《接触式水平切变导波磁致伸缩换能器.pdf》由会员分享,可在线阅读,更多相关《接触式水平切变导波磁致伸缩换能器.pdf(15页珍藏版)》请在专利查询网上搜索。
1、(10)申请公布号 CN 102474690 A (43)申请公布日 2012.05.23 C N 1 0 2 4 7 4 6 9 0 A *CN102474690A* (21)申请号 201080025679.X (22)申请日 2010.01.15 10-2009-0060758 2009.07.03 KR H04R 15/00(2006.01) H02N 2/00(2006.01) (71)申请人岭南大学校产学协力团 地址韩国庆尚北道 申请人数字超音波有限公司 (72)发明人崔明善 金星俊 (74)专利代理机构北京信慧永光知识产权代理 有限责任公司 11290 代理人褚海英 武玉琴 (5。
2、4) 发明名称 接触式水平切变导波磁致伸缩换能器 (57) 摘要 本发明提供了一种接触式水平切变(SH)型 导波磁致伸缩换能器,其包括:换能带,其设置于 待测试物体的表面上,并且其中发生电磁声换能; 和射频(RF)线圈,它们设置于换能带上,其中,所 述换能带包括板状螺线管,该板状螺线管包括磁 致伸缩条带以及螺线管线圈,在所述磁致伸缩条 带中发生用于发射或接收SH型导波的电磁声换 能,所述螺线管线圈沿磁致伸缩条带的外周以螺 旋的形式缠绕,以便沿磁致伸缩条带的长度方向 形成偏置磁场,并且RF线圈用于沿磁致伸缩条带 的宽度方向形成动态磁场,或用于检测磁致伸缩 条带中的磁通变化。 (30)优先权数据 。
3、(85)PCT申请进入国家阶段日 2011.12.09 (86)PCT申请的申请数据 PCT/KR2010/000275 2010.01.15 (87)PCT申请的公布数据 WO2011/002139 EN 2011.01.06 (51)Int.Cl. 权利要求书2页 说明书8页 附图4页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书 2 页 说明书 8 页 附图 4 页 1/2页 2 1.一种接触式水平切变(SH)型导波磁致伸缩换能器,其包括: 换能带,其设置于待测试物体的表面上,并且在所述换能带中发生电磁声换能;和 射频(RF)线圈,它们设置于所述换能带上, 其中。
4、,所述换能带包括板状螺线管,该板状螺线管包括磁致伸缩条带以及螺线管线圈, 在所述磁致伸缩条带中发生用于发射或接收水平切变型导波的所述电磁声换能,所述螺线 管线圈沿所述磁致伸缩条带的外周以螺旋的形式缠绕,以便沿所述磁致伸缩条带的长度方 向形成偏置磁场,并且 所述射频线圈用于沿所述磁致伸缩条带的宽度方向形成动态磁场,或用于检测所述磁 致伸缩条带中的磁通的变化。 2.如权利要求1所述的换能器,其中,所述换能带设置为围绕所述待测试物体并同时 紧密地附着于所述待测试物体的表面。 3.如权利要求1所述的换能器,其中,所述螺线管线圈均匀地围绕所述磁致伸缩条带 的外周,并且关于所述磁致伸缩条带的长度方向形成均。
5、匀且可控的偏置磁场。 4.如权利要求13之一所述的换能器,其中,所述换能带还包括非铁磁性金属条带, 该非铁磁性金属条带设置为与所述板状螺线管的下表面声耦合,以便保持所述换能带的形 状,并避免所述磁致伸缩条带和所述螺线管被损坏。 5.如权利要求4所述的换能器,其中,所述换能带还包括接触层,该接触层涂敷于所述 非铁磁性金属条带的下表面并且包括非黏性材料,所述非黏性材料使所述换能带可重复地 附着于所述待测试物体的表面和从所述待测试物体的表面拆卸,并使所述换能带可被再利 用,并且所述接触层包括具备良好的横波传播特性和电绝缘性的材料。 6.如权利要求1所述的换能器,其中,所述换能带还包括接触层,该接触层。
6、涂敷于所述 板状螺线管的下表面并且包括非黏性材料,所述非黏性材料使所述换能带可重复地附着于 所述待测试物体的表面和从所述待测试物体的表面拆卸,并使所述换能带可被再利用,并 且所述接触层包括具备良好的横波传播特性和电绝缘性的材料。 7.如权利要求4所述的换能器,其中,所述待测试物体包括具有圆形横截面的柱状构 造,并且所述换能带与所述待测试物体的表面接触并具有使所述换能带的两端彼此面对的 环形横截面,并且 由于所述非铁磁性金属条带的长度大于所述磁致伸缩条带的长度,故当使所述非铁磁 性金属条带附着于所述板状螺线管的下表面且耦合于所述板状螺线管的下表面时,所述非 铁磁性金属条带的两端露出到外面,并且 。
7、所述换能带包括: 接触层,其设置于所述待测试物体的表面和所述非铁磁性金属条带的下表面之间;和 夹持单元,其用于使所述非铁磁性金属条带的两端耦接。 8.如权利要求7所述的换能器,其中,所述非铁磁性金属条带的两端被分别弯曲并形 成一对彼此面对的环部,并且 所述夹持单元包括: 一对圆柱体,该对圆柱体中形成有通孔,通过所述通孔可使螺栓拧紧,并且所述一对圆 柱体插入所述一对环部中;和 螺栓单元,其用于通过所述通孔而使所述一对金属圆柱体紧密地耦接。 权 利 要 求 书CN 102474690 A 2/2页 3 9.如权利要求7所述的换能器,其中,所述接触层包括易于变形且为柔性的金属或塑 料,以便容易在所述。
8、待测试物体和所述非铁磁性金属条带之间进行声耦合。 权 利 要 求 书CN 102474690 A 1/8页 4 接触式水平切变导波磁致伸缩换能器 技术领域 0001 本发明涉及一种接触式水平切变(SH)型导波磁致伸缩换能器,更具体地,涉及一 种用于工业构造的长距离超声无损检测的磁致伸缩导波换能器。 背景技术 0002 SH型导波为具有平行于构造表面的粒子位移的弹性波,且由所述构造的边界引 导,并且能够以长距离传播。SH型导波具有这样的优点,即,SH型导波对可能存在于所述构 造的内表面或外表面上的流体不敏感,且在与不连续交互作用时模态转换的可能性低,于 是可实现在长距离超声检测中易于描述的简单的。
9、回波构造。SH0模态导波和T(0,1)模态导 波分别特别适用于平板或有弯曲的板状构造以及柱状构造,这是因为所述导波具有传播速 度不随波的频率而变化的非频散特性。在相关技术中,利用压电阵列换能器以及两种电磁 声换能器(EMAT)、即周期性极化磁体(PPM)EMAT和磁致伸缩换能器来生成或检测这些波。 磁致伸缩换能器的构造比压电阵列换能器和PPM EMAT的构造更简单。 0003 由在铁磁性材料表面的下部附近的部分中彼此垂直的静态偏置磁场和动态磁场 的重叠而引起铁磁性材料变形,磁致伸缩换能器即依赖于所述变形而发射SH型导波。由永 磁体或电磁体对铁磁性材料提供偏置磁场,而由其中流过RF波段的交流(A。
10、C)脉冲的线圈、 即所谓的射频(RF)线圈来对铁磁性材料提供动态磁场。由于动态磁场的趋肤效应,波源被 限制在铁磁性材料的表面附近。沿所述构造传播的导波模态主要取决于波源的特性和所述 构造的厚度。在接收SH型导波期间,RF线圈用于检测在所述材料中由于这些波而产生的 磁通的变化。当待测试物体由铁磁性材料制成时,所述物体本身可用作换能器的构件,于是 可在铁磁性材料中产生SH型导波,并且无需其他两个构件(线圈和磁体)和所述物体之间 的直接接触便可检测所述SH型导波。这种非接触式磁致伸缩换能器可实现高温检测。通 过延长的螺旋线圈换能器来发射和接收低频SH导波,而通过弯折线线圈换能器或多螺旋 线圈换能器来。
11、发射和接收高频SH导波。这些磁致伸缩换能器包括用于产生静态磁场的永 磁体或电磁体,所述静态磁场平行于每个RF线圈的腿部的方向,且于是垂直于动态磁场。 0004 在非铁磁性物体中,可使用接触式磁致伸缩换能器来发射和接收SH型导波, 每个所述磁致伸缩换能器包括临时或永久地附着于非铁磁性物体表面的磁致伸缩条带 (或磁致伸缩片)。这些接触式磁致伸缩换能器也应用于铁磁性材料,以更有效地发射 和接收SH型导波。在相关技术中,在磁致伸缩条带的长度方向上的剩余磁化(residual magnetization)被用作静态偏置磁场,该剩余磁化通过沿着磁致伸缩条带移动U形永磁体 而获得,所述磁致伸缩条带使用诸如环。
12、氧树脂等粘性材料而附着于所述构造。在接触式磁 致伸缩换能器中,可高效地发射或接收沿磁致伸缩条带的宽度方向传播的低频(通常小于 200kHz)SH型导波。于是,接触式磁致伸缩换能器广泛应用于大型构造的长距离超声检测 中。然而,这些传统的磁致伸缩条带导波换能器具有下列缺点。首先,当从待测试物体拆 卸磁致伸缩条带时或当除去牢固地粘附于被拆卸条带的环氧树脂时,磁致伸缩条带容易损 坏,从而难以重复地再利用磁致伸缩条带。其次,当条带附着于诸如小直径管等曲率大的物 说 明 书CN 102474690 A 2/8页 5 体或者诸如铝管等非铁磁性管时,难以获得均匀的剩余磁化。再者,强动态磁场可导致剩余 磁化的不。
13、可逆变化,于是,在发射SH导波期间流过RF线圈的电流需要被限制在一定范围 内。因为RF线圈的阻抗与频率成比例,故流过以相对较低的频率驱动的线圈的电流所受的 限制变得苛刻。而且,所述限制不易于量化。这意味着正确使用磁致伸缩条带导波换能器 需要相当小心。而且,难以控制剩余磁化的强度。这意味着几乎不可能使用优化的偏置磁 场来构造对动态磁场的变化呈线性响应的换能器。 发明内容 0005 技术问题 0006 本发明提供了一种接触式SH型导波磁致伸缩换能器,其包括本身可用于形成偏 置磁场并用于在磁致伸缩条带中形成均匀且可控的偏置磁场的单元,于是该接触式SH导 波换能器能够可逆地响应于动态磁场的变化。 00。
14、07 技术方案 0008 根据本发明的一个方面,提供了一种接触式SH型导波磁致伸缩换能器,该换能器 包括:换能带,其设置于待测试物体的表面上,并且在该换能带中发生电磁声换能;以及射 频(RF)线圈,它们设置于换能带上,其中,所述换能带包括板状螺线管,该板状螺线管包括 磁致伸缩条带以及螺线管线圈,在所述磁致伸缩条带中发生用于发射或接收SH型导波的 电磁声换能,所述螺线管线圈沿磁致伸缩条带的外周以螺旋的形式缠绕,以便沿磁致伸缩 条带的长度方向形成偏置磁场,并且所述RF线圈用于沿磁致伸缩条带的宽度方向形成动 态磁场,或用于检测磁致伸缩条带中的磁通变化。 0009 所述换能带可设置为围绕待测试物体,同。
15、时紧密地附着于待测试物体的表面。螺 线管线圈可均匀地围绕磁致伸缩条带的外周,并且可关于磁致伸缩条带的长度方向形成均 匀且可控的偏置磁场。 0010 所述换能带还可包括非铁磁性金属条带,该非铁磁性金属条带设置为与板状螺线 管的下表面声耦合,以便保持换能带的形状,并避免磁致伸缩条带和螺线管被损坏。换能带 还可包括涂敷于板状螺线管的下表面上且包括非黏性材料的接触层,所述非黏性材料使换 能带可重复地附着于待测试物体的表面和从待测试物体的表面拆卸,并使换能带可被再利 用。而且,换能带还可包括涂敷于非铁磁性金属条带的下表面上并且包括非黏性材料的接 触层,所述非黏性材料使换能带可重复地附着于待测试物体的表面。
16、和从待测试物体的表面 拆卸,并使换能带可被再利用。接触层可包括具备良好的横波传播特性和电绝缘性的材料。 0011 待测试物体可包括具有圆形横截面的柱状构造,并且换能带可接触待测试物体的 表面且可具有其中换能带的两端彼此面对的环形横截面,而由于非铁磁性金属条带的长度 大于磁致伸缩条带的长度,故当非铁磁性金属条带附着于板状螺线管的下表面且耦合于板 状螺线管的下表面时,非铁磁性金属条带的两端可露出到外面。在此情况下,所述换能带可 包括:接触层,其设置于待测试物体的表面和非铁磁性金属条带的下表面之间;和夹持单 元,其用于使非铁磁性金属条带的两端耦接。非铁磁性金属条带的两端可被分别弯曲且可 形成一对彼此。
17、面对的环部,并且夹持单元可包括:一对圆柱体,其中形成有通孔,通过所述 通孔可使螺栓拧紧,并且所述一对圆柱体插入所述一对环部中;和螺栓单元,其用于通过通 孔而使所述一对金属圆柱体紧密地耦接。接触层可包括易于变形且为柔性的金属或塑料, 说 明 书CN 102474690 A 3/8页 6 以便于在待测试物体和非铁磁性金属条带之间进行声耦合。 0012 技术效果 0013 使用包含板状螺线管的换能带,于是可不用附加单元而在磁致伸缩条带中形成均 匀、健壮(robust)且可控的偏置磁场,并且可构建对动态磁场的变化呈可逆响应的接触式 SH导波磁致伸缩换能器。可使用具有高可靠性且对动态磁场的变化呈线性响应。
18、的优化的接 触式SH导波磁致伸缩换能器。 附图说明 0014 参照附图来详述本发明的示例性实施例,使得本发明的以上及其他方面更清楚, 其中: 0015 图1为本发明的一个实施例的接触式水平切变(SH)型导波磁致伸缩换能器的换 能带的横截面图; 0016 图2为图1中的接触式SH导波磁致伸缩换能器的板状螺线管的立体图; 0017 图3为表示本发明的另一实施例的接触式SH导波磁致伸缩换能器的环状换能带 的设置的横截面图; 0018 图4为用于在待测试的管状物体中发射和接收T(0,1)模态导波的测试装置的示 意图; 0019 图5为表示通过图4的实验而获得的信号数据的图; 0020 图6为表示对传统。
19、的接触式SH导波磁致伸缩换能器的发射线圈驱动信号的响应 的图;并且 0021 图7为表示对包含图1的换能带的接触式SH导波磁致伸缩换能器的发射线圈驱 动信号和偏置电压的响应的图。 具体实施方式 0022 下面,参照附图来更充分地说明本发明,附图中图示了本发明的示例性实施例。 0023 图1为本发明的一个实施例的接触式水平切变(SH)型导波磁致伸缩换能器的换 能带300的横截面图,图2为图1中的接触式SH导波磁致伸缩换能器的板状螺线管310的 立体图,而图3为表示本发明的另一实施例的接触式SH导波磁致伸缩换能器的环状换能带 400的设置的横截面图。 0024 参照图13,接触式SH导波磁致伸缩换。
20、能器包括两部分,即两个换能带300、400 和RF线圈(未图示)。作为接触式SH导波磁致伸缩换能器的一部分的换能带300、400设 置于两个待检测物体10、30的表面上且与待检测物体10、30的表面声耦合,并且在换能带 300、400中发生电磁声换能。换能带300、400可使用诸如环氧树脂等粘性材料而与待检测 物体10、30的表面声耦合。诸如谷物糖浆或蜂蜜等液体具备良好的横波传播特性,故虽然 它们的粘性相对差,但仍可用作环氧树脂的替代物,并提供取决于时间或温度的耦合强度。 在换能带300、400上设有作为接触式SH导波磁致伸缩换能器的另一部件的RF线圈(未图 示),并且所述RF线圈用于对由于S。
21、H型导波而在磁致伸缩条带311、411中产生的磁通的变 化进行检测。 0025 图1表示附着于待测试的扁平物体10的换能带300的长度方向横截面。换能带 说 明 书CN 102474690 A 4/8页 7 300不限于用于待测试的扁平物体10。当诸如管状物体等待测试物体形成曲面时,换能带 300可设置为围绕待测试物体并同时紧密地附着于待测试物体的表面。为使换能带300和 待测试物体10彼此声耦合,使用了具备良好的横波传播特性的耦合材料20。 0026 换能带300包括:板状螺线管310,其包括磁致伸缩条带311和螺线管线圈312;非 铁磁性金属条带330;以及接触层320。换能带300还可包。
22、括:磁致伸缩条带311、板状螺线 管310以及接触层320,而不包括非铁磁性金属条带330。 0027 换能带300包括板状螺线管310的构造,该板状螺线管310是用于在磁致伸缩条 带311中形成偏置磁场的单元。详细来说,板状螺线管310包括磁致伸缩条带311和螺线 管线圈312,于是不用附加单元便可沿磁致伸缩条带311的长度方向(图1中的方向A)形 成均匀、健壮且可控的偏置磁场。 0028 下面,参照图2更详细地说明板状螺线管310的构造。在磁致伸缩条带311中发 生用于SH型导波的发射和接收的电磁声换能。在此情况下,RF线圈(未图示)用于沿磁 致伸缩条带311的宽度方向(沿图1中的磁致伸缩。
23、条带311的平面上的与方向A垂直的方 向,即,以RF线圈被垂直插入磁致伸缩条带311的横截面中或从该横截面中垂直移出的向 前或向后的方向)形成动态磁场,或用于检测磁致伸缩条带311中的磁通变化。 0029 此外,通过沿磁致伸缩条带311的外周以螺旋的形式紧密地缠绕诸如漆包铜线的 绝缘电线而构成螺线管线圈312,从而可沿磁致伸缩条带311的长度方向(图1中的方向 A)形成偏置磁场。螺线管线圈312均匀地围绕磁致伸缩条带311的外周,于是沿磁致伸缩 条带311的长度方向形成有均匀、可控的偏置磁场,从而可实现对动态磁场的变化呈现可 逆响应的磁致伸缩换能器。在后面通过描述实验数据来介绍利用换能带300。
24、的磁致伸缩换 能器的可逆响应。如上所述,使直流电流(DC)流过螺线管线圈312,于是可沿磁致伸缩条带 311的长度方向形成均匀、健壮且可控的偏置磁场。 0030 当缠绕螺线管线圈312时,可能由于绝缘膜的损坏而在磁致伸缩条带311的两个 锐边处发生螺线管线圈312的电线部和磁致伸缩条带311之间的电短路。为避免这种电短 路,可在磁致伸缩条带311的两个边粘合诸如聚酰亚胺胶带等电绝缘性和绝热性极为良好 的薄双面胶带313。当螺线管线圈312围绕磁致伸缩条带311的外周时,双面胶带313因其 黏性而有助于螺线管线圈312的电线部均匀地缠绕于磁致伸缩条带311上。为制造更精密 且更薄的板状螺线管31。
25、0,可采用印刷电路技术等。 0031 换能带300包括在板状螺线管310下方形成的非铁磁性金属条带330和接触层 320。换能带300的非铁磁性金属条带330的表面略大于磁致伸缩条带311的表面。非铁 磁性金属条带330通过使用诸如环氧树脂层的粘合剂层340而粘附于板状螺线管310,从 而非铁磁性金属条带330与板状螺线管310的下表面声耦合。于是,可保持换能带300的 形状,并防止磁致伸缩条带311和螺线管线圈312被损坏。于是,换能带300可以适应待测 试物体10表面的几何尺寸而在弹性限度内变形。所述弹性限度取决于非铁磁性金属条带 330和粘合剂层340的材料和厚度。 0032 在非铁磁性。
26、金属条带330的下表面上涂敷有接触层320,且接触层320由非黏性材 料制成,该材料可使换能带300能够重复地附着于待测试物体10的表面和从待测试物体10 的表面拆卸,并使换能带300可被再利用。例如,在用诸如环氧树脂的粘合材料作为耦合材 料20的情况下,可将具备良好的非黏性、好的横波传播特性与电绝缘性的材料(诸如特氟 说 明 书CN 102474690 A 5/8页 8 隆(Teflon)牢固地涂敷至几十微米的厚度,从而形成接触层320。于是,虽然利用了环氧 树脂以实现换能带300和待测试物体10之间的声耦合,但由于接触层320的非黏性,故换 能带300可容易地、无任何损坏地从待测试物体10。
27、的表面拆卸,并且换能带300可重复地 再利用。而且,接触层320的电绝缘性可避免因非铁磁性金属条带330和待测试物体10之 间的电耦合而产生的不均匀涡流。 0033 为避免在磁致伸缩条带311中发生涡流,可使用其厚度小于通过换能带300上设 有的RF线圈而形成的动态磁场的穿透深度的磁致伸缩条带311。为使换能带300中的SH型 导波的变形最小,换能带300的厚度必需远小于导波的波长。于是,随着导波的频率提高, 需要使用更薄的换能带。在大多数金属构造中,基模导波的传播速度约为3000m/s。因此, 在长距离超声检测领域所主要使用的频率范围(20200kHz)中,导波的波长约为15 150mm。这。
28、意味着可以容易地制造换能带300。 0034 在诸如管子等具有圆形横截面的柱状构造中,对沿柱状构造的轴向前进的扭转模 态(T模态)导波进行发射和接收的接触式SH导波换能器的换能带可为环状。图3表示本 发明的另一实施例的换能带400的例子,其中,将换能带300的构造应用于圆形的待测试物 体30。详细来说,待测试物体30为具有圆形横截面的柱状构造。此外,换能带400通过使 用夹持单元450而与待测试物体30的表面且接触待测试物体30的表面声耦合,于是换能 带400具有其中换能带400的两端彼此面对的环形横截面。 0035 图3表示其中换能带400的长度方向部沿待测试物体30的圆周方向缠绕的形状。 。
29、在此情况下,磁致伸缩条带411的长度方向部也沿待测试物体30的圆周方向缠绕。于是, 在磁致伸缩条带411中,在与待测试物体30的圆周方向对应的方向上形成有沿磁致伸缩条 带411的长度方向形成的偏置磁场。而且,在磁致伸缩条带411中,在与待测试物体30的 轴向对应的方向上形成有沿磁致伸缩条带411的宽度方向形成的动态磁场。 0036 换能带400包括:板状螺线管410,其包括磁致伸缩条带411和螺线管线圈412; 非铁磁性金属条带430;诸如环氧树脂层的粘合剂层440,其位于非铁磁性金属条带430和 板状螺线管410之间;以及接触层420,其直接接触待测试物体30的表面。接触层420设 置于待测。
30、试物体30的表面和非铁磁性金属条带430的下表面之间,并且可由易于变形且为 柔性的金属或塑料制成,于是易于实现待测试物体30和非铁磁性金属条带430之间的声耦 合。例如,可利用由诸如铝(Al)或黄铜等金属制成的垫片以形成接触层420,于是易于实现 待测试物体30和非铁磁性金属条带430之间的声耦合。 0037 因为非铁磁性金属条带430的长度大于磁致伸缩条带411的长度,故当非铁磁性 金属条带430附着且耦合于板状螺线管410的下表面时,非铁磁性金属条带430的两端 431、432露出到外面。非铁磁性金属条带430由机械强度大于板状螺线管410的材料制成, 并且在非铁磁性金属条带430的两端4。
31、31、432上设有夹持单元450。当非铁磁性金属条带 430的露出的两端431、432彼此耦接时,夹持单元450可实现换能带400和待测试物体30 之间的干耦合。更具体地,为了上述干耦合,使非铁磁性金属条带430的露出的两端431、 432分别弯曲,从而形成一对彼此面对的环部433、434。在此情况下,夹持单元450包括一 对金属圆柱体451以及螺栓单元453。在这对金属圆柱体451中形成有通孔452,通过通孔 452可使螺栓拧紧,并且金属圆柱体451分别插入所述一对环部433、434中,并且螺栓单元 453通过通孔452而使金属圆柱体451紧密地耦接,并且另外使用了螺母454。详细来说, 说。
32、 明 书CN 102474690 A 6/8页 9 穿过形成在两个金属圆柱体451中间的通孔452而拧紧螺栓单元453和螺母454,从而使换 能带400和待测试的管状物体30之间有效且容易地干耦合。作为非铁磁性金属条带430 的两端的环部433、434彼此连接而围绕金属圆柱体451,并且随着进一步拧紧环部433、434 时,在非铁磁性金属条带430的彼此面对的两端431、432上直接形成的各表面彼此接合。 0038 下面,参照图47以引入用于证实本发明的效果的实验数据。图4为用于在待 测试的管状物体80中发射和接收T(0,1)模态导波的测试装置的示意图。在此情况下,以 图1中的换能带300用作。
33、待实验的对象。图5为表示通过图4的实验而获得的信号数据的 典型图。图6为表示对传统的接触式SH导波磁致伸缩换能器的发射线圈驱动信号的响应 的图,并且图7为表示对包含图1的换能带300的接触式SH导波磁致伸缩换能器的发射线 圈驱动信号和偏置电压的响应的图。 0039 为证实上述效果,以外径为110mm、厚度为5mm且长度为3m的碳钢管用作待测试的 物体80,并且制造了用于在待测试物体80中发射和接收T(0,1)模态导波的两种磁致伸缩 换能器。图4图示了用于评价两种磁致伸缩换能器的换能效率的测试装置。两个磁致伸缩 换能器各包括:换能带(由阴影线部所示),其在对应于管80长度的三分之一部分的位置 处。
34、沿管80的圆周方向而附着于管80的表面;发射RF线圈阵列(T线圈)和接收RF线圈阵 列(R线圈),它们彼此重叠且设置于换能带上。所制造的磁致伸缩换能器根据其中使用的 换能带的类型而分类。而且,所有磁致伸缩换能器共同使用一个发射线圈阵列(T线圈)和 一个接收线圈阵列(R线圈)。 0040 两种换能带之一为磁致伸缩条带本身。包含作为磁致伸缩条带本身的换能带(未 图示)的磁致伸缩换能器代表了相关技术中的传统的换能器。另一个换能带为图1中的换 能带300。在包含作为磁致伸缩条带本身的传统换能带(未图示)的磁致伸缩换能器中使 用的磁致伸缩条带为由美国Carpenter Technology公司提供的铁钴。
35、合金Hyperco50HS条 带(宽度56mm长度310mm厚度0.1mm)。已知磁致伸缩条带具有可用于产生偏置磁场 的14kG的大的剩余磁化和25Oe的矫顽力。在图1的换能带300中包括的磁致伸缩条带 311为由德国Vacuumschmeltz公司提供的铁钴合金Vacoflux50条带(宽度56mm长度 310mm厚度0.1mm)。该条带具有2.1kG的非常低的剩余磁化和3Oe的矫顽力。于是所述 剩余磁化难以用于产生偏置磁场。换能带300的接触层320由特氟隆制成,并且接触层320 的厚度约为20微米。换能带300的非铁磁性金属条带330为铝(Al)条带(宽度60mm 长度316mm厚度0.。
36、2mm)。而且,换能带300的螺线管线圈312由直径为0.15mm的漆包铜 线制成,并且螺线管线圈312的DC电阻为93。 0041 发射线圈阵列(T线圈)和接收线圈阵列(R线圈)每个都包括两个同样的延长的 螺旋线圈,所述螺旋线圈布置为使得一个线圈的一个腿部可设置于另一线圈的两个腿部中 间。发射线圈由矩形漆包铜线(宽度1.3mm厚度0.20mm)制成,并且绕线匝数为10。接 收线圈由直径为0.12mm的漆包铜线制成,并且绕线匝数为110。所有螺旋线圈的一个腿部 的宽度和长度以及两个腿部之间的距离分别为14mm、500mm及28mm。根据T(0,1)模态的 2880m/s的传播速度来选择所述宽度。
37、和距离,从而所述宽度和距离可与在磁致伸缩条带中 频率为50kHz处的导波的1/4波长和1/2波长几乎相同。于是,每个线圈阵列的整个宽度 和磁致伸缩条带的宽度为与导波的一个波长相同的56mm。 0042 如图4所示的用于在管80中发射和接收T(0,1)模态导波的测试装置为由 说 明 书CN 102474690 A 7/8页 10 Digital Ultrasonics有限公司提供的GWR320系统。GWR320系统允许根据相控阵理论而 布置两个发射线圈和两个接收线圈,于是可调节发射导波的前进方向和接收导波的检测方 向。在本实验中,调节脉冲发生器40,将具有相同输出波形(50kHz,两个周期的矩形。
38、脉冲) 和完全不同(即相反)相位的两个驱动电压信号提供给每个发射线圈的两个端子,并且将 接收线圈的两端感应的RF信号通过接收器50的带通滤波器和模数(A/D)转换器60而转 换为视频信号,并存储于计算机70中。 0043 包括仅包括磁致伸缩条带的传统换能带(未图示)的磁致伸缩换能器的实验步骤 如下。1)用“五分钟环氧树脂胶(five-minute epoxy)”将换能带粘附于样本管80。2)用 永磁体在磁致伸缩条带中感应出剩余磁化。3)将发射线圈阵列(T线圈)和接收线圈阵列 (R线圈)设置于换能带上,然后连接于图4中的用于发射和接收T(0,1)模态导波的测试装 置。4)对图4中的用于发射和接收。
39、T(0,1)模态导波的测试装置进行控制,从而可产生前 进至磁致伸缩换能器右侧的导波,并且可检测到从管80的右端反射的信号。5)对图4中 的用于发射和接收T(0,1)模态导波的测试装置进行控制,使得驱动信号幅值可依次为3V、 6V和3V,并且将检测到的信号数据存储于计算机70中。6)移除发射线圈阵列和接收线圈 阵列(T线圈和R线圈),并且使用永磁体感应出剩余磁化,然后重新安装发射线圈阵列和接 收线圈阵列(T线圈和R线圈)。7)对图4中的用于发射和接收T(0,1)模态导波的测试装 置进行控制,使得驱动信号幅值可依次为3V、6V、11V、6V以及3V,并且将检测到的信号数据 存储于计算机70中。8)。
40、重复执行步骤6)。9)对图4中的用于发射和接收T(0,1)模态导 波的测试装置进行控制,使得驱动信号幅值可依次为3V、6V、11V、27V、11V、6V以及3V,并且 将检测到的信号数据存储于计算机70中。10)重复执行步骤6)。11)对图4中的用于发 射和接收T(0,1)模态导波的测试装置进行控制,使得驱动信号幅值可依次为3V、6V、11V、 27V、52V、27V、11V、6V以及3V,并且将检测到的信号数据存储于计算机70中。12)移除发射 线圈阵列和接收线圈阵列(T线圈和R线圈),然后从管80拆卸换能带,从而终止换能带的 实验。在本实验中使用的永磁体由钕铁硼合金制成,并且两个磁极中心之。
41、间的距离、每个磁 极的长度以及在每个磁极附近形成的磁场强度分别为20mm、90mm和0.6T。图1中的换能带 300的实验步骤中,以将螺线管线圈312的两个端子连接于DC电源(3V、6V、12V和24V)来 替代步骤2),并且步骤6)、步骤8)和步骤10)不是必需的,除此之外,与其他换能带的实验 步骤相同。 0044 图5表示获得的信号数据的典型示例。第一回波为当R线圈立即检测到T线圈的 驱动信号时产生的主脉冲回波。在1m、2m和3m位置处产生的回波为从管的右端和左端反 射的回波以及由经过了所述管的往返距离的两个导波产生的回波。由方向控制导波产生的 回波、即从管的右端反射的回波的幅值最大,而其。
42、他回波的幅值相对小。从每个磁致伸缩换 能器获得的每个信号数据测量出从管的右端反射的回波的峰值,从而可评价磁致伸缩换能 器对T线圈的驱动信号的响应的可逆性。 0045 图6表示使用仅包含磁致伸缩条带的传统换能带(未图示)的磁致伸缩换能器的 可逆性的评价结果。当T线圈的驱动信号的幅值小于或等于11V时,传统磁致伸缩换能器具 有相对好的可逆性。然而,随着T线圈的驱动信号的幅值增大,传统磁致伸缩换能器的可逆 性逐渐降低。幅值为52V的驱动信号使磁致伸缩条带中的剩余磁化发生大的变化。这样, 传统磁致伸缩换能器的可逆性极大地降低。也可能在使用者在测试系统工作期间(特别是 说 明 书CN 102474690。
43、 A 10 8/8页 11 当测试系统被启动/关闭时)未意识到例如大幅值的驱动信号时,所述驱动信号便被提供 给T线圈。于是,利用剩余磁化以形成偏置磁场的磁致伸缩换能器的正确操作需要相当小 心。 0046 图7表示使用图1的换能带300的磁致伸缩换能器的结果。磁致伸缩换能器对发 射线圈驱动信号和偏置电压、即螺线管线圈312两端的电压的几乎所有变化的响应都可以 是可逆的。在最低偏置电压为3V的情况下,测量到微小的不可逆响应。关于当驱动信号电 压增加时得到的每个驱动信号电压的接收信号幅值略小于关于当驱动信号电压减小时得 到的每个驱动信号电压的接收信号幅值。然而,即便在此情况下,在使用剩余磁化形成偏置。
44、 磁场时测到的大的驱动电压处,也不会发生接收信号幅值的快速下降。可确定微小的不可 逆性是由因大驱动信号而在磁致伸缩条带的宽度方向上产生的剩余磁化引起的。在相对大 的偏置电压中,这种微小的不可逆性不会发生。这是因为使用了大的偏置电流以去除剩余 磁化。接收到的信号的幅值随着驱动信号幅值和偏置电压而增大。接收信号幅值关于驱动 信号幅值而增加的非线性特性随着偏置电压而增大。 0047 如上所述,在本发明的接触式SH导波磁致伸缩换能器中,使用了包括板状螺线管 的换能带,从而可不用另外的单元便可在磁致伸缩条带中形成均匀、健壮且可控的偏置磁 场,并且可构建对动态磁场的变化呈现可逆响应的接触式SH导波磁致伸缩。
45、换能器。可使用 具有高可靠性且对动态磁场的变化呈线性响应的优化的接触式SH导波磁致伸缩换能器。 0048 虽然本发明参照示例性实施例进行了具体图示和说明,但本领域的技术人员应当 理解,在不脱离由所附的权利要求书所限定的本发明的精神和范围的情况下,可作出各种 形式和细节上的变化。 说 明 书CN 102474690 A 11 1/4页 12 图1 图2 说 明 书 附 图CN 102474690 A 12 2/4页 13 图3 说 明 书 附 图CN 102474690 A 13 3/4页 14 图4 图5 说 明 书 附 图CN 102474690 A 14 4/4页 15 图6 图7 说 明 书 附 图CN 102474690 A 15 。