一种后馈式卫星电视天线及其卫星电视接收系统.pdf

上传人:n****g 文档编号:4328355 上传时间:2018-09-13 格式:PDF 页数:12 大小:478.31KB
返回 下载 相关 举报
摘要
申请专利号:

CN201110210391.6

申请日:

2011.07.26

公开号:

CN102480028A

公开日:

2012.05.30

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):H01Q 15/00申请日:20110726|||公开

IPC分类号:

H01Q15/00; H01Q15/02; H01Q19/06; H04N7/20

主分类号:

H01Q15/00

申请人:

深圳光启高等理工研究院; 深圳光启创新技术有限公司

发明人:

刘若鹏; 季春霖; 岳玉涛; 王今金; 洪运南

地址:

518000 广东省深圳市南山区高新区中区高新中一道9号软件大厦

优先权:

专利代理机构:

代理人:

PDF下载: PDF下载
内容摘要

本发明公开了一种后馈式卫星电视天线,包括设置在馈源前方的超材料面板,所述超材料面板包括核心层,所述核心层包括至少一个核心层片层,所述核心层片层包括片状的基材以及设置在基材上的多个人造微结构,所述核心层片层的折射率呈圆形分布,且相同半径处的折射率相同,随着半径的增大折射率逐渐减小。根据本发明的后馈式卫星电视天线,由片状的超材料面板代替了传统的抛物面天线,制造加工更加容易,成本更加低廉。另外,本发明还提供了一种具有上述后馈式卫星电视天线的卫星电视接收系统。

权利要求书

1: 一种后馈式卫星电视天线, 其特征在于, 所述后馈式卫星电视天线包括设置在馈源 前方的超材料面板, 所述超材料面板包括核心层, 所述核心层包括至少一个核心层片层, 所 述核心层片层包括片状的基材以及设置在基材上的多个人造微结构, 所述核心层片层的折 射率呈圆形分布, 且相同半径处的折射率相同, 随着半径的增大折射率逐渐减小。2: 根据权利要求 1 所述的后馈式卫星电视天线, 其特征在于, 所述核心层片层还包括 覆盖人造微结构的填充层。3: 根据权利要求 2 所述的后馈式卫星电视天线, 其特征在于, 所述核心层包括多个折 射率分布相同且相互平行的核心层片层。4: 根据权利要求 3 所述的后馈式卫星电视天线, 其特征在于, 所述超材料面板还包括 设置在核心层两侧的匹配层, 以实现从空气到核心层的折射率匹配。5: 根据权利要求 4 所述的后馈式卫星电视天线, 其特征在于, 所述核心层片层的折射 率以其中心为圆心呈圆形分布, 所述核心层片层的折射率 n(r) 分布满足如下公式 : 其中, n(r) 表示核心层片层上半径为 r 处的折射率值 ; l 为馈源到与其靠近的匹配层的距离, 或 l 为馈源到核心层的距离 ; d 为核心层的厚度, R 表示最大半径 ; nmax 表示核心层片层上的折射率最大值 ; nmin 表示核心层片层上的折射率最小值。6: 根据权利要求 5 所述的后馈式卫星电视天线, 其特征在于, 所述匹配层包括多个匹 配层片层, 每一匹配层片层具有单一的折射率, 核心层两侧的匹配层的多个匹配层片层的 折射率均满足以下公式 : 其中, m 表示匹配层的总层数, i 表示匹配层片层的编号, 其中, 靠近核心层的匹配层片 层的编号为 m。7: 根据权利要求 6 所述的后馈式卫星电视天线, 其特征在于, 所述每一匹配层片层包 括材料相同的第一基板及第二基板, 所述第一基板与第二基板之间填充空气。8: 根据权利要求 2 至 7 任意一项所述的后馈式卫星电视天线, 其特征在于, 所述核心层 的每一核心层片层的多个人造微结构形状相同, 相同半径处的多个人造微结构具有相同的 几何尺寸, 且随着半径的增大人造微结构的几何尺寸逐渐减小。9: 根据权利要求 1 所述的后馈式卫星电视天线, 其特征在于, 所述人造微结构为平面 雪花状的金属微结构。10: 一种卫星电视接收系统, 包括馈源、 高频头及卫星接收机, 其特征在于, 所述卫星电 视接收系统还包括如权利要求 1 至 9 任意一项所述的后馈式卫星电视天线, 所述后馈式卫 星电视天线设置在馈源的前方。

说明书


一种后馈式卫星电视天线及其卫星电视接收系统

    技术领域 本发明涉及通信领域, 更具体地说, 涉及一种后馈式卫星电视天线及其卫星电视 接收系统。
     背景技术 传统的卫星电视接收系统是由抛物面天线、 馈源、 高频头、 卫星接收机组成的卫星 地面接收站。抛物面天线负责将卫星信号反射到位于焦点处的馈源和高频头内。馈源是在 抛物面天线的焦点处设置的一个用于收集卫星信号的喇叭, 又称波纹喇叭。其主要功能有 两个 : 一是将天线接收的电磁波信号收集起来, 变换成信号电压, 供给高频头。二是对接收 的电磁波进行极化转换。高频头 LNB( 亦称降频器 ) 是将馈源送来的卫星信号进行降频和 信号放大然后传送至卫星接收机。一般可分为 C 波段频率 LNB(3.7GHz-4.2GHz、 18-21V) 和 Ku 波段频率 LNB(10.7GHz-12.75GHz、 12-14V)。LNB 的工作流程就是先将卫星高频讯号放 大至数十万倍后再利用本地振荡电路将高频讯号转换至中频 950MHz-2050MHz, 以利于同轴 电缆的传输及卫星接收机的解调和工作。 卫星接收机是将高频头输送来的卫星信号进行解 调, 解调出卫星电视图像或数字信号和伴音信号。
     接收卫星信号时, 平行的电磁波通过抛物面天线反射后, 汇聚到馈源上。通常, 抛 物面天线对应的馈源是一个喇叭天线。
     但是由于抛物面天线的反射面的曲面加工难度大, 精度要求也高, 因此, 制造麻 烦, 且成本较高。
     发明内容 本发明所要解决的技术问题是, 针对现有的卫星电视天线加工不易、 成本高的缺 陷, 提供一种加工简单、 制造成本低的后馈式卫星电视天线。
     本发明解决其技术问题所采用的技术方案是 : 一种后馈式卫星电视天线, 所述后 馈式卫星电视天线包括设置在馈源前方的超材料面板, 所述超材料面板包括核心层, 所述 核心层包括至少一个核心层片层, 所述核心层片层包括片状的基材以及设置在基材上的多 个人造微结构, 所述核心层片层的折射率呈圆形分布, 且相同半径处的折射率相同, 随着半 径的增大折射率逐渐减小。
     进一步地, 所述核心层片层还包括覆盖人造微结构的填充层。
     进一步地, 所述核心层包括多个折射率分布相同且相互平行的核心层片层。
     进一步地, 所述超材料面板还包括设置在核心层两侧的匹配层, 以实现从空气到 核心层的折射率匹配。
     进一步地, 所述核心层片层的折射率以其中心为圆心呈圆形分布, 所述核心层片 层的折射率 n(r) 分布满足如下公式 :
     其中, n(r) 表示核心层片层上半径为 r 处的折射率值 ; l 为馈源到与其靠近的匹配层的距离, 或 l 为馈源到核心层的距离 ; d 为核心层的厚度,R 表示最大半径 ;
     nmax 表示核心层片层上的折射率最大值 ;
     nmin 表示核心层片层上的折射率最小值。
     进一步地, 所述匹配层包括多个匹配层片层, 每一匹配层片层具有单一的折射率, 核心层两侧的匹配层的多个匹配层片层的折射率均满足以下公式 :
     其中, m 表示匹配层的总层数, i 表示匹配层片层的编号, 其中, 靠近核心层的匹配 层片层的编号为 m。
     进一步地, 所述每一匹配层片层包括材料相同的第一基板及第二基板, 所述第一 基板与第二基板之间填充空气。
     进一步地, 所述核心层的每一核心层片层的多个人造微结构形状相同, 相同半径 处的多个人造微结构具有相同的几何尺寸, 且随着半径的增大人造微结构的几何尺寸逐渐 减小。
     进一步地, 所述人造微结构为平面雪花状的金属微结构。
     根据本发明的后馈式卫星电视天线, 由片状的超材料面板代替了传统的抛物面天 线, 制造加工更加容易, 成本更加低廉。
     本发明还提供了一种卫星电视接收系统, 包括馈源、 高频头及卫星接收机, 所述卫 星电视接收系统还包括上述的后馈式卫星电视天线, 所述后馈式卫星电视天线设置在馈源 的前方。
     附图说明
     图 1 是本发明的后馈式卫星电视天线的结构示意图 ; 图 2 是本发明一种形式的超材料单元的透视示意图 ; 图 3 是本发明的核心层片层的折射率分布示意图 ; 图 4 是本发明的一种形式的核心层片层的结构示意图 ; 图 5 是本发明的匹配层的结构示意图。具体实施方式
     如图 1 至图 5 所示, 根据本发明后馈式卫星电视天线包括设置在馈源 1 前方的超 材料面板 100, 所述超材料面板 100 包括核心层 10, 所述核心层 10 包括至少一个核心层片 层 11, 所述核心层片层包括片状的基材 13 以及设置在基材 13 上的多个人造微结构 12, 所 述核心层片层 11 的折射率以其中心为圆心呈圆形分布, 相同半径处的折射率相同, 且随着 半径的增大折射率逐渐减小。本发明中, 馈源 1 设置在超材料面板的中轴线上, 即馈源与核 心层片层 11 的中心的连线与超材料面板的中轴线重合。馈源 1 与超材料面板 100 均有支架支撑, 图中并未出支架, 其不是本发明的核心, 采用传统的支撑方式即可。另外馈源优选 为喇叭天线。图中的核心层片层 11 呈方形, 当然, 也可以是其它形状, 例如圆柱形。
     如图 1 至图 4 所示, 所述核心层 10 包括多个折射率分布相同且相互平行的核心层 片层 11。多个核心层片层 11 紧密贴合, 相互之间可以通过双面胶粘接, 或者通过螺栓等固 定连接。 另外相邻的核心层片层 11 还包括填充层 15, 填充层 15 可以空气, 也可以是其它介 质板, 优选为与基材 13 相同的材料制成的板状件。每一核心层片层 11 的基材 13 可以划分 为多个相同超材料单元 D, 每一超材料单元 D 由一个人造微结构 12、 单元基材 V 及单元填充 层 W 构成, 每一核心层片层 11 在厚度方向上只有一个超材料单元 D。每一超材料单元 D 可 以是完全相同的方块, 可以是立方体, 也可是长方体, 每一超材料单元 D 的长、 宽、 高几何尺 寸不大于入射电磁波波长的五分之一 ( 通常为入射电磁波波长的十分之一 ), 以使得整个 核心层对电磁波具有连续的电场和 / 或磁场响应。优选情况下, 所述超材料单元 D 为边长 是入射电磁波波长十分之一的立方体。 当然, 填充层的厚度是可以调节的, 其最小值可以至 0, 也就是说不需要填充层, 此种情况下, 基材与人造微结构组成超材料单元, 即此时超材料 单元 D 的厚度等于单元基材 V 的厚度加上人造微结构的厚度, 但是此时, 超材料单元 D 的厚 度也要满足十分之一波长的要求, 因此, 实际上, 在超材料单元 D 的厚度选定在十分之一波 长的情况下, 单元基材 V 的厚度越大, 则单元填充层 W 的厚度越小, 当然最优的情况下, 即是 如图 2 所示的情况, 即单元基材 V 的厚度等于单元填充层 W 的厚度, 且元单元基材 V 的材料 与填充层 W 的相同。 本发明的人造微结构 12 优选为金属微结构, 所述金属微结构由一条或多条金属 线组成。金属线本身具有一定的宽度及厚度。本发明的金属微结构优选为具有各向同性的 电磁参数的金属微结构, 如图 2 所述的平面雪花状的金属微结构。
     对于具有平面结构的人造微结构, 各向同性, 是指对于在该二维平面上以任一角 度入射的任一电磁波, 上述人造微结构在该平面上的电场响应和磁场响应均相同, 也即介 电常数和磁导率相同 ; 对于具有三维结构的人造微结构, 各向同性是指对于在三维空间的 任一方向上入射的电磁波, 每个上述人造微结构在三维空间上的电场响应和磁场响应均相 同。当人造微结构为 90 度旋转对称结构时, 人造微结构即具有各向同性的特征。
     对于二维平面结构, 90 度旋转对称是指其在该平面上绕一垂直于该平面且过其对 称中心的旋转轴任意旋转 90 度后与原结构重合 ; 对于三维结构, 如果具有两两垂直且共交 点 ( 交点为旋转中心 ) 的 3 条旋转轴, 使得该结构绕任一旋转轴旋转 90 度后均与原结构重 合或者与原结构以一分界面对称, 则该结构为 90 度旋转对称结构。
     图 2 所示的平面雪花状的金属微结构即为各向同性的人造微结构的一种形式, 所 述的雪花状的金属微结构具有相互垂直平分的第一金属线 121 及第二金属线 122, 所述第 一金属线 121 两端连接有相同长度的两个第一金属分支 1211, 所述第一金属线 121 两端连 接在两个第一金属分支 1211 的中点上, 所述第二金属线 122 两端连接有相同长度的两个第 二金属分支 1221, 所述第二金属线 122 两端连接在两个第二金属分支 1221 的中点上。
     已知折射率其中 μ 为相对磁导率, ε 为相对介电常数, μ 与 ε 合称为电磁参数。实验证明, 电磁波通过折射率非均匀的介质材料时, 会向折射率大的方向偏折 ( 向折射率大的超材料单元偏折 )。因此本发明的核心层对电磁波具有汇聚作用, 合理设计 核心层的折射率分布, 可以使得卫星发出的电磁波通过核心层后汇聚到馈源上。在基材的材料以及填充层的材料选定的情况下, 可以通过设计人造微结构的形状、 几何尺寸和 / 或 人造微结构在基材上的排布获得超材料内部的电磁参数分布, 从而设计出每一超材料单元 的折射率。首先从超材料所需要的效果出发计算出超材料内部的电磁参数空间分布 ( 即 每一超材料单元的电磁参数 ), 根据电磁参数的空间分布来选择每一超材料单元上的人造 微结构的形状、 几何尺寸 ( 计算机中事先存放有多种人造微结构数据 ), 对每一超材料单元 的设计可以用穷举法, 例如先选定一个具有特定形状的人造微结构, 计算电磁参数, 将得到 的结果和我们想要的对比, 循环多次, 一直到找到我们想要的电磁参数为止, 若找到了, 则 完成了人造微结构的设计参数选择 ; 若没找到, 则换一种形状的人造微结构, 重复上面的循 环, 一直到找到我们想要的电磁参数为止。如果还是未找到, 则上述过程也不会停止。也就 是说只有找到了我们需要的电磁参数的人造微结构, 程序才会停止。由于这个过程都是由 计算机完成的, 因此, 看似复杂, 其实很快就能完成。
     本发明中, 所述核心层的基材由陶瓷材料、 高分子材料、 铁电材料、 铁氧材料或铁 磁材料等制得。高分子材料可选用的有聚四氟乙烯、 环氧树脂、 F4B 复合材料、 FR-4 复合材 料等。例如, 聚四氟乙烯的电绝缘性非常好, 因此不会对电磁波的电场产生干扰, 并且具有 优良的化学稳定性、 耐腐蚀性, 使用寿命长。
     本发明中, 所述金属微结构为铜线或银线等金属线。 上述的金属线可以通过蚀刻、 电镀、 钻刻、 光刻、 电子刻或离子刻的方法附着在基材上。 当然, 也可以采用三维的激光加工 工艺。
     如图 1 所示, 为本发明第一实施例的超材料面板的结构示意图, 在本实施例中, 所 述超材料面板还包括设置在核心层两侧的匹配层 20, 以实现从空气到核心层 10 的折射率 匹配。我们知道, 介质之间的折射率相差越大, 则电磁波从一介质入射到另一介质时, 反射 越大, 反射大, 意味着能量的损失, 这时候就需要折射率的匹配, 已知折射率 其中 μ 为相对磁导率, ε 为相对介电常数, μ 与 ε 合称为电磁参数。 我们知道空气的折射率为 1, 因此, 在设计匹配层时, 电磁波入射侧的匹配层这样设计, 即靠近空气的一侧的折射率与 空气基本相同, 靠近核心层的一侧的折射率与其相接的核心层片层折射率基本相同即可 ; 而电磁波出射侧的匹配层设计则相对核心层对称过来即可。这样, 就实现了核心层的折射 率匹配, 减小了反射, 即能量损失可以大大的降低, 这样电磁波可以传输的更远。
     本实施例中, 如图 1 及图 3 所示, 所述核心层片层 11 的折射率以其中心 O 为圆心 呈圆形分布, 所述核心层片层 11 的折射率 n(r) 分布满足如下公式 :
     其中, n(r) 表示核心层片层上半径为 r 处的折射率值 ; 也即核心层片层上半径为 r 的超材料单元 D 的折射率 ; 此处半径指的是每一单元基材 V 的中点到核心层片层的中心 O( 圆心 ) 的距离, 此处的单元基材 V 的中点, 指的是单元基材 V 与中点 O 同一平面的一表面 的中点。
     l 为馈源 1 到与其靠近的匹配层 20 的距离 ;
     d 为核心层的厚度, R 表示最大半径 ;nmax 表示核心层片层 11 上的折射率最大值 ;
     nmin 表示核心层片层 11 上的折射率最小值 ;
     由公式 (1)、 公式 (2) 所确定的核心层 10, 能够保证卫星发出的电磁波汇聚到馈源 上。这个通过计算机模拟仿真, 或者利用光学原理可以得到 ( 即利用光程相等计算 )。
     本实施例中, 核心层片层 11 的厚度是一定的, 通常在入射电磁波波长 λ 的五分之 一以下, 优选是入射电磁波波长 λ 的十分之一。 这样, 在设计时, 如果选定了核心层片层 11 的层数, 则核心层的厚度 d 就已经确定了, 因此, 对于不同频率的后馈式卫星电视天线 ( 波 长不同 ), 由公式 (2) 我们知道, 通过合理设计 (nmax-nmin) 的值, 就可以得到任意我们想要 的频率的后馈式卫星电视天线。例如, C 波段和 Ku 波段。C 波段的频率范围是 3400MHz ~ 4200MHz。Ku 波段的频率 10.7 ~ 12.75GHz, 其中可分为 10.7 ~ 11.7GHz、 11.7 ~ 12.2GHz、 12.2 ~ 12.75GHz 等频段。
     如图 1 所示, 本实施例中, 所述匹配层 20 包括多个匹配层片层 21, 每一匹配层片层 21 具有单一的折射率, 核心层两侧的匹配层的多个匹配层片层的折射率均满足以下公式 :
     其中, m 表示匹配层的总层数, i 表示匹配层片层的编号, 其中, 靠近核心层的匹配 层片层的编号为 m。从公式 (4) 我们可以看出, 核心层 10 一侧的多个匹配层片层的折射率 与核心层 10 一侧的多个匹配层片层的折射率相对核心层对称设置。匹配层的设置 ( 总层 数 m) 与核心层的最大折射率 nmax 与最小折射率 nmin 有直接关系 ; 当 i = 1 时, 表示第 1 层 的折射率, 由于其要基本等于空气的折射率 1, 因此, 只要 nmax 与 nmin 确定, 则可以确定总层 数 m。
     匹配层 20 可以是由自然界中存在的多个具有单一折射率的材料制成, 也可是用 如图 5 所示的匹配层, 其包括多个匹配层片层 21, 每一匹配层片层 21 包括材料相同的第一 基板 22 及第二基板 23, 所述第一基板 21 与第二基板 22 之间填充空气。通过控制空气的体 积与匹配层片层 21 的体积的比例, 可以实现折射率从 1( 空气的折射率 ) 到第一基板的折 射率的变化, 从而可以合理设计每一匹配层片层的折射率, 实现从空气到核心层的折射率 匹配。
     图 4 为一种形式的核心层片层 11, 所述核心层的每一核心层片层 11 的多个人造微 结构 12 形状相同, 均为平面雪花状的金属微结构, 且金属微结构的中心点与单元基材 V 的 中点重合, 相同半径处的多个人造微结构具有相同的几何尺寸, 且随着半径的增大人造微 结构 12 的几何尺寸逐渐减小。由于每一超材料单元的折射率是随着金属微结构的尺寸减 小而逐渐减小的, 因此人造微结构几何尺寸越大, 则其对应的折射率越大, 因此, 通过此方 式可以实现核心层片层的折射率分布按公式 (1) 的分布。
     根据不同的需要 ( 不同的电磁波 ), 以及不同的设计需要, 核心层 10 可以包括不同 层数的如图 4 所示的核心层片层 11。
     本发明还有第二种实施例, 第二实施例与第一实施例的区别在于核心层片层 11 的折射率 n(r) 分布公式中的 l 表示馈源到核心层的距离 ( 第一实施例中 l 表示馈源到与 其靠近的匹配层的距离 )。
     另外, 本发明还提供本发明还提供了一种卫星电视接收系统, 包括馈源、 高频头及 卫星接收机, 所述卫星电视接收系统还包括上述的后馈式卫星电视天线, 所述后馈式卫星
     电视天线设置在馈源的前方。
     馈源、 高频头及卫星接收机均为现有的技术, 此处不再述说。
     上面结合附图对本发明的实施例进行了描述, 但是本发明并不局限于上述的具体 实施方式, 上述的具体实施方式仅仅是示意性的, 而不是限制性的, 本领域的普通技术人员 在本发明的启示下, 在不脱离本发明宗旨和权利要求所保护的范围情况下, 还可做出很多 形式, 这些均属于本发明的保护之内。

一种后馈式卫星电视天线及其卫星电视接收系统.pdf_第1页
第1页 / 共12页
一种后馈式卫星电视天线及其卫星电视接收系统.pdf_第2页
第2页 / 共12页
一种后馈式卫星电视天线及其卫星电视接收系统.pdf_第3页
第3页 / 共12页
点击查看更多>>
资源描述

《一种后馈式卫星电视天线及其卫星电视接收系统.pdf》由会员分享,可在线阅读,更多相关《一种后馈式卫星电视天线及其卫星电视接收系统.pdf(12页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102480028 A (43)申请公布日 2012.05.30 C N 1 0 2 4 8 0 0 2 8 A *CN102480028A* (21)申请号 201110210391.6 (22)申请日 2011.07.26 H01Q 15/00(2006.01) H01Q 15/02(2006.01) H01Q 19/06(2006.01) H04N 7/20(2006.01) (71)申请人深圳光启高等理工研究院 地址 518000 广东省深圳市南山区高新区中 区高新中一道9号软件大厦 申请人深圳光启创新技术有限公司 (72)发明人刘若鹏 季春霖 岳玉涛 王今金。

2、 洪运南 (54) 发明名称 一种后馈式卫星电视天线及其卫星电视接收 系统 (57) 摘要 本发明公开了一种后馈式卫星电视天线,包 括设置在馈源前方的超材料面板,所述超材料面 板包括核心层,所述核心层包括至少一个核心层 片层,所述核心层片层包括片状的基材以及设置 在基材上的多个人造微结构,所述核心层片层的 折射率呈圆形分布,且相同半径处的折射率相同, 随着半径的增大折射率逐渐减小。根据本发明的 后馈式卫星电视天线,由片状的超材料面板代替 了传统的抛物面天线,制造加工更加容易,成本更 加低廉。另外,本发明还提供了一种具有上述后馈 式卫星电视天线的卫星电视接收系统。 (51)Int.Cl. 权利要。

3、求书1页 说明书6页 附图4页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 1 页 说明书 6 页 附图 4 页 1/1页 2 1.一种后馈式卫星电视天线,其特征在于,所述后馈式卫星电视天线包括设置在馈源 前方的超材料面板,所述超材料面板包括核心层,所述核心层包括至少一个核心层片层,所 述核心层片层包括片状的基材以及设置在基材上的多个人造微结构,所述核心层片层的折 射率呈圆形分布,且相同半径处的折射率相同,随着半径的增大折射率逐渐减小。 2.根据权利要求1所述的后馈式卫星电视天线,其特征在于,所述核心层片层还包括 覆盖人造微结构的填充层。 3.根据权利要求2所述的后。

4、馈式卫星电视天线,其特征在于,所述核心层包括多个折 射率分布相同且相互平行的核心层片层。 4.根据权利要求3所述的后馈式卫星电视天线,其特征在于,所述超材料面板还包括 设置在核心层两侧的匹配层,以实现从空气到核心层的折射率匹配。 5.根据权利要求4所述的后馈式卫星电视天线,其特征在于,所述核心层片层的折射 率以其中心为圆心呈圆形分布,所述核心层片层的折射率n(r)分布满足如下公式: 其中,n(r)表示核心层片层上半径为r处的折射率值; l为馈源到与其靠近的匹配层的距离,或l为馈源到核心层的距离; d为核心层的厚度, R表示最大半径; n max 表示核心层片层上的折射率最大值; n min 表。

5、示核心层片层上的折射率最小值。 6.根据权利要求5所述的后馈式卫星电视天线,其特征在于,所述匹配层包括多个匹 配层片层,每一匹配层片层具有单一的折射率,核心层两侧的匹配层的多个匹配层片层的 折射率均满足以下公式: 其中,m表示匹配层的总层数,i表示匹配层片层的编号,其中,靠近核心层的匹配层片 层的编号为m。 7.根据权利要求6所述的后馈式卫星电视天线,其特征在于,所述每一匹配层片层包 括材料相同的第一基板及第二基板,所述第一基板与第二基板之间填充空气。 8.根据权利要求2至7任意一项所述的后馈式卫星电视天线,其特征在于,所述核心层 的每一核心层片层的多个人造微结构形状相同,相同半径处的多个人造。

6、微结构具有相同的 几何尺寸,且随着半径的增大人造微结构的几何尺寸逐渐减小。 9.根据权利要求1所述的后馈式卫星电视天线,其特征在于,所述人造微结构为平面 雪花状的金属微结构。 10.一种卫星电视接收系统,包括馈源、高频头及卫星接收机,其特征在于,所述卫星电 视接收系统还包括如权利要求1至9任意一项所述的后馈式卫星电视天线,所述后馈式卫 星电视天线设置在馈源的前方。 权 利 要 求 书CN 102480028 A 1/6页 3 一种后馈式卫星电视天线及其卫星电视接收系统 技术领域 0001 本发明涉及通信领域,更具体地说,涉及一种后馈式卫星电视天线及其卫星电视 接收系统。 背景技术 0002 传。

7、统的卫星电视接收系统是由抛物面天线、馈源、高频头、卫星接收机组成的卫星 地面接收站。抛物面天线负责将卫星信号反射到位于焦点处的馈源和高频头内。馈源是在 抛物面天线的焦点处设置的一个用于收集卫星信号的喇叭,又称波纹喇叭。其主要功能有 两个:一是将天线接收的电磁波信号收集起来,变换成信号电压,供给高频头。二是对接收 的电磁波进行极化转换。高频头LNB(亦称降频器)是将馈源送来的卫星信号进行降频和 信号放大然后传送至卫星接收机。一般可分为C波段频率LNB(3.7GHz-4.2GHz、18-21V)和 Ku波段频率LNB(10.7GHz-12.75GHz、12-14V)。LNB的工作流程就是先将卫星高。

8、频讯号放 大至数十万倍后再利用本地振荡电路将高频讯号转换至中频950MHz-2050MHz,以利于同轴 电缆的传输及卫星接收机的解调和工作。卫星接收机是将高频头输送来的卫星信号进行解 调,解调出卫星电视图像或数字信号和伴音信号。 0003 接收卫星信号时,平行的电磁波通过抛物面天线反射后,汇聚到馈源上。通常,抛 物面天线对应的馈源是一个喇叭天线。 0004 但是由于抛物面天线的反射面的曲面加工难度大,精度要求也高,因此,制造麻 烦,且成本较高。 发明内容 0005 本发明所要解决的技术问题是,针对现有的卫星电视天线加工不易、成本高的缺 陷,提供一种加工简单、制造成本低的后馈式卫星电视天线。 0。

9、006 本发明解决其技术问题所采用的技术方案是:一种后馈式卫星电视天线,所述后 馈式卫星电视天线包括设置在馈源前方的超材料面板,所述超材料面板包括核心层,所述 核心层包括至少一个核心层片层,所述核心层片层包括片状的基材以及设置在基材上的多 个人造微结构,所述核心层片层的折射率呈圆形分布,且相同半径处的折射率相同,随着半 径的增大折射率逐渐减小。 0007 进一步地,所述核心层片层还包括覆盖人造微结构的填充层。 0008 进一步地,所述核心层包括多个折射率分布相同且相互平行的核心层片层。 0009 进一步地,所述超材料面板还包括设置在核心层两侧的匹配层,以实现从空气到 核心层的折射率匹配。 00。

10、10 进一步地,所述核心层片层的折射率以其中心为圆心呈圆形分布,所述核心层片 层的折射率n(r)分布满足如下公式: 0011 说 明 书CN 102480028 A 2/6页 4 0012 其中,n(r)表示核心层片层上半径为r处的折射率值; 0013 l为馈源到与其靠近的匹配层的距离,或l为馈源到核心层的距离; 0014 d为核心层的厚度, 0015 R表示最大半径; 0016 n max 表示核心层片层上的折射率最大值; 0017 n min 表示核心层片层上的折射率最小值。 0018 进一步地,所述匹配层包括多个匹配层片层,每一匹配层片层具有单一的折射率, 核心层两侧的匹配层的多个匹配层。

11、片层的折射率均满足以下公式: 0019 0020 其中,m表示匹配层的总层数,i表示匹配层片层的编号,其中,靠近核心层的匹配 层片层的编号为m。 0021 进一步地,所述每一匹配层片层包括材料相同的第一基板及第二基板,所述第一 基板与第二基板之间填充空气。 0022 进一步地,所述核心层的每一核心层片层的多个人造微结构形状相同,相同半径 处的多个人造微结构具有相同的几何尺寸,且随着半径的增大人造微结构的几何尺寸逐渐 减小。 0023 进一步地,所述人造微结构为平面雪花状的金属微结构。 0024 根据本发明的后馈式卫星电视天线,由片状的超材料面板代替了传统的抛物面天 线,制造加工更加容易,成本更。

12、加低廉。 0025 本发明还提供了一种卫星电视接收系统,包括馈源、高频头及卫星接收机,所述卫 星电视接收系统还包括上述的后馈式卫星电视天线,所述后馈式卫星电视天线设置在馈源 的前方。 附图说明 0026 图1是本发明的后馈式卫星电视天线的结构示意图; 0027 图2是本发明一种形式的超材料单元的透视示意图; 0028 图3是本发明的核心层片层的折射率分布示意图; 0029 图4是本发明的一种形式的核心层片层的结构示意图; 0030 图5是本发明的匹配层的结构示意图。 具体实施方式 0031 如图1至图5所示,根据本发明后馈式卫星电视天线包括设置在馈源1前方的超 材料面板100,所述超材料面板1。

13、00包括核心层10,所述核心层10包括至少一个核心层片 层11,所述核心层片层包括片状的基材13以及设置在基材13上的多个人造微结构12,所 述核心层片层11的折射率以其中心为圆心呈圆形分布,相同半径处的折射率相同,且随着 半径的增大折射率逐渐减小。本发明中,馈源1设置在超材料面板的中轴线上,即馈源与核 心层片层11的中心的连线与超材料面板的中轴线重合。馈源1与超材料面板100均有支 说 明 书CN 102480028 A 3/6页 5 架支撑,图中并未出支架,其不是本发明的核心,采用传统的支撑方式即可。另外馈源优选 为喇叭天线。图中的核心层片层11呈方形,当然,也可以是其它形状,例如圆柱形。。

14、 0032 如图1至图4所示,所述核心层10包括多个折射率分布相同且相互平行的核心层 片层11。多个核心层片层11紧密贴合,相互之间可以通过双面胶粘接,或者通过螺栓等固 定连接。另外相邻的核心层片层11还包括填充层15,填充层15可以空气,也可以是其它介 质板,优选为与基材13相同的材料制成的板状件。每一核心层片层11的基材13可以划分 为多个相同超材料单元D,每一超材料单元D由一个人造微结构12、单元基材V及单元填充 层W构成,每一核心层片层11在厚度方向上只有一个超材料单元D。每一超材料单元D可 以是完全相同的方块,可以是立方体,也可是长方体,每一超材料单元D的长、宽、高几何尺 寸不大于入。

15、射电磁波波长的五分之一(通常为入射电磁波波长的十分之一),以使得整个 核心层对电磁波具有连续的电场和/或磁场响应。优选情况下,所述超材料单元D为边长 是入射电磁波波长十分之一的立方体。当然,填充层的厚度是可以调节的,其最小值可以至 0,也就是说不需要填充层,此种情况下,基材与人造微结构组成超材料单元,即此时超材料 单元D的厚度等于单元基材V的厚度加上人造微结构的厚度,但是此时,超材料单元D的厚 度也要满足十分之一波长的要求,因此,实际上,在超材料单元D的厚度选定在十分之一波 长的情况下,单元基材V的厚度越大,则单元填充层W的厚度越小,当然最优的情况下,即是 如图2所示的情况,即单元基材V的厚度。

16、等于单元填充层W的厚度,且元单元基材V的材料 与填充层W的相同。 0033 本发明的人造微结构12优选为金属微结构,所述金属微结构由一条或多条金属 线组成。金属线本身具有一定的宽度及厚度。本发明的金属微结构优选为具有各向同性的 电磁参数的金属微结构,如图2所述的平面雪花状的金属微结构。 0034 对于具有平面结构的人造微结构,各向同性,是指对于在该二维平面上以任一角 度入射的任一电磁波,上述人造微结构在该平面上的电场响应和磁场响应均相同,也即介 电常数和磁导率相同;对于具有三维结构的人造微结构,各向同性是指对于在三维空间的 任一方向上入射的电磁波,每个上述人造微结构在三维空间上的电场响应和磁场。

17、响应均相 同。当人造微结构为90度旋转对称结构时,人造微结构即具有各向同性的特征。 0035 对于二维平面结构,90度旋转对称是指其在该平面上绕一垂直于该平面且过其对 称中心的旋转轴任意旋转90度后与原结构重合;对于三维结构,如果具有两两垂直且共交 点(交点为旋转中心)的3条旋转轴,使得该结构绕任一旋转轴旋转90度后均与原结构重 合或者与原结构以一分界面对称,则该结构为90度旋转对称结构。 0036 图2所示的平面雪花状的金属微结构即为各向同性的人造微结构的一种形式,所 述的雪花状的金属微结构具有相互垂直平分的第一金属线121及第二金属线122,所述第 一金属线121两端连接有相同长度的两个第。

18、一金属分支1211,所述第一金属线121两端连 接在两个第一金属分支1211的中点上,所述第二金属线122两端连接有相同长度的两个第 二金属分支1221,所述第二金属线122两端连接在两个第二金属分支1221的中点上。 0037 已知折射率其中为相对磁导率,为相对介电常数,与合称为 电磁参数。实验证明,电磁波通过折射率非均匀的介质材料时,会向折射率大的方向偏折 (向折射率大的超材料单元偏折)。因此本发明的核心层对电磁波具有汇聚作用,合理设计 核心层的折射率分布,可以使得卫星发出的电磁波通过核心层后汇聚到馈源上。在基材的 说 明 书CN 102480028 A 4/6页 6 材料以及填充层的材料。

19、选定的情况下,可以通过设计人造微结构的形状、几何尺寸和/或 人造微结构在基材上的排布获得超材料内部的电磁参数分布,从而设计出每一超材料单元 的折射率。首先从超材料所需要的效果出发计算出超材料内部的电磁参数空间分布(即 每一超材料单元的电磁参数),根据电磁参数的空间分布来选择每一超材料单元上的人造 微结构的形状、几何尺寸(计算机中事先存放有多种人造微结构数据),对每一超材料单元 的设计可以用穷举法,例如先选定一个具有特定形状的人造微结构,计算电磁参数,将得到 的结果和我们想要的对比,循环多次,一直到找到我们想要的电磁参数为止,若找到了,则 完成了人造微结构的设计参数选择;若没找到,则换一种形状的。

20、人造微结构,重复上面的循 环,一直到找到我们想要的电磁参数为止。如果还是未找到,则上述过程也不会停止。也就 是说只有找到了我们需要的电磁参数的人造微结构,程序才会停止。由于这个过程都是由 计算机完成的,因此,看似复杂,其实很快就能完成。 0038 本发明中,所述核心层的基材由陶瓷材料、高分子材料、铁电材料、铁氧材料或铁 磁材料等制得。高分子材料可选用的有聚四氟乙烯、环氧树脂、F4B复合材料、FR-4复合材 料等。例如,聚四氟乙烯的电绝缘性非常好,因此不会对电磁波的电场产生干扰,并且具有 优良的化学稳定性、耐腐蚀性,使用寿命长。 0039 本发明中,所述金属微结构为铜线或银线等金属线。上述的金属。

21、线可以通过蚀刻、 电镀、钻刻、光刻、电子刻或离子刻的方法附着在基材上。当然,也可以采用三维的激光加工 工艺。 0040 如图1所示,为本发明第一实施例的超材料面板的结构示意图,在本实施例中,所 述超材料面板还包括设置在核心层两侧的匹配层20,以实现从空气到核心层10的折射率 匹配。我们知道,介质之间的折射率相差越大,则电磁波从一介质入射到另一介质时,反射 越大,反射大,意味着能量的损失,这时候就需要折射率的匹配,已知折射率其中 为相对磁导率,为相对介电常数,与合称为电磁参数。我们知道空气的折射率为 1,因此,在设计匹配层时,电磁波入射侧的匹配层这样设计,即靠近空气的一侧的折射率与 空气基本相同。

22、,靠近核心层的一侧的折射率与其相接的核心层片层折射率基本相同即可; 而电磁波出射侧的匹配层设计则相对核心层对称过来即可。这样,就实现了核心层的折射 率匹配,减小了反射,即能量损失可以大大的降低,这样电磁波可以传输的更远。 0041 本实施例中,如图1及图3所示,所述核心层片层11的折射率以其中心O为圆心 呈圆形分布,所述核心层片层11的折射率n(r)分布满足如下公式: 0042 0043 其中,n(r)表示核心层片层上半径为r处的折射率值;也即核心层片层上半径为 r的超材料单元D的折射率;此处半径指的是每一单元基材V的中点到核心层片层的中心 O(圆心)的距离,此处的单元基材V的中点,指的是单元。

23、基材V与中点O同一平面的一表面 的中点。 0044 l为馈源1到与其靠近的匹配层20的距离; 0045 d为核心层的厚度, 0046 R表示最大半径; 说 明 书CN 102480028 A 5/6页 7 0047 n max 表示核心层片层11上的折射率最大值; 0048 n min 表示核心层片层11上的折射率最小值; 0049 由公式(1)、公式(2)所确定的核心层10,能够保证卫星发出的电磁波汇聚到馈源 上。这个通过计算机模拟仿真,或者利用光学原理可以得到(即利用光程相等计算)。 0050 本实施例中,核心层片层11的厚度是一定的,通常在入射电磁波波长的五分之 一以下,优选是入射电磁波。

24、波长的十分之一。这样,在设计时,如果选定了核心层片层11 的层数,则核心层的厚度d就已经确定了,因此,对于不同频率的后馈式卫星电视天线(波 长不同),由公式(2)我们知道,通过合理设计(n max -n min )的值,就可以得到任意我们想要 的频率的后馈式卫星电视天线。例如,C波段和Ku波段。C波段的频率范围是3400MHz 4200MHz。Ku波段的频率10.712.75GHz,其中可分为10.711.7GHz、11.712.2GHz、 12.212.75GHz等频段。 0051 如图1所示,本实施例中,所述匹配层20包括多个匹配层片层21,每一匹配层片层 21具有单一的折射率,核心层两侧。

25、的匹配层的多个匹配层片层的折射率均满足以下公式: 0052 0053 其中,m表示匹配层的总层数,i表示匹配层片层的编号,其中,靠近核心层的匹配 层片层的编号为m。从公式(4)我们可以看出,核心层10一侧的多个匹配层片层的折射率 与核心层10一侧的多个匹配层片层的折射率相对核心层对称设置。匹配层的设置(总层 数m)与核心层的最大折射率n max 与最小折射率n min 有直接关系;当i1时,表示第1层 的折射率,由于其要基本等于空气的折射率1,因此,只要n max 与n min 确定,则可以确定总层 数m。 0054 匹配层20可以是由自然界中存在的多个具有单一折射率的材料制成,也可是用 如图。

26、5所示的匹配层,其包括多个匹配层片层21,每一匹配层片层21包括材料相同的第一 基板22及第二基板23,所述第一基板21与第二基板22之间填充空气。通过控制空气的体 积与匹配层片层21的体积的比例,可以实现折射率从1(空气的折射率)到第一基板的折 射率的变化,从而可以合理设计每一匹配层片层的折射率,实现从空气到核心层的折射率 匹配。 0055 图4为一种形式的核心层片层11,所述核心层的每一核心层片层11的多个人造微 结构12形状相同,均为平面雪花状的金属微结构,且金属微结构的中心点与单元基材V的 中点重合,相同半径处的多个人造微结构具有相同的几何尺寸,且随着半径的增大人造微 结构12的几何尺。

27、寸逐渐减小。由于每一超材料单元的折射率是随着金属微结构的尺寸减 小而逐渐减小的,因此人造微结构几何尺寸越大,则其对应的折射率越大,因此,通过此方 式可以实现核心层片层的折射率分布按公式(1)的分布。 0056 根据不同的需要(不同的电磁波),以及不同的设计需要,核心层10可以包括不同 层数的如图4所示的核心层片层11。 0057 本发明还有第二种实施例,第二实施例与第一实施例的区别在于核心层片层11 的折射率n(r)分布公式中的l表示馈源到核心层的距离(第一实施例中l表示馈源到与 其靠近的匹配层的距离)。 0058 另外,本发明还提供本发明还提供了一种卫星电视接收系统,包括馈源、高频头及 卫星。

28、接收机,所述卫星电视接收系统还包括上述的后馈式卫星电视天线,所述后馈式卫星 说 明 书CN 102480028 A 6/6页 8 电视天线设置在馈源的前方。 0059 馈源、高频头及卫星接收机均为现有的技术,此处不再述说。 0060 上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体 实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员 在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多 形式,这些均属于本发明的保护之内。 说 明 书CN 102480028 A 1/4页 9 图1 图2 说 明 书 附 图CN 102480028 A 2/4页 10 图3 说 明 书 附 图CN 102480028 A 10 3/4页 11 图4 说 明 书 附 图CN 102480028 A 11 4/4页 12 图5 说 明 书 附 图CN 102480028 A 12 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1