磷预沉积

5)P+发射极光刻

6)氧化物蚀刻打开P+发射极区

7)硼预沉积

8)使背部具有晶片结构(太阳能电池前侧)

9)生长细的氧化物或电介质

10)触点光刻

11)氧化物或电介质蚀刻打开触点区域

12)1级金属化

13)金属1光刻

14)金属1蚀刻

15)沉淀金属间电介质

16)通过光刻

17)金属间电介质蚀刻

18)2级金属化

19)金属2光刻

20)金属2蚀刻

21)抗反射涂层沉积

22)熔结和退火

23)切粒和测试

在根据本发明的交指式背触(IBC)太阳能电池制作流程中,根据2D
图案确定形状的脉冲激光束进行的选择性激光退火可以被用于形成N+发
射极区或P+发射极区二者之一或形成二者,而不使用光刻法。

形成选择性触点的方法.pdf_第1页
第1页 / 共9页
形成选择性触点的方法.pdf_第2页
第2页 / 共9页
形成选择性触点的方法.pdf_第3页
第3页 / 共9页
点击查看更多>>
资源描述

《形成选择性触点的方法.pdf》由会员分享,可在线阅读,更多相关《形成选择性触点的方法.pdf(9页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102844876 A (43)申请公布日 2012.12.26 C N 1 0 2 8 4 4 8 7 6 A *CN102844876A* (21)申请号 201180019271.6 (22)申请日 2011.02.21 10290100.6 2010.02.26 EP H01L 31/0224(2006.01) H01L 31/18(2006.01) (71)申请人艾思科集团有限公司 地址比利时哈瑟尔特 (72)发明人蒂埃里埃默罗 (74)专利代理机构北京安信方达知识产权代理 有限公司 11262 代理人苗源 王漪 (54) 发明名称 形成选择性触点的方法 (。

2、57) 摘要 本发明针对一种用于为光伏电池形成选择性 触点的方法,该方法包括:a.在一个半导体衬底 的表面上形成一个掺杂的触点层;b.用激光束对 所掺杂的触点层的一个部分进行退火,所述部分 具有与一个对应的选择性触点网格的至少一个部 分相对应的一个2D图案;其特征在于该激光束是 脉冲式的并且是按该2D图案来确定形状的。另 外,本发明还针对一种包括由该方法形成的选择 性触点的光伏电池。 (30)优先权数据 (85)PCT申请进入国家阶段日 2012.10.16 (86)PCT申请的申请数据 PCT/EP2011/052497 2011.02.21 (87)PCT申请的公布数据 WO2011/10。

3、4197 EN 2011.09.01 (51)Int.Cl. 权利要求书1页 说明书7页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 1 页 说明书 7 页 1/1页 2 1.一种用于为光伏电池形成选择性触点的方法,该方法包括: a.在一个半导体衬底的表面上形成一个掺杂的触点层; b.使用一个激光束对所掺杂的触点层的一个部分进行退火,所述部分具有与一个对应 的选择性触点网格的至少一个部分相对应的一个2D图案; 其特征在于,该激光束是脉冲式的并且是按该2D图案来确定形状的。 2.根据权利要求1所述的方法,其中该选择性触点网格包括多个并行的触点,并且其 中用每个脉冲对具。

4、有一个2D图案的一个部分进行照射,该2D图案对应于该多个并行触点 中的至少一个部分。 3.根据权利要求1或2所述的方法,其中用每个脉冲对至少1cm 2 的一个部分进行照射。 4.根据权利要求1至3所述的方法,其中该激光退火是以0.1到10J/cm2之间的投射 激光束能量密度来进行的。 5.根据权利要求1至4所述的方法,其中该脉冲激光束具有的脉冲宽度在100到200 纳秒之间。 6.根据权利要求1至5所述的方法,其中退火是由一个准分子激光器来进行的。 7.根据权利要求1至6所述的方法,包括:在所掺杂的触点层上形成一个抗反射涂层 和/或一个钝化电介质,并且在与所掺杂的触点层的部分相对应的抗反射涂层。

5、和/或钝化 电介质的至少一个部分处进行激光烧蚀。 8.根据权利要求1至6所述的方法,包括:在所掺杂的触点层上形成一个抗反射涂层 和/或一个钝化电介质,并且穿过该抗反射涂层和/或钝化电介质进行该激光退火。 9.根据权利要求8所述的方法,其中与激光退火同时,对与所掺杂的触点层的部分相 对应的该抗反射涂层和/或钝化电介质的一个部分进行激光烧蚀。 10.根据权利要求1至6所述的方法,其中在该半导体衬底的表面上形成所掺杂的触点 层包括:在该半导体衬底上形成一个掺杂的抗反射涂层和/或一个掺杂的钝化电介质,并 且对该抗反射涂层和/或所掺杂的钝化电介质进行激光退火。 11.根据权利要求10所述的方法,其中与激。

6、光退火同时,对与所掺杂的触点层的部分 相对应的该抗反射涂层和/或该钝化电介质的一个部分进行激光烧蚀。 12.根据以上权利要求中任一项所述的方法,其中所掺杂的触点层是一个发射极层,并 且其中该选择性触点层是一个选择性发射极触点。 13.一种光伏电池,包括由根据以上权利要求中任一项所述的方法形成的一个选择性 触点。 权 利 要 求 书CN 102844876 A 1/7页 3 形成选择性触点的方法 技术领域 0001 本发明涉及一种使用激光退火为光伏电池形成选择性触点的方法。 0002 另外,本发明还涉及一种包括根据该方法形成的选择性触点的光伏电池。 0003 发明背景 0004 在常规的光伏电池。

7、制造过程中,发射极触点的形成包含三个主要步骤,即发射极 层的形成,该发射极层是掺杂度较高的层并且位于体硅衬底的前方,该体硅衬底的掺杂物 类型与该体硅衬底的掺杂物类型不同;在发射极层上形成抗反射涂层(ARC);以及校准金属 化。 0005 如本领域的普通技术人员所知,寻求更高电池性能的光伏电池制造商发明了所谓 的选择性发射极技术。选择性发射极触点包含一种给定类型的发射极层,该发射极层在特 定位置显示出不同的掺杂水平以及结深度。在此类发射极触点中,只有重掺杂位置会被金 属覆盖,并且实现了对外部电路进行光生电荷提取所必需的触点。其结果是,与常规的具 有完全覆盖光伏电池前侧的高掺杂度发射极层的发射极触。

8、点相比,光伏电池的效率提高了 0.5%到1%。 0006 一种常见的使发射极层在特定位置显示不同的掺杂水平和结深度的技术是激光 退火,因为此技术在常规的加热过程中在保持很低的总体热预算的同时可进行很快并且区 域性强的热处理,该热处理可以使在加热部分的结深度可控,因而具有重要的优势。因此具 体地,激光退火能够很好地被适配为在100微米或甚至更小的范围内处理很细的太阳能电 池。 0007 比如,WO 2009/128679中描述了一种选择性发射极层的激光退火,其中多个准分 子激光束穿过包括多个小孔的一个掩模,然后多组激光束同时通过这些小孔照射该发射极 层与多个指状电极对应的多个部分,并且其中激光束。

9、在这些指状电极的延伸方向上移动。 0008 明显地,以上技术的第一个缺点是以下事实:多个激光束需要同时照射该发射极 层与这些指状电极对应的多个部分,而技术复杂并且不是成本有效的。 0009 第二个缺点是,此类系统的吞吐量很低,因为激光束持续不断地沿着这些指状电 极的全延伸方向进行扫描。 0010 第三个缺点是,就有待照射的发射极层的部分的形状和大小而言,灵活性有限。由 于常规的激光束的直径较小或者与常规的指状电极列的宽度具有相同的阶数,所以在不 (i)增加穿过掩模小孔的一组激光束的激光束的数量,这将增加复杂性和激光学系统成本, 或不(ii)沿着指状电极的延伸方向多次重复退火过程,这将导致重叠效。

10、应、更低的吞吐量 和更高的光伏制造成本的情况下,宽度不能明显地增加。 0011 考虑到上述缺点,很明显地需要一种能够克服这些缺点的方法。 0012 因此,作为本发明的第一个目的,提供了一种形成选择性触点的方法,该方法不需 要多个激光束同时照射掺杂的触点层的多个部分并且该方法会降低复杂性和激光设备成 本。 0013 作为本发明的第二个目的,提供了一种形成选择性触点的方法,与常规的方法相 说 明 书CN 102844876 A 2/7页 4 比,该方法可以提供吞吐量并且降低光伏电池制造成本。 0014 作为本发明的第三个目的,提供了一种形成选择性触点的方法,该方法会降低或 者甚至使重叠效应最小化。。

11、 0015 作为本发明的第四个目的,提供了一种形成选择性触点的方法,该方法可以对整 个触点区域中的结深度有一个更好的区域控制范围,这会提高光伏电池效率。 0016 作为本发明的第五个目的,提供了一种形成选择性触点的方法,其中与常规方法 相比,退火的掺杂的触点层会显示更少的瑕疵,这也提高了光伏电池效率。 0017 进一步地,本发明的一个目的是提供一种形成选择性触点的方法,其中与常规方 法相比,总处理步骤数量减少。 0018 作为附加目的,本发明提供了一种制造成本降低并且效率更高的光伏电池。 0019 本发明通过使用脉冲激光束对触点层的一个部分退火实现了上述目的,该部分按 照与对应的选择性触点网格。

12、的至少一个部分相对应的一个2D图案确定形状。 0020 发明概述 0021 本发明针对一种为光伏电池形成选择性触点的方法,该方法包括: 0022 a.在一个半导体衬底的表面上形成一个掺杂的触点层; 0023 b.使用一个激光束为该掺杂的触点层的一个部分退火,该部分具有与一个对应的 选择性触点网格的至少一个部分相对应的一个2D图案; 0024 其特征在于该激光束是脉冲式的并且是按该2D图案确定形状的。 0025 另外,本发明还针对一种包括根据该方法形成的选择性触点的光伏电池。 0026 发明详述 0027 根据本发明的第一实施方案,提供了一种为光伏电池形成选择性触点的方法,该 方法包括: 002。

13、8 a.在一个半导体衬底的表面上形成一个掺杂的触点层; 0029 b.使用一个激光束为该掺杂的触点层的一个部分退火,该部分具有与一个对应的 选择性触点网格的至少一个部分相对应的一个2D图案; 0030 其特征在于该激光束是脉冲式的并且是按该2D图案确定形状的。 0031 通过使用脉冲式并且根据该2D图案确定形状的激光束,其中该2D图案与对应的 选择性触点网格的至少一个部分相对应,不再需要使用多个激光束来实现同时照射掺杂的 触点层的多个部分。明显地,这会降低复杂性和激光设备成本。 0032 本发明的另外一个优点是,由于该掺杂的触点层的一个显著部分可以用一个脉冲 退火,所以与常规方法相比,吞吐量可。

14、以增加到工业生产水平,并且因此光伏电池制造成本 可以降低。 0033 进一步地,通过以下两个事实的组合:该掺杂的触点层的一个显著部分可以用一 个脉冲退火和该2D图案在形状上不受约束,可以降低重叠效应或甚至被最小化。 0034 在本发明的背景下,掺杂的触点层被理解成任何种类的掺杂层,位于光伏电池大 块衬底的前方或背侧,其掺杂物类型与该大块衬底(例如,如发射极触点)的掺杂物类型不 同,或者其掺杂物浓度远高于该大块衬底(例如,如背表面场(BSF)的掺杂物浓度。在这两 种情况中,掺杂的触点层(或行为像)与该大块衬底形成一个结,并且在该大块衬底和接触 电极之间充当导电层。 说 明 书CN 1028448。

15、76 A 3/7页 5 0035 在本发明的背景下,选择性触点可以被理解成光伏应用中任何种类的触点,其掺 杂的触点层根据2D图案在特定位置处表现出不同的掺杂水平和结深度,比如前触点电池 的选择性发射极触点、钝化发射极背面点接触太阳电池(PERL)的背表面场、背触点电池 (RCC)、后触点电池(BCC)、交指式背触点电池(IBC)或钝化发射极背触点电池(PERC)的选 择性发射极触点。 0036 2-D图案可以具有与任何类型的光伏电池中的对应的选择性触点网格的至少一个 部分布局相对应的任何形状,从而使得在退火后,掺杂的触点层在特定位置表现出不同的 掺杂水平和结深度。 0037 具体地,该2-D图。

16、案可以包括多个并行触点,如选择性发射极触点网格的指状电 极。 0038 在根据本发明的进一步实施方案中,提供了一种方法,其中选择性触点网格可以 包括多个并行触点,并且其中可以用每个脉冲对一个具有2D图案的部分进行照射,该2D图 案对应该多个并行触点的至少一个部分。 0039 根据2D图案确定激光束的形状可以通过任何波束成形系统来实现,例如像具有 与该2D图案相对应的孔径的掩模。此类掩模可以是在其中制造孔径的固体板。实质上, 此孔径是激光束穿过的一个小孔或是缝隙,并且该孔径可以限定光束光点的形状和/或大 小。 0040 可替代地,波束成形系统可以包括反射镜或透镜组件,该组件包括一个具有由较 低透。

17、射率区域围绕的对应该2D图案的更高透射率的区域的部分传输涂层。 0041 在另一个实施方案中,如US2009231718中所公开的,波束成形系统可以包括一个 光学系统,该光学系统被配置用来在单一激光脉冲中对单个狭长区域进行退火,由此对对 应的包括多个狭长触点的选择性触点网格的至少一个部分退火。 0042 可替代地,波束成形系统可以包括一个衍射光学元件,该衍射光学元件用来在多 个并行列中使波束成形,由此在单一激光脉冲中对对应的包括多个并行触点的选择性触点 网格至少一个部分退火。 0043 激光器可以是其波长、能量和脉冲宽度被适配为该处理的任意激光器,比如固态 激光器、或准分子激光器。优选地,激光。

18、器可以是准分子层,更优选地是氯化氙准分子激光 器。 0044 由于在那些波长下硅的高能量吸收率,激光的波长的范围可以在190nm到600nm, 190nm到550nm,190nm到480nm之间,并且优选的是308nm。 0045 激光的能量可以在1焦耳到25焦耳之间。为了实现这些能量,激光器的放电体积 被优化到通常10cm(电极之间的间距)x7到10cm(放电宽度)x100到200cm(放电长度)。 0046 在本发明一个实施方案中,激光器可以被适配为产生一个能量密度在0.1到10J/ cm 2 之间,优选为1到10J/cm 2 之间的投射激光束。 0047 在一个优选实施方案中,激光器可以。

19、是准分子激光器,其被适配为产生大于 60cm 2 、80cm 2 ,优选100cm 2 的大面积输出波束,并且具有通常至少为1cm 2 、至少为5cm 2 、和高 达10cm 2 的一个投射光束光点,该投射光束光点的能量密度在0.1和10J/cm 2 之间。 0048 根据本发明的一个具体实施方案,可以用每个脉冲照射一个至少1cm 2 、至少5cm 2 、 至少8cm 2 、或至少10cm 2 的部分,这使得本发明适用于光伏电池的高吞吐量工业生产。 说 明 书CN 102844876 A 4/7页 6 0049 脉冲宽度与快速加热以减少掺杂物扩散和相对缓慢的冷却速度以减少瑕疵形成 之间的最佳效。

20、果相对应,并且其范围可以在100ns到1000ns之间,或者在100ns和300ns 之间,或优选地,在100和200纳秒之间。 0050 使用这类长脉冲,在激活材料足够深处的掺杂元素时,掺杂的触点层的烧蚀可以 被最小化。长脉冲宽度也能在整个触点区域内提供一个更好的触点结深度控制范围。此 外,长脉冲在退火材料中产生比短脉冲更少的瑕疵和更少的在短脉冲中出现的液滴或材料 损耗。 0051 在本发明的一个优选实施方案中,激光可以具有308nm的波长,100和200纳秒之 间的脉冲宽度和0.5和10J/cm 2 之间的能量密度。 0052 半导体衬底表面可以是任何适用于光伏应用的材料,比如,但不限于硅。

21、晶体、无 掺杂硅或掺杂硅、多晶硅、注入硅、碳化硅、非晶硅、硅锗,III-V复合半导体比如砷化镓、 镓铝砷、氮化镓,II-VII复合半导体如碲化镉、铜铟联硒化合物(CuInSe2)或铜铟镓硒 (Cu(In,Ga)Se2)及类似物、多结半导体堆栈、及类似物。 0053 根据本发明的一个实施方案中,一种形成选择性触点的方法可以被提供为进一步 包括在掺杂的触点层上形成一个抗反射涂层和/或一个钝化电介质,并且穿过该抗反射涂 层和/或钝化电介质对该掺杂的触点层退火。 0054 此抗反射涂层或钝化电介质可以是任何在光伏电池生产中的抗反射材料或钝化 电介质,例如像氮化硅和/或二氧化硅和/或两者的组合。 005。

22、5 根据本发明,可以提供一种形成选择性触点的方法,其中该抗反射涂层和/或钝 化电介质的与该掺杂的触点层的部分相对应的至少一个部分可以被烧蚀。在形成金属接触 电极前,通过从与对应的选择性触点网格相对应的至少一个部分烧蚀抗反射涂层和/或钝 化电介质,烧蚀层下的掺杂的触点层和随后沉积的金属电极之间的触点电阻减小,这提高 了电池效率。 0056 进一步地,接触电极可以被做得更细,因为它们至少是部分地嵌入在抗反射涂层 和/或钝化电介质中的。此外,由于抗反射涂层和/或钝化电介质能够以宽度很小的列的 形式被激光烧蚀,这些列可以充当用于自校准金属电镀的图案,接触电极可以具有减小的 宽度。更细的和/或宽度更小的。

23、接触电极使得掩模损耗更小并且短路电流密度(Jsc)更高。 0057 另外,由于触点形成可以在更低的温度和无触点的条件下立刻完成,即,自校准金 属电镀,从而减小晶片厚度的趋势来看,晶片破损的风险降低。 0058 在根据本发明的一个优选方法中,抗反射涂层和/或钝化电介质的一个部分至少 对应掺杂的触点层中可以被激光同时退火和烧蚀的部分。通过同时对掺杂的触点层进行退 火和对抗反射涂层和/或钝化电介质进行烧蚀,与常规的方法相比,总处理步骤减少。 0059 如本领域的普通技术人员所知,常规地,掺杂的触点层是由高温磷或硼扩散或在 高温熔炉退火后的其他掺杂处理步骤形成的,以获得高掺杂度的触点层。然而,根据本发。

24、 明,由于随后的选择性激光退火,只需要微掺杂的触点层。因此,可以通过对大块半导体衬 底的前或后表面进行掺杂处理步骤来形成掺杂的触点层,例如像离子注入、等离子体掺杂、 由磷前体低温扩散获得的磷硅酸玻璃(PSG)形成、由硼前体的低温扩散获得的硼硅酸玻璃 (BSG)形成、掺杂的旋压玻璃形成和掺杂的介电沉积。 0060 可替代地,根据本发明的另一个实施方案提供了一种形成选择性触点的方法,其 说 明 书CN 102844876 A 5/7页 7 中在该半导体衬底的表面形成掺杂的触点层可以包括在半导体衬底上形成一个掺杂的抗 反射涂层和/或掺杂的钝化电介质以及对该抗反射涂层和/或掺杂的钝化电介质进行激光 退。

25、火。优选地,与掺杂的触点层的所述部分对应的抗反射涂层和/或钝化电介质的一个部 分可以被激光烧蚀,与激光退火同时进行。 0061 在后一种情形中,选择性掺杂的触点层通过对抗反射涂层和/或钝化电介质同时 进行退火和烧蚀而形成,不需要诸如像分别形成掺杂的触点层。这明显地降低了形成选择 性触点的总处理步骤的数量,甚至在与常规的方法进行更多的比较时。 0062 根据本发明的一种方法可以进一步地包括在XYZ方向将有待照射的部分与投射 激光束对准。 0063 根据本发明的一种方法可以进一步包括通过物镜对有待照射的区域上的2D图案 的图像进行聚焦。 0064 根据本发明的一种方法可以进一步包括对2D图案的图像。

26、大小和有待照射的部分 的大小进行匹配。这可以通过可变图像放大系统来获得。 0065 进一步的调整可以通过使用照相机将半导体材料层上的光束光点形象化、测量其 大小并调整放大倍数来进行。 0066 本发明的一种方法还可以包括图案识别。这可以通过图案识别系统实现,该图案 识别系统包括一个照相机,该照相机机械地链接到固定半导体材料的一个平台并且位于材 料层表面的上方。在一个具体的实施方案中,照相机产生的图像可以被处理以定位多个(通 常为3)在半导体材料上的已被蚀刻或激光烧蚀的对准标记。对准标记提供了在激光设备 的协调系统中对半导体材料的精确定位。 0067 另外,本发明提供了一种包括通过根据上述权利要。

27、求中任一项所述的方法形成的 选择性触点的光伏电池。此光伏电池可以是比如标准单晶体和多晶体太阳能电池、N型和P 型太阳能电池、在不同类型的衬底上形成的外延硅太阳能电池、异质结构太阳能电池、钝化 发射极背面点接触太阳电池(PERL)、钝化发射极背接触电池(PERC)、后触点或背触点太阳 电池(RCC,BCC)和交指式背触电池(IBC)。 0068 实例1 0069 常规的发射极触点形成过程: 0070 1)对体硅进行POCl3高温熔炉扩散以形成重掺杂n型发射极层 0071 2)磷硅酸玻璃蚀刻 0072 3)SiNx电弧/钝化层沉积 0073 4)通过丝网印刷校准前侧金属化 0074 现有技术中选择。

28、性发射极形成过程如示例WO 2009/128679所描述: 0075 1)对体硅进行POCl3低温熔炉扩散以形成轻掺杂n型发射极层 0076 2)对发射极层进行选择性激光退火 0077 3)磷硅酸玻璃蚀刻 0078 4)SiNx电弧/钝化层沉积 0079 5)通过丝网印刷校准前侧金属化 0080 根据本发明形成选择性发射极的过程: 0081 1)对体硅进行POCl3低温熔炉扩散以形成轻掺杂n型发射极层 说 明 书CN 102844876 A 6/7页 8 0082 2)使用根据选择性发射极触点网格中的2D图案确定形状的脉冲激光束进行选择 性激光退火; 0083 3)磷硅酸玻璃蚀刻 0084 4。

29、)SiNx电弧/钝化层沉积 0085 5)通过丝网印刷校准前侧金属化 0086 根据本发明形成选择性发射极的过程的替代方案: 0087 1)对体硅进行POCl3低温熔炉扩散以形成轻掺杂n型发射极层 0088 2)使用根据选择性发射极触点网格中的2D图案确定形状的脉冲激光束进行选择 性激光退火; 0089 3)磷硅酸玻璃蚀刻 0090 4)SiNx电弧/钝化层沉积 0091 5)使用根据选择性发射极触点网格中的2D图案确定形状的脉冲激光束进行激光 烧蚀; 0092 6)通过自校准金属电镀对前侧金属化 0093 根据本发明形成选择性发射极的过程的另一个替代方案: 0094 1)对体硅进行POCl3。

30、低温熔炉扩散以形成轻掺杂n型发射极层 0095 2)磷硅酸玻璃蚀刻 0096 3)SiNx电弧/钝化层沉积 0097 4)使用根据选择性发射极触点网格中的2D图案确定形状的脉冲激光束进行选择 性激光退火和激光烧蚀; 0098 5)通过自校准金属电镀对前侧金属化 0099 根据本发明形成选择性发射极的过程的另一个替代方案: 0100 1)掺杂的SiNx电弧/钝化层沉积 0101 2)使用根据选择性发射极触点网格中的2D图案确定形状的脉冲激光束进行选择 性激光退火和激光烧蚀; 0102 3)通过自校准金属电镀对前侧金属化 0103 实例2 0104 下面描述的是常规的交指式背触(IBC)太阳能电池。

31、的制造流程,有6步光刻法和 一个最后的熔结和退火步骤(如Elsevier中Tom Markvart和Luis Castaner的光伏,基本 法则和应用实用手册中所描述): 0105 1)开始氧化寿命长的FZ晶片 0106 2)N+发射极光刻 0107 3)氧化物蚀刻打开N+发射极区 0108 4)磷预沉积 0109 5)P+发射极光刻 0110 6)氧化物蚀刻打开P+发射极区 0111 7)硼预沉积 0112 8)使背部具有晶片结构(太阳能电池前侧) 0113 9)生长细的氧化物或电介质 说 明 书CN 102844876 A 7/7页 9 0114 10)触点光刻 0115 11)氧化物或电。

32、介质蚀刻打开触点区域 0116 12)1级金属化 0117 13)金属1光刻 0118 14)金属1蚀刻 0119 15)沉淀金属间电介质 0120 16)通过光刻 0121 17)金属间电介质蚀刻 0122 18)2级金属化 0123 19)金属2光刻 0124 20)金属2蚀刻 0125 21)抗反射涂层沉积 0126 22)熔结和退火 0127 23)切粒和测试 0128 在根据本发明的交指式背触(IBC)太阳能电池制作流程中,根据2D图案确定形状 的脉冲激光束进行的选择性激光退火可以被用于形成N+发射极区或P+发射极区二者之一 或形成二者,而不使用光刻法。 说 明 书CN 102844876 A 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1