《通过放热到吸热的反馈的能量转换.pdf》由会员分享,可在线阅读,更多相关《通过放热到吸热的反馈的能量转换.pdf(16页珍藏版)》请在专利查询网上搜索。
1、(10)申请公布号 CN 102414852 A (43)申请公布日 2012.04.11 C N 1 0 2 4 1 4 8 5 2 A *CN102414852A* (21)申请号 201080018861.2 (22)申请日 2010.05.14 61/216,256 2009.05.16 US 61/268,189 2009.06.09 US 12/777,543 2010.05.11 US H01L 35/30(2006.01) (71)申请人马克亨尼斯 地址美国佛罗里达州 (72)发明人马克亨尼斯 (74)专利代理机构北京银龙知识产权代理有限 公司 11243 代理人曾贤伟 张瑛 。
2、(54) 发明名称 通过放热到吸热的反馈的能量转换 (57) 摘要 本发明提供一种用于通过热梯度将动能转换 为势能的系统和方法,包括用于吸收热量的吸热 单元,用于释放热量的放热单元,以及用于从外部 源接收能量以向吸热单元和放热单元提供动力的 控制单元。系统还包括具有通过热梯度将热量转 换成电势的多个热电元件的第一动力产生单元, 以及用于对控制单元提供由第一动力产生单元产 生的电势的反馈单元。 (30)优先权数据 (85)PCT申请进入国家阶段日 2011.10.27 (86)PCT申请的申请数据 PCT/US2010/034841 2010.05.14 (87)PCT申请的公布数据 WO201。
3、0/135173 EN 2010.11.25 (51)Int.Cl. (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 2 页 说明书 5 页 附图 8 页 CN 102414866 A 1/2页 2 1.一种用于通过热梯度将动能转换成势能的热电系统,所述系统包括: 用于吸收热量的吸热单元,所述吸热单元具有冷部分; 用于释放热量的放热单元,所述放热单元具有热部分; 用于从外部源接收能量以向吸热单元和放热单元提供动力的控制单元; 具有热部分、冷部分和多个热电元件的第一动力产生单元,用于将热量转换为电势,所 述多个热电元件通过热梯度电串联和热并联设置;以及 用于对控制单元提供。
4、由第一动力产生单元产生的电势的反馈单元。 2.根据权利要求1所述的热电系统,其中,第一动力产生单元设置在吸热单元和放热 单元之间,以及 第一动力产生单元的热部分用于与放热单元的热部分相互作用,且第一动力产生单元 的冷部分用于与吸热单元的冷部分相互作用。 3.根据权利要求2所述的热电系统,进一步包括: 一个或多个第二动力产生单元,每个第二动力产生单元具有热部分、冷部分和多个热 电元件,用于将热量转换成电势,所述多个热电元件通过热梯度电串联和热并联设置, 其中所述一个或多个第二动力产生单元中的每一个的热部分用于与放热单元的热部 分相互作用,且所述一个或多个第二动力产生单元中的每一个的冷部分用于与吸。
5、热单元的 冷部分相互作用。 4.根据权利要求1所述的热电系统,进一步包括: 用于报告吸热单元的温度的第一传感器; 用于报告放热单元的温度的第二传感器;以及 用于调节控制单元从而保持所述吸热单元和放热单元之间的最优温差的伺服单元。 5.根据权利要求1所述的热电系统,进一步包括: 设置在吸热单元和放热单元之间的低热导电势垒, 其中第一动力产生单元的冷部分用于与吸热单元的冷部分相互作用,且第一动力产生 单元的热部分用于与外部温度相互作用。 6.根据权利要求1所述的热电系统,进一步包括: 设置在吸热单元和放热单元之间的低热导电势垒, 其中第一动力产生单元的热部分用于与放热单元的热部分相互作用,且第一动。
6、力产生 单元的冷部分用于与外部温度相互作用。 7.根据权利要求6所述的热电系统,进一步包括: 第二动力产生单元,具有热部分、冷部分和多个热电元件,用于将热量转换成电势, 其中第二动力产生单元的冷部分用于与吸热单元的冷部分相互作用,且第二动力产生 单元的热部分用于与外部温度相互作用。 8.根据权利要求1所述的热电系统,其中由第一动力产生单元产生的电势用于补充来 自外部源的能量。 9.根据权利要求1所述的热电系统,其中由第一动力产生单元产生的电势大于从外部 源接收的能量。 10.根据权利要求1所述的热电系统,其中将由第一动力产生单元产生的电势提供给 外部源。 权 利 要 求 书CN 1024148。
7、52 A CN 102414866 A 2/2页 3 11.根据权利要求1所述的热电系统,其中吸热单元和放热单元是具有初级能量比率 超过2的闭式循环相变热泵的元件。 12.根据权利要求11所述的热电系统,其中由第一动力产生单元产生的电势用于改善 热泵的性能系数。 13.一种用于通过热梯度将动能转换成势能的方法,所述方法包括: 通过具有冷部分的吸热单元吸收热量; 通过具有热部分的放热单元释放热量; 通过控制单元接收能量; 将接收到的能量提供给吸热单元和放热单元; 通过第一动力产生单元将热量转换为势能, 其中所述第一动力产生单元包括热部分、冷部分和通过热梯度被电串联和热并联设置 的多个热电元件;以。
8、及 对控制单元提供电势。 14.根据权利要求13所述的用于将动能转换成势能的方法,进一步包括: 在吸热单元和放热单元间设置第一动力产生单元, 其中第一动力产生单元的热部分邻近放热单元的热部分,且第一动力产生单元的冷部 分邻近吸热单元的冷部分。 15.根据权利要求13所述的用于将动能转换成势能的方法,进一步包括: 对吸热单元提供第一温度传感器; 对放热单元提供第二温度传感器; 在控制单元上安置伺服单元;以及 保持所述吸热单元和放热单元之间的最优温差。 16.根据权利要求13所述的用于将动能转换成势能的方法,进一步包括: 通过第二动力产生单元将热量转换成电势, 其中所述第二动力产生单元包括热部分、。
9、冷部分和通过热梯度被电串联和热并联放置 的多个热电元件。 17.根据权利要求16所述的用于将动能转换成势能的方法,进一步包括: 以第一动力产生单元和第二动力产生单元产生的电势来补充控制单元接收到的能量。 18.一种用于通过热梯度将动能转换为势能的热电系统,所述系统包括: 用于执行吸热反应的部件; 用于执行放热反应的部件; 用于接收外部能量并且将所述能量传送到用于执行吸热反应和放热反应的部件的部 件; 用于通过热梯度将热量转换成电势的部件;以及 用于对用于接收的部件提供电势的部件。 权 利 要 求 书CN 102414852 A CN 102414866 A 1/5页 4 通过放热到吸热的反馈的。
10、能量转换 技术领域 0001 本发明通常涉及发电反馈。更特别的,涉及用于通过热梯度将部分动能转换成势 能的系统和方法。 背景技术 0002 图1图示了被称为热电堆的公知的热电产生器(TEG)的一个实施例,其有利于理 解本文公开的发明构思。如所示,典型地,单个热电堆10包括在公共联结点13连接到一块 的两个不同的金属11和12,。热电偶10的原理是基于塞贝克效应,塞贝克效应阐述了,在 不同温度下电流将流过由两个不同金属形成的电路的联结点(即,热电偶)。这个准则的一 般的示例包括电子温度计,以及例如美国Melcor制造的CP2-8-31-081等微型热电转换器。 0003 然而,由于装置非常低的效。
11、率(通常在3-9的范围内),因此通常极大限制了使 用热电转换器作为动力源。在这点上,为了产生有用的电,传统TEG必须暴露在非常高的热 梯度中。这个需要意味着,传统热电产生器可能需要比TEG输出(以电能的形式)更多的 能量(以热能的形式)。结果,大部分热电产生器被降至作为次级动力源来工作,并且经常 与其他技术联合。例如,热电产生器通常应用在太阳能阵列中,那里有大量的热量。 0004 因此,为了通过热梯度将提供的动能转化成电能,有益的是,提供具有高效率低成 本的热梯度产生装置的高效能热电产生器。已经提出了用于热电能量转换的若干个专利申 请,包括:Aspden美国专利No.5065085;Kondo。
12、h美国公开No.2006-0016469;以及Guevara 美国公开No.2003-0192582,然而,这些中没有一个解决了上面列出的问题。 发明内容 0005 本发明描述了一种通过热梯度将动能转化成势能的系统。本发明的一个实施例可 以包括用于吸收热量的吸热单元,用于释放热量热释放单元,以及用于从外部源接收能量 以向吸热单元和放热单元提供动力的控制单元。系统还包括具有通过热梯度将热量转换成 电势的多个热电元件的第一动力产生单元,以及用于对控制单元提供由第一动力产生单元 产生的电势的反馈单元。 0006 本发明的另一实施例包括进一步包括多个动力产生单元的如上面表述的系统。 0007 本发明的。
13、又一实施例包括用于实现上述系统的方法。 附图说明 0008 在附图中示出目前优选的实施例。然而,应该意识到的是,本发明不限于所示的明 确的配置和手段。 0009 图1示出了热电产生器的一个实施例,其对于理解本文公开的实施例是有用的。 0010 图2示出了根据本发明的热电系统的一个实施例。 0011 图3示出了根据本发明的另一实施例的热电系统。 0012 图4示出了根据本发明的可替换实施例的热电系统。 说 明 书CN 102414852 A CN 102414866 A 2/5页 5 0013 图5示出了根据本发明的可替换实施例的热电系统。 0014 图6示出了根据本发明的可替换实施例的热电系统。
14、。 0015 图7示出了根据本发明的可替换实施例的热电系统。 0016 图8是说明根据本发明另一实施例用于通过热梯度产生系统将部分动能转换成 势能的方法的流程图,。 具体实施方式 0017 虽然以认定新颖性的定义发明特征的权利要求决定说明书,但是,可以相信的是, 结合附图的表述来考虑,将能更好的理解。正如所需要的,于此公开本发明的详细实施例; 然而,应该理解的是,公开的实施例仅仅是本发明的示例,其可以以各种各样的方式体现。 因此,于此公开的明确的结构和功能细节不被解释为限制,而仅仅作为权利要求的基础和 作为教授本领域技术人员以变化地在实际上任何适合的具体结构中应用创造性设置的典 型基础。进一步。
15、,于此使用的术语和短语不意味着限制而是提供对本发明的可理解的表述。 0018 作为这个文件通篇使用,热电堆可以包括离散封装中的、在与热梯度方向垂直的 平面上相互平行排列的热电偶阵列。此外,热电产生器(TEG)可包括用于从热梯度产生电 势的装置,它的一个实施例由沿热梯度轴方向而相互串联的多个热电堆构成。而且,尽管下 面利用热泵来描述,但是本文公开的发明内容不被如此限制。为这个目的,可以利用实际上 满足下面标准的任何可持续(sustainable)的热梯度产生装置。 0019 可持续的热梯度产生装置的一个示例是传统的热泵。在这个意义上,热泵通过蒸 发器从吸热端吸收热能,并且通过冷凝器释放热能至发热。
16、端。吸热和发热反应是触发过程 需要的多个输入能量。为这个目的,可以通过下面的方程定义热梯度产生装置(即热泵) 的也作为初级能量比率(PER)已知的性能系数,: 0020 PER(Q+W)/W 0021 其中Q是在吸热过程中吸收的动能,W是提供给热泵以做功的能量。在这种情况 下,定义功(W)为热泵使用以产生热差的能量以及在例如压缩机等传递机械中损失的能 量。 0022 为了表述本发明,我们将定义初级能量比率(PER)为吸热和用于产生热梯度的放 热过程的能量抽运比率。但是,我们将性能系数定义通过下面方程定义的整个系统的性能 系数: 0023 COP(Q+W)/(W-C) 0024 其中Q是在吸热过。
17、程中吸收的动能,W是提供给热泵以做功的能量,以及C是由 TEG重新收集的能量。 0025 如上面表述的,热电产生器(TEG)是可以借助于将热转换成电而将动能转换成势 能的装置。为了获得高的电和热导率,TEG可包括单一热电堆或被电串联和热并联设置的 热电堆阵列。TEG的一个示例在Jin等的美国专利公开No.2008/0283110中描述,在此引入 其内容作为参考。 0026 为这个目的,Jin表述的TEG可以以40-80的效率将100摄氏度热梯度转换成电 势。当然,本领域的技术人员可以意识到,这仅仅是可以用于与于本文公开的创造性理念结 合的TEG的一个示例。例如,在一个实施例中,热电堆阵列还可被。
18、并入半导体材料中,半导 说 明 书CN 102414852 A CN 102414866 A 3/5页 6 体材料包括低能量p型半导体元件和更高能量的n型半导体元件,或者可以使用公知的当 其终端暴露在温差中时将热转换成电流的材料形成阵列。 0027 在任一情况下,为了公开目的,可以使用具有通过方程EP/(Q+W)定义的效能 (E)的任何TEG,其中P是由TEG产生的势能,Q提供给TEG的动能,W是做功所需的能量。 0028 当在例如热泵等热梯度产生装置的热梯度中引入如上所述的TEG时,有可能产生 可以被外部应用使用的势能。为了这个目的,该能量可以通过用于给系统提供初始能量的 传输线传回,或者可。
19、以直接提供给其他装置。可选择地,为了极大改进热泵本身的整体COP, 势能可被反馈回系统中,当E接近1/(PER)时COP接近无穷大。例如,如果热泵的初级能量 比率(PER)是5,那么具有5的效能(E)的TEG可以将整个系统的COP从5改进至6.7。 0029 此外,在另一实施例中,包括在满足方程E1/(PER)的热泵的热梯度内设置的 TEG的系统,可潜在地产生足够的潜在电能以支持热泵系统自身的今后的动力需要。例如, 具有20效能(E)的TEG有可能提供足够的电能以支持相同热泵的今后的操作。进一步, 在相同的示例中,利用具有大于20的效能(E)的TEG有可能使得系统产生比热泵工作所 需的更多势能。
20、。 0030 关于下面概述的本发明和实施例,注意的是,每个实施例完全遵循热力学定律,并 且特别是热力学第二定律。 0031 为了这个目的,系统的操作是基于受激物质形式的动能可用性,并且在零开尔文 以上具有动能的所有物质释放黑体辐射。因此,由于系统保持运作,因此操作该系统所需的 动能将最终衰变至具有黑体辐射形式的熵。然而,只要具有用于热泵有效吸收的足够动能 的物质存在,通过对动力产生器提供足够的PER,系统就可持续提供用于一般使用的势能, 而不需要其他动力源。 0032 图2示出了根据本文公开的发明构思的热电系统20的一个实施例。具体地,图2 示出了设置在蒸发器和冷凝器之间的TEG。 0033 。
21、系统20可包括TEG 21、蒸发器22、冷凝器23、压缩机24和循环腔25。蒸发器22 包括冷温度,其中在循环腔25中包含的被施压的冷却剂28,可以膨胀、沸腾和蒸发。在从 液体到气体状态的变化过程中,作为吸热过程吸收热形式的能量。压缩机24作为冷却泵并 且将气体再压缩为液体。压缩机使用电进行操作,并且所需数量依赖于蒸发器和冷凝器之 间的温差而变动。冷凝器23可包括热温度,热温度驱逐由蒸发器吸收的热量以及在压缩机 24压缩过程中产生的任何额外的热量。 0034 在一个优选实施例中,蒸发器22、冷凝器23、压缩机24和循环腔25可包含具有超 过2的初级能量比率(PER)、能够产生超过50-100摄。
22、氏度的温差的工业等级的闭式循环相 变热泵。然而,还可以仔细考虑其他热梯度产生系统。在另一优选实施例中,TEG 21可包 括热部分H和冷部分C,并且具有比1/(热泵的)PER大的效能(E)。 0035 在操作中,TEG 21的热部分H可以靠着或邻近冷凝器23设置,同时,TEG21的冷 部分C可以靠着或邻近蒸发器22设置。如上面表述的,冷凝器23在极高热下操作,而蒸发 器22在极低热下操作。照此,在TEG21的热和冷部分上操作的结果温差(即,热梯度)可 以提供TEG产生电压的所需温度梯度。然后,通过线27将作为结果的动力直接提供至压缩 机24的电输入26。为了产生初始热梯度,还必须对系统的电输入提。
23、供外部电(未示出)。 0036 如上面表述的,热电系统20从而将能够提供长时间持续的动力以及用于其它用 说 明 书CN 102414852 A CN 102414866 A 4/5页 7 途的少量的额外势能,该动力可以提供空间的连续加热或者冷却。另外,TEG21可以显著提 高整体的能量效率,以及在当被加热或冷却的空间接近其优选温度时的条件下热泵的空间 温度调节。 0037 图3示出了进一步包括伺服单元30的上面描述的热电系统的可替换实施例。因为 热泵的PER在高温差下将显著下降并且TEG的效能在低温差下将显著下降的事实,在系统 中可包括伺服单元30以监测温差,并且伺服单元30调节输入动力从而保。
24、持最优温差。如 此,伺服30看包括蒸发器监控器31和冷凝器监控器32,以将各个部件的温度报告给伺服 20。这种类型的温度监控装置是公知的,并且可以包括例如电连接到伺服的恒温器或者温 度报告装置等其它相似部件。 0038 图4图示了根据本发明的另一实施例的热电系统。如所示,热电系统40可包括在 蒸发器22和冷凝器23之间设置的低热导电势垒41。系统可进一步包括设置在冷凝器23 和冷凝器提供热(见箭头D)的环境之间的TEG42。为了这个目的,来自冷凝器的热可用于 一般的加热目的,或者如果系统用于一般冷却目的(即,空气调节)则来自冷凝器的热用于 处理浪费的热。如于此使用,热导电势垒可包括泡沫板或者任。
25、何其它公知的绝缘材料。 0039 在操作中,TEG 42的热部分H可以靠着或邻近冷凝器23设置,同时,TEG 42的冷 部分C对外部环境条件开放。如此,热冷凝器23和外部空气之间的作为结果的温差可提供 TEG产生电压的所需热梯度。然后,通过线27将作为结果的动力直接提供至压缩机24的电 输入26。 0040 图5示出了根据本发明另一实施例的热电系统。如所示热电系统50可包括在蒸 发器22和冷凝器23之间设置的低热导电势垒41。系统可进一步包括设置在蒸发器22和 蒸发器提供冷空气(见箭头E)的环境之间的TEG52。 0041 在操作中,TEG52的冷部分C可以靠着或邻近蒸发器22设置,同时,TE。
26、G52的热部 分h可以对外界环境开放。如此,冷蒸发器22和外部空气间的结果温差可提供用于TEG以 产生电压的所需热梯度。然后,结果动力直接通过线27提供至压缩机24的电输入26。 0042 尽管上面描述为具有单一TEG的系统,但本发明构思还涉及协调工作的多个独立 TEG单元的使用。例如,图6图示了具有在蒸发器和冷凝器之间设置的多个TEG单元的热电 系统60的一个实施例。 0043 系统60可以包括设置在蒸发器22和冷凝器23之间的多个TEG单元61a-61n。在 一个实施例中,每个TEG单元可由低电导保护势垒62a-62n分隔。如参考上述示例,多个 TEG单元61a-61n的热部分H可以靠着或。
27、邻近冷凝器23设置,同时,多个TEG单元61a-61n 的冷部分C可以靠着或邻近蒸发器22设置,从而生成产生电压必需的热梯度然后该电压通 过线27直接被提供至压缩机24的电输入26。利用这样的配置,为了满足个体性能/动力 需要,独立TEG单元可加入或者从系统中移除。 0044 图7图示了其中利用多个TEG单元的系统70的可替换实施例。如所示,热电系统 70包括设置在蒸发器22和冷凝器23之间的低热导电势垒41。系统进一步包括设置在冷 凝器23和冷凝器提供热(见箭头D)的环境之间的第一TEG 72a,以及设置在蒸发器22和 蒸发器提供冷空气(见箭头E)的环境之间的第二TEG 72b。 0045 。
28、图8示出了根据本发明另一实施例用于通过热梯度产生系统将动能转换成势能 的方法800的流程图。可以参考如上面的图2-7所表述的系统执行方法800。 说 明 书CN 102414852 A CN 102414866 A 5/5页 8 0046 因此,方法800可以在步骤805开始,该步骤决定在热梯度产生系统(例如,诸如 热泵)的热梯度内设置热电产生器(例如,诸如TEG 21)。 0047 在步骤810中,决定是否需要热绝缘层。如果需要该层,则方法前进至步骤815,在 步骤815将热层安装到系统,否则方法将前进至步骤820。 0048 在步骤820中,可以在系统的吸热侧和放热侧之间设置TEG。如果选。
29、择了该选项, 则方法将前进至步骤835,否则方法将前进至步骤825。 0049 在步骤825中,TEG的一侧可以附着于或者邻近系统的放热侧,并且TEG的另一 侧可以面对外部环境。如果选择了该选项,则方法将前进至步骤835,否则系统前进至步骤 830。 0050 在步骤830中,TEG的一侧可以附着于或者邻近系统的吸热边,并且TEG的另一侧 可以面对外部环境。并且系统可以前进至步骤835。 0051 在步骤835中,TEG的物理和电元件可以被安装到系统中。在步骤840中,可以决 定是否满足系统的动力和/或性能标准。如果是,则方法可以前进至步骤845,否则,方法将 返回到安装附加TEG的步骤805。
30、。 0052 在步骤845中,决定是否需要温度监控和动力调节单元(例如,诸如监控器30-31 和伺服单元30等)的。 0053 如果是,方法将前进至安装单元的步骤850并且方法将结束。如果否,方法结束。 0054 通过结合本文公开的发明构思,可以通过热梯度将动能的一部分转换成势能。可 以利用这样的势能为外部装置提供动力或者势能可以反馈至热梯度产生系统中,因此很大 的提高了系统本身的整体COP。 0055 下面权利要求中所有方式或步骤加上功能元件的对应结构、材料、动作和等价物, 意指包含用于结合作为具体权利要求的其他要求的元件的执行功能的任何结构、材料或动 作。给出本发明的表述,是为了图示和说明。
31、的目的,但是不是意指全面的,或者限于公开形 式的发明。 0056 对于本领域技术人员来说在不脱离发明范围和精神的情况下许多改进和变体是 显然的。选择和表述实施例以最好的解释本发明的原理和具体应用,并且使得本领域的其 他技术人员理解发明用于适合具体使用考虑的具有各种变体的各种实施例。 说 明 书CN 102414852 A CN 102414866 A 1/8页 9 图1 说 明 书 附 图CN 102414852 A CN 102414866 A 2/8页 10 图2 说 明 书 附 图CN 102414852 A CN 102414866 A 3/8页 11 图3 说 明 书 附 图CN 102414852 A CN 102414866 A 4/8页 12 图4 说 明 书 附 图CN 102414852 A CN 102414866 A 5/8页 13 图5 说 明 书 附 图CN 102414852 A CN 102414866 A 6/8页 14 图6 说 明 书 附 图CN 102414852 A CN 102414866 A 7/8页 15 图7 说 明 书 附 图CN 102414852 A CN 102414866 A 8/8页 16 图8 说 明 书 附 图CN 102414852 A 。