具有高锂离子传导性的固态电解质.pdf

上传人:a1 文档编号:4328346 上传时间:2018-09-13 格式:PDF 页数:18 大小:1.58MB
返回 下载 相关 举报
摘要
申请专利号:

CN201180023469.1

申请日:

2011.04.04

公开号:

CN102884667A

公开日:

2013.01.16

当前法律状态:

撤回

有效性:

无权

法律详情:

发明专利申请公布后的视为撤回IPC(主分类):H01M 10/0562申请公布日:20130116|||实质审查的生效IPC(主分类):H01M 10/0562申请日:20110404|||公开

IPC分类号:

H01M10/0562; H01M10/052; H01M10/0525

主分类号:

H01M10/0562

申请人:

以赛亚·O·奥拉迪吉

发明人:

以赛亚·O·奥拉迪吉

地址:

美国佛罗里达

优先权:

2010.04.06 US 12/798,510

专利代理机构:

中国国际贸易促进委员会专利商标事务所 11038

代理人:

李跃龙

PDF下载: PDF下载
内容摘要

制造离子传导膜的方法包括使用初级无机化学品,其优选是水溶性的;用合适的溶剂配制该溶液,所述溶剂优选为去离子水;并使用喷雾沉积系统在加热的基材(优选在100至400℃下)上喷雾沉积该固体电解质基质。沉积步骤后进行锂化或添加锂,随后在优选为100至500℃的温度下进行热处理以获得高锂离子传导无机固态电解质。将电解质并入锂离子蓄电池中。锂离子蓄电池包括:包含选自LiMn204、LiMnNiCoA/02、LiCo02、LiNiCo02和LiFePO4的材料的阴极;包含选自Li、Li合金和掺杂Li的金属氧化物的材料的阳极;和选自LixAlz.y[GanB1-n]ySw(P04)c、LixAlz-y[GanB1-n]ySw(B03)c、LixGez-ySiySw(P04)c和LixGe(z-y)SiySw(B03)c的固体Li离子传导电解质,其中4

权利要求书

权利要求书Li离子传导电解质,其包含具有组成LixAlz‑y[GanB1‑n]ySw(PO4)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4,0≤n≤1和0<c<20。权利要求1的电解质,其中n≈0。Li离子传导电解质,其包含具有组成LixAlz‑y[GanB1‑n]ySw(BO3)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4,0≤n≤1和0<c<20。权利要求3的电解质,其中n≈0。Li离子传导电解质,其包含具有组成LixGez‑ySiySw(PO4)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20。Li离子传导电解质,其包含具有组成LixGe(z‑y)SiySw(BO3)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20。Li离子蓄电池,包含:包含选自LiMn2O4、LiMnNiCoAlO2、LiCoO2、LiNiCoO2和LiFePO4的材料的阴极;包含选自Li、Li合金和掺杂Li的金属氧化物的材料的阳极;和选自LixAlz‑y[GanB1‑n]ySw(PO4)c、LixAlz‑y[GanB1‑n]ySw(BO3)c、LixGez‑ySiySw(PO4)c和LixGe(z‑y)SiySw(BO3)c的固体Li离子传导电解质,其中4<w<20,3<x<10,0≤y<1,1≤z<4,0≤n≤1和0<c<20。权利要求7的Li离子电池,其中n≈0。

说明书

说明书具有高锂离子传导性的固态电解质
相关申请的交叉参考
本申请是2010年1月12日提交的题为“Film Growth System andMethod”的美国专利申请系列号12/656,000的部分连续申请,并还涉及均由本发明人于2008年5月7日提交的题为“Film Growth Systemand Method”的美国专利申请系列号12/151,562,2008年5月7日提交的题为“Zinc Oxide Film and Method of Making”的美国专利申请系列号12/151,465以及2009年7月30日提交的题为“Method forFabricating Cu‑Containing Ternary and Quaternary ChalcogenideThin Films”的美国专利申请系列号12/462,146,其全部公开内容通过引用并入本文。本申请涉及由本发明人于同日提交的题为“Methodof Forming Solid State Electrolyte Having High Lithium IonConduction and Battery Incorporating Same”的美国专利申请系列号‑‑‑‑‑‑‑‑和题为“Apparatus and Method for Depositing AlkaliMetals”的‑‑‑‑‑‑‑‑,其全部公开内容通过引用并入本文。
背景技术
发明领域
本发明涉及在基材上化学沉积固态碱性,优选锂,离子传导电解质的设备和方法,以及将该电解质并入蓄电池的方法。
相关领域描述
锂离子蓄电池提供任何蓄电池化学中最高的能量密度和比能量。因此,其被认为是运输和固定能量储存用途的有希望的候选。但是,在这些电池适于广泛应用于运输之前需要在安全性、能量密度、循环寿命和成本方面的显著改善。安全问题主要来自于存在挥发性有机溶剂和阴极材料,其在某些操作和滥用情况下发生发热反应,可能导致灾难性的热失控。液体的存在还导致在不均匀的电流分布的条件下,尤其是在高充电/放电倍率下的锂枝晶生长。最后,传统Li离子电池制造是极端资本密集的,对扩大生产产生了巨大的财务障碍。最佳的解决方案是使用无机固态组分,这消除了液体电解质体系导致的问题。除了改善的安全性的优点外,它们还容许使用更高能量的阴极材料,极大提高了能量密度并大大延长了循环寿命。
尽管LiSP、LiSiPS、LiGePS,或通常为Li xM1‑yM′yS4(M=Si、Ge,且M′=P、Al、Zn、Ga、Sb)形式的硫代LISICON固态电解质已经发现具有可以与液体电解质相比的离子电导性(参见Masahiro等人,SolidState Ionics 170:173‑180(2004)),但该生长方法通常昂贵且麻烦,所得电解质材料为丸粒、陶瓷/玻璃板或粉末形式,使得难以将它们集成在大号固态锂蓄离子电池中。
Seino等人在美国专利申请公开2009/0011339A1中公开了一种锂离子传导固体电解质,其包含高纯度硫化锂(Li2S)、三硫化二硼(B2S3)和由LiaMOb所代表的化合物;其中LiaMOb是硅酸锂(Li4SiO4)、硼酸锂(Li3BO3)或磷酸锂(Li3PO4)。将这些化合物的粉末以正确比例混合在一起并造粒。对该丸粒施以800℃4小时以进行熔融反应。在冷却后对该丸粒在300℃下进一步施以热处理以形成高锂离子传导固体电解质。
Kugai等人在美国专利US 6,641,863中使用真空蒸发、真空激光烧蚀或真空离子镀以便在阳极上沉积优选厚度为0.1至2微米的固体电解质薄膜。通过蒸发Li2S、A和B化合物的混合物获得该膜电解质;其中A是GeS2、Ga2S3或SiS2,B是Li3PO4‑xN2x/3、Li4SiO4‑xN2x/3、Li4GeO4‑xN2x/3(0<x<4)或Li3BO3‑xN2x/3(0<x<3)。该电解质膜沉积在阳极上以阻挡液体电解质基锂离子二次蓄电池中的Li枝晶生长。进行40至200℃温度下的原位或沉积后热处理以便将该固态电解质膜的锂离子传导率提高到可以与液体电解质相比的值。
Minami等人(参见Solid State Ionics 178:837‑41(2007))使用机械球磨以便在370rpm下混合所选比例的Li2S与P2S5结晶粉末20小时。细磨的粉末混合物随后在密封石英管中在750℃的温度下加热20小时以形成熔融的样品。该样品用冰淬冷以形成70Li2S.30P2S5玻璃。该玻璃随后在280℃下退火以形成离子传导率为约2.2×10‑3Scm‑1的70Li2S·30P2S5陶瓷玻璃(Li7P3S11)。
Trevey等人(参见Electrochemistry Communications,11(9):1830‑33,(2009))使用约55℃下的加热机械球磨来研磨并混合适当比例的Li2S与P2S5结晶粉末20小时以形成离子传导率为1.27×10‑3S·cm‑1的77.5Li2S‑22.5P2S5的玻璃陶瓷粉末。该粉末随后造粒用于电池。
所有这些情况下的原材料均为构成电解质的组分的各种化合物的粉末。在一种情况下,这些用在昂贵的真空系统中以沉积电解质的薄膜。采用沉积0.1至2微米膜以阻挡液体电解质基锂离子蓄电池中阳极上的锂枝晶形成的方法将招致价格惩罚;但是,其用于沉积适于大号全固态锂离子蓄电池的更厚的膜将是不经济的。在其它情况下,使用球磨获得更细的粉末会产生麻烦。在整个蓄电池制造步骤中,由高温下的粉末熔融和淬冷获得的玻璃陶瓷电解质的集成是不常见的并且也许是不可能的。但是,其中省略熔体淬冷和合并的阳极、电解质与阴极的造粒以制造该蓄电池的选项是可行且略微便宜的。但是可以预见一种具有更低的每单位质量能量的大容量蓄电池(或者为纽扣电池格式)。
因此,需要一种用于生长薄的或厚的高锂离子传导固态电解质膜的灵活和经济的方法,其中该生长从大部分或所有组成元素的原子水平混合开始。为了降低整体蓄电池制造成本,该方法还应当适于在蓄电池制造中与其它工艺步骤无缝集成。
目的和优点
本发明的目的包括下面这些:提供制造具有高碱(优选锂)离子传导性的固体电解质的方法;提供通过沉积可被碱金属掺杂并热处理以产生最终电解质组合物的前体化合物制造固体电解质的方法;提供组装全固态锂蓄电池的方法;提供改进的固态锂离子传导膜;和提供便于制造和改进的固态锂离子蓄电池。结合附图阅读,考虑以下说明书,本发明的这些和其它目的与优点将变得清楚。
发明概述
按照本发明的一个方面,Li离子传导电解质包含具有组成LixAlz‑yGaySw(PO4)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20。
按照本发明的另一方面,Li离子传导电解质包含具有组成LixAlz‑yGaySw(BO3)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20。
按照本发明的另一方面,Li离子传导电解质包含具有组成LixGez‑ySiySw(PO4)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20。
按照本发明的另一方面,Li离子传导电解质包含具有组成LixGe(z‑y)SiySw(BO3)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20。
按照本发明的另一方面,一种制造碱离子,优选Li离子,传导电解质的方法包括以下步骤:
a)将电解质基质材料沉积到所选基材上,该基质材料包含第III族金属(B、Al、Ga)或第IV族金属(Ge、Si)、硫和选自BO3与PO4的阴离子;
b)将碱金属,优选Li沉积到该基质材料上;和
c)在约100至500℃的温度下退火(annealing)以便使碱金属与基质材料反应生成具有离子传导性质的电解质。
按照本发明的另一方面,将碱金属沉积到基材上的方法包括:
a)将该基材放置在含有所选气氛的沉积室中;
b)提供所选碱金属的盐的液体溶液;
c)在基材上方的室区域中以经雾化的雾形式分散该液体溶液;
d)将栅格放置在经雾化的雾与基材之间,该栅格相对于该基材保持于正DC电位;和
e)在栅格附近保持至少100℃的温度,使得该液体溶液的挥发性组分被蒸发,且来自雾化溶液的金属阳离子被导向该基材。
按照本发明的另一方面,用于将所选碱金属沉积到基材上的设备包括:
基材载体;
含有所选碱金属的液体溶液;
构造成在基材上分配该碱金属溶液的雾的雾化喷嘴;
足以在基材上的所选区域中保持至少100℃的温度以便使该液体溶液中的挥发性组分蒸发的热源;和
布置在该基材上的所选区域中的栅格,该栅格相对于该基材保持于正DC电位,使得来自该溶液的金属阳离子被导向该基材。
按照本发明的另一方面,Li离子蓄电池包含:
包含选自LiMn2O4、LiMnNiCoAlO2、LiCoO2、LiNiCoO2和LiFePO4的材料的阴极;
包含选自Li和Li合金或掺杂Li的金属氧化物的材料的阳极材料;和
选自LixAlz‑yGaySw(PO4)c、LixAlz‑yGaySw(BO3)c、LixGez‑ySiySw(PO4)c和LixGe(z‑y)SiySw(BO3)c的固体Li离子传导电解质,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20。
按照本发明的另一方面,制造Li离子蓄电池的方法包括以下步骤:
a)提供包含金属片的集流体;
b)在集流体上沉积阴极材料;
c)在阴极材料上沉积电解质基质材料;
d)将Li沉积到该电解质基质上;
e)在100至500℃的温度下退火以便使Li与该电解质基质反应以形成Li离子传导电解质;
f)将阳极材料沉积到该Li传导电解质上;和
g)将集流体施加到该阳极材料上。
按照本发明的另一方面,制造Li离子蓄电池的方法包括以下步骤:
a)提供包含金属片的集流体;
b)在集流体上沉积阳极材料;
c)在阳极材料上沉积电解质基质材料;
d)将Li沉积到该电解质基质上;
e)在100至500℃的温度下退火以便使Li与该电解质基质反应形成Li离子传导电解质;
f)将阴极材料沉积到该Li传导电解质上;和
g)将集流体施加到该阴极材料上。
附图概述
本文包括附在说明书后并构成说明书一部分的图以描述本发明的某些方面。通过参照附图中描述的示例性且因此为非限制性的实施方案,本发明的以及由本发明提供的系统的部件和操作的更清楚的概念将更容易地变得明了,在附图中,相同的数字(如果它们出现于超过一幅图中)指相同的元件。图中的特征不必按比例绘制。
图1是按照本发明一个方面的VSPEED法的示意图。
图2是按照本发明另一方面的电场辅助VSPEED法的示意图。
图3是用于形成固体电解质的工艺顺序的示意图。
图4是通过本发明的方法制得的电解质的某些性质的图解。
图5是用于形成固态蓄电池的工艺顺序的示意图。
图6是用于形成固态蓄电池的另一工艺顺序的示意图。
图7是用于形成固态蓄电池的另一工艺顺序的示意图。
图8是用于形成固态蓄电池的另一工艺顺序的示意图。
发明详述
本发明针对薄或厚的高碱金属(优选锂)离子传导的固态电解质膜的生长,其中该生长从大部分组成元素的原子水平混合开始。该生长使用初级无机化学品,其优选是水溶性的;用适当的溶剂,优选去离子水配制该溶液,其可以包括醇、二醇、酮和其它添加剂;并使用喷雾沉积系统,优选如在申请人的共同未决美国专利申请系列号12/462,146中详细描述的“Vapor Phase Streaming Process forElectroless Electrochemical Deposition”(VPSPEED)系统形式,在100至400℃下在加热的基材上沉积固体电解质基质。在该沉积步骤后进行锂化或添加锂,随后在优选100至500℃的温度下热处理以获得高锂离子传导无机固态电解质。
对于去离子水作为溶剂而言,申请人已发现可实现的某些固态电解质是LixAl(z‑y)GaySw(PO4)c或LixAl(z‑y)GaySw(BO3)c。该基质对于LixAl(z‑y)GaySw(PO4)c是Al(z‑y)GaySw(PO4)c,对于LixAl(z‑y)GaySw(BO3)c是Al(z‑y)GaySw(BO3)c。在某些情况下期望用硼(B)替换这些化合物中的Ga,因为Ga的成本相对更高,获得通式LixAl(z‑y)[GanB1‑n)ySw(PO4)c或LixAl(z‑y)[GanB1‑n)ySw(BO3)c,其中0≤n≤1。申请人设想在某些情况下,Ga将被B完全替换,即在上面给出的通式中n≈0。
对于去离子水之外的溶剂,虽然上面的仍然可以实现,但申请人已经发现,还可以获得Li xGez‑ySiySw(PO4)c或Li xGez‑ySiySw(BO3)c形式的电解质,而Gez‑ySiySw(PO4)c或Gez‑ySiySw(BO3)c作为各自的基质。
优选的化学反应物是作为这些金属的源的Al和Ga的乙酸盐、硫酸盐、氯化物、柠檬酸盐、硝酸盐或有机金属;作为配体和硫源的三乙醇胺(triacethanolamine)或硫脲;作为附加配体的乙酸、柠檬酸、盐酸、硫酸、硝酸或乙腈等等;和作为优选磷酸根源的磷酸;或作为优选硼酸根源的硼酸。为了用B替换Ga,某些优选的B源是三乙醇胺硼酸盐和磷酸硼。这些化学品以所需比例在所选溶剂中混合在一起以形成透明溶液,将该溶液采用如前述美国专利申请系列号12/462,146中所述VPSPEED进行喷雾沉积以形成电解质基质。为了改善膜的平滑度,还可以将醇、丙酮、甲基丙醇或乙基乙二醇等等添加到该水溶液中以进一步降低雾液滴尺寸。
对于Gez‑ySiySw(PO4)c或Gez‑ySiySw(BO3)c,某些可用的Ge或Si的源是甲醇锗、乙基三氯硅烷;三乙醇胺或硫脲作为配体和硫源;乙酸、柠檬酸或乙腈等作为附加配体;和萘基磷酸酯作为磷酸根源;或硼酸三甲酯作为硼酸根源。这些化学品以所需比例在所选非水溶剂中混合在一起以形成透明溶液,将该溶液采用如前述美国专利申请系列号12/462,146中所述VPSPEED喷雾沉积以生成电解质基质。
基质的锂化可以通过Li的封闭空间升华、或Li的真空蒸发、或Li的场辅助VPSPEED(FAVPSPEED)沉积来实现。FAVPSPEED是VPSPEED的发明改良以允许纯Li金属或其它金属沉积,特别是其它碱金属。通过如下方式获得FAVSPEED:在喷雾喷嘴与基材之间的喷雾路径中并入石英灯或其它合适热源并且在灯位置与基材之间施加电场以使得喷雾羽流中的正金属离子被导向沉积用基材(如图2中示意性显示的那样),同时喷雾羽流中的溶剂和其它挥发性物质在它们达到基材前蒸发。用于锂沉积的前体是溶解在醇(优选C1至C4醇)中的锂盐,而乙酸、柠檬酸、盐酸、硫酸、硝酸或乙腈作为附加配体。
锂化基质的退火优选在约100至500℃的温度下在封闭加热设备如炉、快速热退火系统或闪速(flash)退火系统中进行约5至60分钟以形成高度离子传导性电解质(参见图3和4)。
该固态电解质可以沉积到具有预涂覆的阴极的集流体基材或具有预涂覆的阳极的集流体基材上。还可以沉积在锂、镁、铝箔或这些金属的合金的箔或其它合适的基材上。
使用本发明的固态电解质(SSE)的所有固态锂蓄离子电池制造可以采用图5至8中所述的任何方案。
在下面的实施例中将更详细地描述本发明的各个方面,这些实施例仅仅是示例性的而非旨在限制所要求保护的本发明的范围。
实施例
参照图1‑3,使用美国专利申请系列号12/462,146中详细描述的VSPEED法,将AlGaSPO411沉积到位于VSPEED设备中33处的金属基材10上。反应物水溶液具有下列组成:乙酸铝0.02M,乙酸镓0.013M,硫脲0.2M,和磷酸3.0M,以及乙酸0.05M。该溶液还含有5%的醇以进一步降低雾的液滴尺寸。该溶液喷雾沉积到该基材上,该基材保持在200℃下,形成约1微米厚的膜。
实施例
前面的实施例中所述膜随后转移到与充有氩气的手套箱相连的传统真空室中。随后在该电解质基质11上沉积厚度约1微米的锂12。该膜或者可以转移到氩环境手套箱中的如图2中所示的场辅助(FAVPSPEED)沉积设备中。Li金属12可以通过喷雾沉积LiNO30.3M、硝酸0.3M和乙腈0.2M的醇溶液沉积到保持在150℃下的电解质基质11上。栅格区域保持在约130℃下,栅格与基材之间的电位差为约5V。锂化基质在充有氩气的手套箱中首先在200℃下热处理约20分钟以便所有的锂扩散到电解质基质中,随后在300℃下热处理约20分钟以产生具有最终名义组成LixAl(z‑y)GaySw(PO4)c的高度锂离子传导性电解质13。
本领域技术人员将意识到,可以通过改变所用反应物的相对比例和通过改变与沉积的基质的量相比所沉积的Li的量在可用范围上控制整体组成。申请人认为可用电解质组成包括至少下列组成:
具有组成LixAlz‑yGaySw(PO4)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20;
具有组成LixAlz‑yGaySw(BO3)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20;
具有组成LixGez‑ySiySw(PO4)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20;
具有组成LixGe(z‑y)SiySw(BO3)c的化合物,其中4<w<20,3<x<10,0≤y<1,1≤z<4和0<c<20;以及
如上所述,Ga可以部分或全部被B替换。
考虑前述实施例将会明白,本领域技术人员可以通过常规实验以各种方式改变本发明的FAVPSPEED法。例如,可以使用它们的适当的盐沉积其它碱金属,如Na。适当的碱金属盐包括碱金属氯化物、碱金属硝酸盐、碱金属乙酸盐和碱金属醇盐。栅格区域中的温度可以略微改变(通常在100至175℃范围上)以适应所用的特定溶液,工艺室可以相对于环境保持在正压或负压下以进一步控制蒸发过程。可以根据特定用途改变室气氛,其可以包括氩气或其它惰性气体、干燥氮气等等。类似地,可以在约1至10V的所选范围内改变栅格电位,取决于该设备的特定几何形状、基材的尺寸和栅格与基材之间的间距。
着重强调,按照本发明的一个方面,该FAVPSPEED法可用于将碱金属,如Li沉积到所选的基质化合物上,要理解的是,许多其它合适的沉积法也可用于该步骤。由此,可以使用蒸发涂覆、溅射沉积或本领域公知的任何其它合适的将金属沉积到表面上的方法将该碱金属沉积到该基质层上。
实施例
可以容易地修改本发明的方法以制造其它电解质组合物。下表中给出了一些合适的反应物水溶液。
LixGaySw(PO4)c
硝酸镓0.033M
硫脲0.2M
磷酸1M
硝酸0.05M
该水溶液的约5体积%是醇。
LixAl(z‑y)GaySw(BO3)c
乙酸铝0.02M
乙酸镓0.013M
硫脲0.2M
硼酸0.5M
乙酸0.05M
该水溶液的约5体积%是醇。
要理解的是,可以通过常规实验改变本发明的方法以制造许多其它可用的组合物。例如,β″‑氧化铝是公知的固体离子导体,其可以用各种可移动(mobile)离子物质制备,包括Na+、K+、Li+、Ag+、H+、Pb2+、Sr2+和Ba2+,同时保持低的电子传导性。此外,可以添加其它掺杂剂物质以改变离子传导性,特别是降低活化能,由此改善低温导电性。本领域技术人员因此可以采用本发明的VPSPEED法(或其它合适的沉积法)沉积包含氧化铝(和任何金属掺杂剂)的膜,并随后使用该FAVPSPEED法沉积所需的可移动离子物质,接着退火以形成所需β″‑氧化铝结构。
要进一步理解的是,除固态电池外,固体离子导体还用于许多用处。例如,β″‑氧化铝用于高温液体蓄电池,如各种钠‑硫电池,还可用于高温热电转化器。固体离子导体还可用于如各种类型的传感器、电致变色窗和染料敏化太阳能电池的用途。
实施例
图4描述了按照本发明制得的固态电解质(SSE)的电特性。该电解质具有LiAlGaSPO4的名义组成,Al:Ga=3:2且Li:AlGaSPO4=1:1(按厚度计)。在200‑300℃下在充有氩的手套箱中进行退火。Li/SSE/Li和SS/SSE/Li结构随后包装在具有适当导线的密封袋中。随后通过对每个结构施以0.1V的恒定电压并同时记录900秒内的电流进行DC瞬变测量。随后计算电阻和电导率。该Li/SSE/Li结构获得10‑4S/cm的离子传导率,该SS/SSE/In结构获得约10‑11S/cm的离子传导率。可以看出,离子传导率(10‑4S/cm)比电子电导率高6‑7个数量级。通过常规试验,通过优化特定组成的条件,可以进一步改善该离子传导率,或可高至10‑3S/cm。
对表现出约10‑4S/cm的离子传导率的一种电解质进行分析,其具有大致由式Li8Al1.13GaS5(PO4)1.2(通过EDX测定的主要元素,通过差值算得Li)代表的最终组成。
基于前述实施例,本发明可以以多种方式进一步延伸至制造所有固态Li离子蓄电池,如下列实施例中所述。
实施例
参照图5,用通过VPSPEED或其它合适技术沉积的阴极材料14涂覆集流体10′(Al、Cu或其它合适的金属箔),所述阴极材料优选为LiMn2O4、LiMnNiCoAlO2、LiFePO4等等。按照下面的实施例所述的程序,沉积电解质基质11,通过FAVSPEED或常规真空技术沉积Li 12,热处理该涂层以形成固体电解质13。接着,阳极15(Li、Li‑Al或Li‑Mg)通过FAVPSPEED或常规真空技术沉积在电解质13上。用导电银/铝粘合剂(例如Silfill Conductive Adhesive,P&P Technology Ltd.,Finch Dr.,Springwood,Braintree,Essex CM72SF,England)的层17涂覆另一集流体10″;并将导电糊膏17挤压接触该含Li阳极15,由此完成电池。
实施例
参照图6,将阴极材料14施加到第一集流体10′,沉积电解质基质11,沉积Li 12。阳极材料18沉积在第二集流体10″′上,电解质基质11′和Li 12′沉积在阳极18上。在某些情况下,电解质基质11′在阳极材料18上的沉积可以省略。将两个涂覆的叠层面对面放置,使得涂有Li的表面接触,施加压力以压缩该叠层,同时加热;Li与两个电解质基质层之间的反应形成连续的固体电解质层及机械粘合,由此完成该电池。
实施例
参照图7,电解质基质11′可以如早先在图6中所示那样沉积在阳极涂覆的基材10″′上。Li 12如前沉积并反应以形成电解质13。用阴极材料14涂覆基材10′,随后施加Li离子传导粘合剂19的层。该粘合剂是报道的溶解在二甲氧基乙烷(DME)中的聚偏氟乙烯/六氟丙烯共聚物(PVDF/HFP)与EC/PC中的1.5M LiPF6的30%溶液的混合物,在封闭容器中加热至50℃,随后冷却至室温。电池的两个半部分用离子传导粘合剂19热压在一起形成离子传导机械结合,由此完成该电池。要理解的是,作为替代,该离子传导粘合剂19可如图8中所示那样施加到涂覆阳极的基材上。
为简单起见,前面的实施例描述了某些固定尺寸的单个基材。但是,申请人强调,本发明还可以以半连续或卷到卷方式进行,其中基材或集流体是基本连续的柔性片材,其以逐步方式在沉积环境中换位,由此可以制造许多薄膜电池,后者如果需要的话可切割成单个电池。该基材直接在涂覆区域下具有物理支承体,或可以使其通过两个适当定位的辊,由此简单地张力支承。卷到卷装置详细描述在申请人的共同未决美国专利申请系列号12/151,562和12/151,465中。

具有高锂离子传导性的固态电解质.pdf_第1页
第1页 / 共18页
具有高锂离子传导性的固态电解质.pdf_第2页
第2页 / 共18页
具有高锂离子传导性的固态电解质.pdf_第3页
第3页 / 共18页
点击查看更多>>
资源描述

《具有高锂离子传导性的固态电解质.pdf》由会员分享,可在线阅读,更多相关《具有高锂离子传导性的固态电解质.pdf(18页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 102884667 A (43)申请公布日 2013.01.16 C N 1 0 2 8 8 4 6 6 7 A *CN102884667A* (21)申请号 201180023469.1 (22)申请日 2011.04.04 12/798,510 2010.04.06 US H01M 10/0562(2006.01) H01M 10/052(2006.01) H01M 10/0525(2006.01) (71)申请人以赛亚O奥拉迪吉 地址美国佛罗里达 (72)发明人以赛亚O奥拉迪吉 (74)专利代理机构中国国际贸易促进委员会专 利商标事务所 11038 代理人李跃龙。

2、 (54) 发明名称 具有高锂离子传导性的固态电解质 (57) 摘要 制造离子传导膜的方法包括使用初级无机 化学品,其优选是水溶性的;用合适的溶剂配制 该溶液,所述溶剂优选为去离子水;并使用喷雾 沉积系统在加热的基材(优选在100至400 下)上喷雾沉积该固体电解质基质。沉积步 骤后进行锂化或添加锂,随后在优选为100至 500的温度下进行热处理以获得高锂离子传 导无机固态电解质。将电解质并入锂离子蓄电 池中。锂离子蓄电池包括:包含选自LiMn204、 LiMnNiCoA/02、LiCo02、LiNiCo02和LiFePO4 的材料的阴极;包含选自Li、Li合金和掺杂Li 的金属氧化物的材料的。

3、阳极;和选自LixAlz. yGanB1-nySw(P04)c、LixAlz-yGanB1-n ySw(B03)c、LixGez-ySiySw(P04)c和LixGe(z-y) SiySw(B03)c的固体Li离子传导电解质,其中 4w20.3x10,0y1.1=z4,0=n=1和 0c20。 (30)优先权数据 (85)PCT申请进入国家阶段日 2012.11.12 (86)PCT申请的申请数据 PCT/US2011/000599 2011.04.04 (87)PCT申请的公布数据 WO2011/126558 EN 2011.10.13 (51)Int.Cl. 权利要求书1页 说明书8页 附。

4、图8页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 1 页 说明书 8 页 附图 8 页 1/1页 2 1.Li离子传导电解质,其包含具有组成Li x Al z-y Ga n B 1-n y S w (PO 4 ) c 的化合物,其中 4w20,3x10,0y1,1z4,0n1和0c20。 2.权利要求1的电解质,其中n0。 3.Li离子传导电解质,其包含具有组成Li x Al z-y Ga n B 1-n y S w (BO 3 ) c 的化合物,其中 4w20,3x10,0y1,1z4,0n1和0c20。 4.权利要求3的电解质,其中n0。 5.Li离子传导电解。

5、质,其包含具有组成Li x Ge z-y Si y S w (PO 4 ) c 的化合物,其中4w20, 3x10,0y1,1z4和0c20。 6.Li离子传导电解质,其包含具有组成Li x Ge (z-y) Si y S w (BO 3 ) c 的化合物,其中4w20, 3x10,0y1,1z4和0c20。 7.Li离子蓄电池,包含: 包含选自LiMn 2 O 4 、LiMnNiCoAlO 2 、LiCoO 2 、LiNiCoO 2 和LiFePO 4 的材料的阴极; 包含选自Li、Li合金和掺杂Li的金属氧化物的材料的阳极;和 选自Li x Al z-y Ga n B 1-n y S w 。

6、(PO 4 ) c 、Li x Al z-y Ga n B 1-n y S w (BO 3 ) c 、Li x Ge z-y Si y S w (PO 4 ) c 和 Li x Ge (z-y) Si y S w (BO 3 ) c 的固体Li离子传导电解质,其中4w20,3x10,0y1,1z4, 0n1和0c20。 8.权利要求7的Li离子电池,其中n0。 权 利 要 求 书CN 102884667 A 1/8页 3 具有高锂离子传导性的固态电解质 0001 相关申请的交叉参考 0002 本申请是2010年1月12日提交的题为“Film Growth System andMethod”的美。

7、 国专利申请系列号12/656,000的部分连续申请,并还涉及均由本发明人于2008年5月7 日提交的题为“Film Growth Systemand Method”的美国专利申请系列号12/151,562,2008 年5月7日提交的题为“Zinc Oxide Film and Method of Making”的美国专利申请系列号 12/151,465以及2009年7月30日提交的题为“Method forFabricating Cu-Containing Ternary and Quaternary ChalcogenideThin Films”的美国专利申请系列号12/462,146, 。

8、其全部公开内容通过引用并入本文。本申请涉及由本发明人于同日提交的题为“Methodof Forming Solid State Electrolyte Having High Lithium IonConduction and Battery Incorporating Same”的美国专利申请系列号-和题为“Apparatus and Method for Depositing AlkaliMetals”的-,其全部公开内容通过引用并入本文。 背景技术 发明领域 0003 本发明涉及在基材上化学沉积固态碱性,优选锂,离子传导电解质的设备和方法, 以及将该电解质并入蓄电池的方法。 0004 相。

9、关领域描述 0005 锂离子蓄电池提供任何蓄电池化学中最高的能量密度和比能量。因此,其被认为 是运输和固定能量储存用途的有希望的候选。但是,在这些电池适于广泛应用于运输之前 需要在安全性、能量密度、循环寿命和成本方面的显著改善。安全问题主要来自于存在挥发 性有机溶剂和阴极材料,其在某些操作和滥用情况下发生发热反应,可能导致灾难性的热 失控。液体的存在还导致在不均匀的电流分布的条件下,尤其是在高充电/放电倍率下的 锂枝晶生长。最后,传统Li离子电池制造是极端资本密集的,对扩大生产产生了巨大的财 务障碍。最佳的解决方案是使用无机固态组分,这消除了液体电解质体系导致的问题。除 了改善的安全性的优点外。

10、,它们还容许使用更高能量的阴极材料,极大提高了能量密度并 大大延长了循环寿命。 0006 尽管LiSP、LiSiPS、LiGePS,或通常为Li x M 1-y M y S 4 (M=Si、Ge,且M=P、Al、Zn、 Ga、Sb)形式的硫代LISICON固态电解质已经发现具有可以与液体电解质相比的离子电导 性(参见Masahiro等人,SolidState Ionics 170:173-180(2004)),但该生长方法通常昂 贵且麻烦,所得电解质材料为丸粒、陶瓷/玻璃板或粉末形式,使得难以将它们集成在大号 固态锂蓄离子电池中。 0007 Seino等人在美国专利申请公开2009/00113。

11、39A1中公开了一种锂离子传导固体 电解质,其包含高纯度硫化锂(Li 2 S)、三硫化二硼(B 2 S 3 )和由Li a MO b 所代表的化合物;其中 Li a MO b 是硅酸锂(Li 4 SiO 4 )、硼酸锂(Li 3 BO 3 )或磷酸锂(Li 3 PO 4 )。将这些化合物的粉末以正确 比例混合在一起并造粒。对该丸粒施以8004小时以进行熔融反应。在冷却后对该丸粒 说 明 书CN 102884667 A 2/8页 4 在300下进一步施以热处理以形成高锂离子传导固体电解质。 0008 Kugai等人在美国专利US 6,641,863中使用真空蒸发、真空激光烧蚀或真空离子 镀以便在。

12、阳极上沉积优选厚度为0.1至2微米的固体电解质薄膜。通过蒸发Li 2 S、A和B化 合物的混合物获得该膜电解质;其中A是GeS 2 、Ga 2 S 3 或SiS 2 ,B是Li 3 PO 4-x N 2x/3 、Li 4 SiO 4-x N 2x/3 、 Li 4 GeO 4-x N 2x/3 (0x4)或Li 3 BO 3-x N 2x/3 (0x3)。该电解质膜沉积在阳极上以阻挡液体电解 质基锂离子二次蓄电池中的Li枝晶生长。进行40至200温度下的原位或沉积后热处理 以便将该固态电解质膜的锂离子传导率提高到可以与液体电解质相比的值。 0009 Minami等人(参见Solid State。

13、 Ionics 178:837-41(2007))使用机械球磨以便 在370rpm下混合所选比例的Li 2 S与P 2 S 5 结晶粉末20小时。细磨的粉末混合物随后在 密封石英管中在750的温度下加热20小时以形成熔融的样品。该样品用冰淬冷以形成 70Li 2 S.30P 2 S 5 玻璃。该玻璃随后在280下退火以形成离子传导率为约2.210 -3 Scm -1 的 70Li 2 S30P 2 S 5 陶瓷玻璃(Li 7 P 3 S 11 )。 0010 Trevey等人(参见Electrochemistry Communications,11(9):1830-33,(2009)) 使用约。

14、55下的加热机械球磨来研磨并混合适当比例的Li 2 S与P 2 S 5 结晶粉末20小时以形 成离子传导率为1.2710 -3 Scm -1 的77.5Li 2 S-22.5P 2 S 5 的玻璃陶瓷粉末。该粉末随后造 粒用于电池。 0011 所有这些情况下的原材料均为构成电解质的组分的各种化合物的粉末。在一种情 况下,这些用在昂贵的真空系统中以沉积电解质的薄膜。采用沉积0.1至2微米膜以阻挡 液体电解质基锂离子蓄电池中阳极上的锂枝晶形成的方法将招致价格惩罚;但是,其用于 沉积适于大号全固态锂离子蓄电池的更厚的膜将是不经济的。在其它情况下,使用球磨获 得更细的粉末会产生麻烦。在整个蓄电池制造步。

15、骤中,由高温下的粉末熔融和淬冷获得的 玻璃陶瓷电解质的集成是不常见的并且也许是不可能的。但是,其中省略熔体淬冷和合并 的阳极、电解质与阴极的造粒以制造该蓄电池的选项是可行且略微便宜的。但是可以预见 一种具有更低的每单位质量能量的大容量蓄电池(或者为纽扣电池格式)。 0012 因此,需要一种用于生长薄的或厚的高锂离子传导固态电解质膜的灵活和经济的 方法,其中该生长从大部分或所有组成元素的原子水平混合开始。为了降低整体蓄电池制 造成本,该方法还应当适于在蓄电池制造中与其它工艺步骤无缝集成。 0013 目的和优点 0014 本发明的目的包括下面这些:提供制造具有高碱(优选锂)离子传导性的固体电 解质。

16、的方法;提供通过沉积可被碱金属掺杂并热处理以产生最终电解质组合物的前体化合 物制造固体电解质的方法;提供组装全固态锂蓄电池的方法;提供改进的固态锂离子传导 膜;和提供便于制造和改进的固态锂离子蓄电池。结合附图阅读,考虑以下说明书,本发明 的这些和其它目的与优点将变得清楚。 0015 发明概述 0016 按照本发明的一个方面,Li离子传导电解质包含具有组成Li x Al z-y Ga y S w (PO 4 ) c 的化 合物,其中4w20,3x10,0y1,1z4和0c20。 0017 按照本发明的另一方面,Li离子传导电解质包含具有组成Li x Al z-y Ga y S w (BO 3 )。

17、 c 的化 合物,其中4w20,3x10,0y1,1z4和0c20。 0018 按照本发明的另一方面,Li离子传导电解质包含具有组成Li x Ge z-y Si y S w (PO 4 ) c 的化 说 明 书CN 102884667 A 3/8页 5 合物,其中4w20,3x10,0y1,1z4和0c20。 0019 按照本发明的另一方面,Li离子传导电解质包含具有组成Li x Ge (z-y) Si y S w (BO 3 ) c 的 化合物,其中4w20,3x10,0y1,1z4和0c20。 0020 按照本发明的另一方面,一种制造碱离子,优选Li离子,传导电解质的方法包括 以下步骤: 。

18、0021 a)将电解质基质材料沉积到所选基材上,该基质材料包含第III族金属(B、Al、 Ga)或第IV族金属(Ge、Si)、硫和选自BO 3 与PO 4 的阴离子; 0022 b)将碱金属,优选Li沉积到该基质材料上;和 0023 c)在约100至500的温度下退火(annealing)以便使碱金属与基质材料反应生 成具有离子传导性质的电解质。 0024 按照本发明的另一方面,将碱金属沉积到基材上的方法包括: 0025 a)将该基材放置在含有所选气氛的沉积室中; 0026 b)提供所选碱金属的盐的液体溶液; 0027 c)在基材上方的室区域中以经雾化的雾形式分散该液体溶液; 0028 d)将。

19、栅格放置在经雾化的雾与基材之间,该栅格相对于该基材保持于正DC电位; 和 0029 e)在栅格附近保持至少100的温度,使得该液体溶液的挥发性组分被蒸发,且来 自雾化溶液的金属阳离子被导向该基材。 0030 按照本发明的另一方面,用于将所选碱金属沉积到基材上的设备包括: 0031 基材载体; 0032 含有所选碱金属的液体溶液; 0033 构造成在基材上分配该碱金属溶液的雾的雾化喷嘴; 0034 足以在基材上的所选区域中保持至少100的温度以便使该液体溶液中的挥发性 组分蒸发的热源;和 0035 布置在该基材上的所选区域中的栅格,该栅格相对于该基材保持于正DC电位,使 得来自该溶液的金属阳离子。

20、被导向该基材。 0036 按照本发明的另一方面,Li离子蓄电池包含: 0037 包含选自LiMn 2 O 4 、LiMnNiCoAlO 2 、LiCoO 2 、LiNiCoO 2 和LiFePO 4 的材料的阴极; 0038 包含选自Li和Li合金或掺杂Li的金属氧化物的材料的阳极材料;和 0039 选自Li x Al z-y Ga y S w (PO 4 ) c 、Li x Al z-y Ga y S w (BO 3 ) c 、Li x Ge z-y Si y S w (PO 4 ) c 和Li x Ge (z-y) Si y S w (BO 3 ) c 的固体Li离子传导电解质,其中4w2。

21、0,3x10,0y1,1z4和0c20。 0040 按照本发明的另一方面,制造Li离子蓄电池的方法包括以下步骤: 0041 a)提供包含金属片的集流体; 0042 b)在集流体上沉积阴极材料; 0043 c)在阴极材料上沉积电解质基质材料; 0044 d)将Li沉积到该电解质基质上; 0045 e)在100至500的温度下退火以便使Li与该电解质基质反应以形成Li离子传 导电解质; 0046 f)将阳极材料沉积到该Li传导电解质上;和 说 明 书CN 102884667 A 4/8页 6 0047 g)将集流体施加到该阳极材料上。 0048 按照本发明的另一方面,制造Li离子蓄电池的方法包括以。

22、下步骤: 0049 a)提供包含金属片的集流体; 0050 b)在集流体上沉积阳极材料; 0051 c)在阳极材料上沉积电解质基质材料; 0052 d)将Li沉积到该电解质基质上; 0053 e)在100至500的温度下退火以便使Li与该电解质基质反应形成Li离子传导 电解质; 0054 f)将阴极材料沉积到该Li传导电解质上;和 0055 g)将集流体施加到该阴极材料上。 0056 附图概述 0057 本文包括附在说明书后并构成说明书一部分的图以描述本发明的某些方面。通过 参照附图中描述的示例性且因此为非限制性的实施方案,本发明的以及由本发明提供的系 统的部件和操作的更清楚的概念将更容易地变。

23、得明了,在附图中,相同的数字(如果它们出 现于超过一幅图中)指相同的元件。图中的特征不必按比例绘制。 0058 图1是按照本发明一个方面的VSPEED法的示意图。 0059 图2是按照本发明另一方面的电场辅助VSPEED法的示意图。 0060 图3是用于形成固体电解质的工艺顺序的示意图。 0061 图4是通过本发明的方法制得的电解质的某些性质的图解。 0062 图5是用于形成固态蓄电池的工艺顺序的示意图。 0063 图6是用于形成固态蓄电池的另一工艺顺序的示意图。 0064 图7是用于形成固态蓄电池的另一工艺顺序的示意图。 0065 图8是用于形成固态蓄电池的另一工艺顺序的示意图。 0066 。

24、发明详述 0067 本发明针对薄或厚的高碱金属(优选锂)离子传导的固态电解质膜的生长,其中 该生长从大部分组成元素的原子水平混合开始。该生长使用初级无机化学品,其优选是 水溶性的;用适当的溶剂,优选去离子水配制该溶液,其可以包括醇、二醇、酮和其它添加 剂;并使用喷雾沉积系统,优选如在申请人的共同未决美国专利申请系列号12/462,146 中详细描述的“Vapor Phase Streaming Process forElectroless Electrochemical Deposition”(VPSPEED)系统形式,在100至400下在加热的基材上沉积固体电解质基质。 在该沉积步骤后进行锂。

25、化或添加锂,随后在优选100至500的温度下热处理以获得高锂 离子传导无机固态电解质。 0068 对于去离子水作为溶剂而言,申请人已发现可实现的某些固态电解质是Li x Al (z-y) Ga y S w (PO 4 ) c 或Li x Al (z-y) Ga y S w (BO 3 ) c 。该基质对于Li x Al (z-y) Ga y S w (PO 4 ) c 是Al (z-y) Ga y S w (PO 4 ) c , 对于Li x Al (z-y) Ga y S w (BO 3 ) c 是Al (z-y) Ga y S w (BO 3 ) c 。在某些情况下期望用硼(B)替换这些化。

26、合物 中的Ga,因为Ga的成本相对更高,获得通式Li x Al (z-y) Ga n B 1-n ) y S w (PO 4 ) c 或Li x Al (z-y) Ga n B 1-n ) y S w (BO 3 ) c ,其中0n1。申请人设想在某些情况下,Ga将被B完全替换,即在上面给出 的通式中n0。 0069 对于去离子水之外的溶剂,虽然上面的仍然可以实现,但申请人已经发现,还可 说 明 书CN 102884667 A 5/8页 7 以获得Li x Ge z-y Si y S w (PO 4 ) c 或Li x Ge z-y Si y S w (BO 3 ) c 形式的电解质,而Ge 。

27、z-y Si y S w (PO 4 ) c 或 Ge z-y Si y S w (BO 3 ) c 作为各自的基质。 0070 优选的化学反应物是作为这些金属的源的Al和Ga的乙酸盐、硫酸盐、氯化物、柠 檬酸盐、硝酸盐或有机金属;作为配体和硫源的三乙醇胺(triacethanolamine)或硫脲;作 为附加配体的乙酸、柠檬酸、盐酸、硫酸、硝酸或乙腈等等;和作为优选磷酸根源的磷酸;或 作为优选硼酸根源的硼酸。为了用B替换Ga,某些优选的B源是三乙醇胺硼酸盐和磷酸硼。 这些化学品以所需比例在所选溶剂中混合在一起以形成透明溶液,将该溶液采用如前述美 国专利申请系列号12/462,146中所述VP。

28、SPEED进行喷雾沉积以形成电解质基质。为了改 善膜的平滑度,还可以将醇、丙酮、甲基丙醇或乙基乙二醇等等添加到该水溶液中以进一步 降低雾液滴尺寸。 0071 对于Ge z-y Si y S w (PO 4 ) c 或Ge z-y Si y S w (BO 3 ) c ,某些可用的Ge或Si的源是甲醇锗、乙 基三氯硅烷;三乙醇胺或硫脲作为配体和硫源;乙酸、柠檬酸或乙腈等作为附加配体;和萘 基磷酸酯作为磷酸根源;或硼酸三甲酯作为硼酸根源。这些化学品以所需比例在所选非水 溶剂中混合在一起以形成透明溶液,将该溶液采用如前述美国专利申请系列号12/462,146 中所述VPSPEED喷雾沉积以生成电解质。

29、基质。 0072 基质的锂化可以通过Li的封闭空间升华、或Li的真空蒸发、或Li的场辅助 VPSPEED(FAVPSPEED)沉积来实现。FAVPSPEED是VPSPEED的发明改良以允许纯Li金属或 其它金属沉积,特别是其它碱金属。通过如下方式获得FAVSPEED:在喷雾喷嘴与基材之间 的喷雾路径中并入石英灯或其它合适热源并且在灯位置与基材之间施加电场以使得喷雾 羽流中的正金属离子被导向沉积用基材(如图2中示意性显示的那样),同时喷雾羽流中的 溶剂和其它挥发性物质在它们达到基材前蒸发。用于锂沉积的前体是溶解在醇(优选C 1 至 C 4 醇)中的锂盐,而乙酸、柠檬酸、盐酸、硫酸、硝酸或乙腈作为。

30、附加配体。 0073 锂化基质的退火优选在约100至500的温度下在封闭加热设备如炉、快速热退 火系统或闪速(flash)退火系统中进行约5至60分钟以形成高度离子传导性电解质(参见 图3和4)。 0074 该固态电解质可以沉积到具有预涂覆的阴极的集流体基材或具有预涂覆的阳极 的集流体基材上。还可以沉积在锂、镁、铝箔或这些金属的合金的箔或其它合适的基材上。 0075 使用本发明的固态电解质(SSE)的所有固态锂蓄离子电池制造可以采用图5至8 中所述的任何方案。 0076 在下面的实施例中将更详细地描述本发明的各个方面,这些实施例仅仅是示例性 的而非旨在限制所要求保护的本发明的范围。 实施例 0。

31、077 参照图1-3,使用美国专利申请系列号12/462,146中详细描述的VSPEED法,将 AlGaSPO 4 11沉积到位于VSPEED设备中33处的金属基材10上。反应物水溶液具有下列组 成:乙酸铝0.02M,乙酸镓0.013M,硫脲0.2M,和磷酸3.0M,以及乙酸0.05M。该溶液还含有 5%的醇以进一步降低雾的液滴尺寸。该溶液喷雾沉积到该基材上,该基材保持在200下, 形成约1微米厚的膜。 0078 实施例 说 明 书CN 102884667 A 6/8页 8 0079 前面的实施例中所述膜随后转移到与充有氩气的手套箱相连的传统真空室中。随 后在该电解质基质11上沉积厚度约1微米。

32、的锂12。该膜或者可以转移到氩环境手套箱中的 如图2中所示的场辅助(FAVPSPEED)沉积设备中。Li金属12可以通过喷雾沉积LiNO 3 0.3M、 硝酸0.3M和乙腈0.2M的醇溶液沉积到保持在150下的电解质基质11上。栅格区域保持 在约130下,栅格与基材之间的电位差为约5V。锂化基质在充有氩气的手套箱中首先在 200下热处理约20分钟以便所有的锂扩散到电解质基质中,随后在300下热处理约20 分钟以产生具有最终名义组成Li x Al (z-y) Ga y S w (PO 4 ) c 的高度锂离子传导性电解质13。 0080 本领域技术人员将意识到,可以通过改变所用反应物的相对比例和。

33、通过改变与沉 积的基质的量相比所沉积的Li的量在可用范围上控制整体组成。申请人认为可用电解质 组成包括至少下列组成: 0081 具有组成Li x Al z-y Ga y S w (PO 4 ) c 的化合物,其中4w20,3x10,0y1,1z4和 0c20; 0082 具有组成Li x Al z-y Ga y S w (BO 3 ) c 的化合物,其中4w20,3x10,0y1,1z4和 0c20; 0083 具有组成Li x Ge z-y Si y S w (PO 4 ) c 的化合物,其中4w20,3x10,0y1,1z4和 0c20; 0084 具有组成Li x Ge (z-y) Si。

34、 y S w (BO 3 ) c 的化合物,其中4w20,3x10,0y1,1z4和 0c20;以及 0085 如上所述,Ga可以部分或全部被B替换。 0086 考虑前述实施例将会明白,本领域技术人员可以通过常规实验以各种方式改变本 发明的FAVPSPEED法。例如,可以使用它们的适当的盐沉积其它碱金属,如Na。适当的碱金 属盐包括碱金属氯化物、碱金属硝酸盐、碱金属乙酸盐和碱金属醇盐。栅格区域中的温度可 以略微改变(通常在100至175范围上)以适应所用的特定溶液,工艺室可以相对于环境 保持在正压或负压下以进一步控制蒸发过程。可以根据特定用途改变室气氛,其可以包括 氩气或其它惰性气体、干燥氮气。

35、等等。类似地,可以在约1至10V的所选范围内改变栅格电 位,取决于该设备的特定几何形状、基材的尺寸和栅格与基材之间的间距。 0087 着重强调,按照本发明的一个方面,该FAVPSPEED法可用于将碱金属,如Li沉积到 所选的基质化合物上,要理解的是,许多其它合适的沉积法也可用于该步骤。由此,可以使 用蒸发涂覆、溅射沉积或本领域公知的任何其它合适的将金属沉积到表面上的方法将该碱 金属沉积到该基质层上。 0088 实施例 0089 可以容易地修改本发明的方法以制造其它电解质组合物。下表中给出了一些合适 的反应物水溶液。 0090 Li x Ga y S w (PO 4 ) c 0091 硝酸镓0.。

36、033M 0092 硫脲0.2M 0093 磷酸1M 0094 硝酸0.05M 0095 该水溶液的约5体积%是醇。 说 明 书CN 102884667 A 7/8页 9 0096 Li x Al (z-y) Ga y S w (BO 3 ) c 0097 乙酸铝0.02M 0098 乙酸镓0.013M 0099 硫脲0.2M 0100 硼酸0.5M 0101 乙酸0.05M 0102 该水溶液的约5体积%是醇。 0103 要理解的是,可以通过常规实验改变本发明的方法以制造许多其它可用的组合 物。例如,-氧化铝是公知的固体离子导体,其可以用各种可移动(mobile)离子物质 制备,包括Na +。

37、 、K + 、Li + 、Ag + 、H + 、Pb 2+ 、Sr 2+ 和Ba 2+ ,同时保持低的电子传导性。此外,可以添加 其它掺杂剂物质以改变离子传导性,特别是降低活化能,由此改善低温导电性。本领域技术 人员因此可以采用本发明的VPSPEED法(或其它合适的沉积法)沉积包含氧化铝(和任何金 属掺杂剂)的膜,并随后使用该FAVPSPEED法沉积所需的可移动离子物质,接着退火以形成 所需-氧化铝结构。 0104 要进一步理解的是,除固态电池外,固体离子导体还用于许多用处。例如, -氧化铝用于高温液体蓄电池,如各种钠-硫电池,还可用于高温热电转化器。固体离 子导体还可用于如各种类型的传感器、。

38、电致变色窗和染料敏化太阳能电池的用途。 0105 实施例 0106 图4描述了按照本发明制得的固态电解质(SSE)的电特性。该电解质具有 LiAlGaSPO 4 的名义组成,Al:Ga=3:2且Li:AlGaSPO 4 =1:1(按厚度计)。在200-300下在充 有氩的手套箱中进行退火。Li/SSE/Li和SS/SSE/Li结构随后包装在具有适当导线的密封 袋中。随后通过对每个结构施以0.1V的恒定电压并同时记录900秒内的电流进行DC瞬变 测量。随后计算电阻和电导率。该Li/SSE/Li结构获得10 -4 S/cm的离子传导率,该SS/SSE/ In结构获得约10 -11 S/cm的离子传。

39、导率。可以看出,离子传导率(10 -4 S/cm)比电子电导率高 6-7个数量级。通过常规试验,通过优化特定组成的条件,可以进一步改善该离子传导率,或 可高至10 -3 S/cm。 0107 对表现出约10 -4 S/cm的离子传导率的一种电解质进行分析,其具有大致由式 Li 8 Al 1.13 GaS 5 (PO 4 ) 1.2 (通过EDX测定的主要元素,通过差值算得Li)代表的最终组成。 0108 基于前述实施例,本发明可以以多种方式进一步延伸至制造所有固态Li离子蓄 电池,如下列实施例中所述。 0109 实施例 0110 参照图5,用通过VPSPEED或其它合适技术沉积的阴极材料14涂。

40、覆集流体10 (Al、Cu或其它合适的金属箔),所述阴极材料优选为LiMn 2 O 4 、LiMnNiCoAlO 2 、LiFePO 4 等 等。按照下面的实施例所述的程序,沉积电解质基质11,通过FAVSPEED或常规真空技术 沉积Li 12,热处理该涂层以形成固体电解质13。接着,阳极15(Li、Li-Al或Li-Mg)通 过FAVPSPEED或常规真空技术沉积在电解质13上。用导电银/铝粘合剂(例如Silfill Conductive Adhesive,P&P Technology Ltd.,Finch Dr.,Springwood,Braintree,Essex CM72SF,Engl。

41、and)的层17涂覆另一集流体10;并将导电糊膏17挤压接触该含Li阳极 15,由此完成电池。 说 明 书CN 102884667 A 8/8页 10 0111 实施例 0112 参照图6,将阴极材料14施加到第一集流体10,沉积电解质基质11,沉积Li 12。阳极材料18沉积在第二集流体10上,电解质基质11和Li 12沉积在阳极18 上。在某些情况下,电解质基质11在阳极材料18上的沉积可以省略。将两个涂覆的叠层 面对面放置,使得涂有Li的表面接触,施加压力以压缩该叠层,同时加热;Li与两个电解质 基质层之间的反应形成连续的固体电解质层及机械粘合,由此完成该电池。 0113 实施例 011。

42、4 参照图7,电解质基质11可以如早先在图6中所示那样沉积在阳极涂覆的基材 10上。Li 12如前沉积并反应以形成电解质13。用阴极材料14涂覆基材10,随后施 加Li离子传导粘合剂19的层。该粘合剂是报道的溶解在二甲氧基乙烷(DME)中的聚偏氟 乙烯/六氟丙烯共聚物(PVDF/HFP)与EC/PC中的1.5M LiPF 6 的30%溶液的混合物,在封闭 容器中加热至50,随后冷却至室温。电池的两个半部分用离子传导粘合剂19热压在一起 形成离子传导机械结合,由此完成该电池。要理解的是,作为替代,该离子传导粘合剂19可 如图8中所示那样施加到涂覆阳极的基材上。 0115 为简单起见,前面的实施例。

43、描述了某些固定尺寸的单个基材。但是,申请人强调, 本发明还可以以半连续或卷到卷方式进行,其中基材或集流体是基本连续的柔性片材,其 以逐步方式在沉积环境中换位,由此可以制造许多薄膜电池,后者如果需要的话可切割成 单个电池。该基材直接在涂覆区域下具有物理支承体,或可以使其通过两个适当定位的 辊,由此简单地张力支承。卷到卷装置详细描述在申请人的共同未决美国专利申请系列号 12/151,562和12/151,465中。 说 明 书CN 102884667 A 10 1/8页 11 图1 说 明 书 附 图CN 102884667 A 11 2/8页 12 图2 说 明 书 附 图CN 102884667 A 12 3/8页 13 图3 说 明 书 附 图CN 102884667 A 13 4/8页 14 图4 说 明 书 附 图CN 102884667 A 14 5/8页 15 图5 说 明 书 附 图CN 102884667 A 15 6/8页 16 图6 说 明 书 附 图CN 102884667 A 16 7/8页 17 图7 说 明 书 附 图CN 102884667 A 17 8/8页 18 图8 说 明 书 附 图CN 102884667 A 18 。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1