太阳能电池中使用的Cu-In-Zn-Sn-(Se,S)基薄膜及其制造方法技术领域
本发明涉及太阳能电池中使用的Cu-In-Zn-Sn-(Se,S)基薄膜及其制造方法,更确切地说,本发明涉及一种使用在太阳能电池中新组分的Cu-In-Zn-Sn-(Se,S)基薄膜,该组分可降低使用In的制造成本且具有高转换效率。
背景技术
随着近来严重的环境污染问题和化石能源的枯竭,越来越需要开发下一代的清洁能源。大阳能电池是能直接把太阳能转换成电能的装置、其几乎不会引起空气污染、并且有取之不尽的资源,半永久性使用寿命。预计太阳能电池能作为解决未来能源问题的新能源。
根据太阳能电池中光吸收层使用的材料来分类,其中使用最多的是使用硅的硅太阳能电池。但是,随着近年来硅供应不足而导致价格上涨,使得薄膜太阳能电池渐受关注。由于薄膜太阳能电池厚度小、重量轻,制造薄膜太阳能电池消耗的材料少,使得薄膜太阳能电池能广泛的使用。薄膜太阳能电池的材料正向着非晶硅材料CdTe和CIS(CuInSe2)或CIGS(CuIn1-xGaxSe2)方面进行广泛的研究。
CIS薄膜或CIGS薄膜是第I-III-IV族半导体化合物中的一种,实验中采用该薄膜制造的薄膜太阳能电池能达到最高转换率(约20%)。由于CIS薄膜或CIGS薄膜的厚度可以制造成10μm以下,使得在长时间使用中能保持较好的稳定状态,有望替代硅太阳能电池成为的低成本、高效率的太阳能电池。
尤其是CIS薄膜是直接跃迁型半导体材料,厚度能制作成很薄,其禁带宽度为1.04eV,比较适合光电转换,在所知的太阳能电池材料中,具有较高的光吸收系数。CIGS薄膜是用Ga取代CIS薄膜中的部分In或用S取代Se而改善CIS薄膜的低开路电压的材料。
然而,由于CIS薄膜或CIGS薄膜中使用昂贵的In、Ga元素,使得其制造成本较高。此外,还存在禁带宽度较低的缺点。
为了提高太阳能电池效率及降低其成本,需要开发提高禁带宽度且用低陈本元素取代的新材料及制造方法。
近来努力开发以低成本元素取代In元素的新材料,其中积极进行用低廉的Zn,Sn取代CZTS薄膜中In的研究。但CZTS薄膜存在比CIS薄膜或CIGS薄膜转化率低的问题。
本专利发明人致力研究用于太阳能电池光吸收层具有高转换效率、低制造成本的半导体化合物薄膜。研发出可减少In的使用量并与现有CIS薄膜或CIGS薄膜具有相近转换效率的太阳能电池Cu-In-Zn-Sn-(Se, S)薄膜及其制造方法,并利用该方法完成本发明。
发明内容
技术问题
本发明的目的在于提供可用作太阳能电池光吸收层的半导体化合物薄膜,减少In的使用量并降低制造成本,具有与现有CIS薄膜或CIGS薄膜相近转换效率的太阳能电池用Cu-In-Zn-Sn-(Se,S)基薄膜及其制造方法。
所解决问题
为了到达所述目的,本发明提供用为太阳能电池中光吸收层的Cu-In-Zn-Sn-(Se, S)基薄膜。
所述Cu-In-Zn-Sn-(Se,S)基薄膜中 (Zn+Sn)与(In+Zn+Sn)的比值优选大于0且小于或等于0.5。(Zn+Sn)与(In+Zn+Sn)的比值在大于0且小于或等于0.5时,太阳能电池的转换效率高。
另外,本发明提供太阳能电池中使用Cu-In-Zn-Sn-(Se,S)基薄膜的制造方法,其包含:步骤1,在基板上形成CZTS基薄膜;步骤2,在步骤1中形成的CZTS基薄膜上沉积In及Se()。所述CZTS基薄膜是将CIS薄膜的第IB-IIIA-VIA族半导体化合物中所有第IIIA族元素用第II-IV族元素的Zn+Sn取代,而形成含第IB-II-IV-VIA族四种元素的薄膜或五种元素的薄膜,例如Cu-Zn-Sn-Se薄膜,Cu-Zn-Sn-S薄膜或Cu-Zn-Sn-Se-S薄膜等。
另外,本发明提供太阳能电池用Cu-In-Zn-Sn-(Se,S)基薄膜的制造方法,其包含:步骤A,在基板上形成CIS基薄膜;步骤B:在步骤A中形成的CIS薄膜上沉积Zn,Sn及Se()。
有益效果
本发明提供的太阳能电池用Cu-In-Zn-Sn-(Se, S) 基薄膜及其制备方法,相比太阳能电池中用CZTS薄膜具有更好的转换率,同时减少In的使用量,降低制造成本,具有与现有CIS薄膜或CIGS薄膜相近似的转换率。
具体实施方式
以下对本发进行详细说明。
本发明提供用为太阳能电池中光吸收层的Cu-In-Zn-Sn-(Se, S) 基薄膜。
在本发明的一实施例中,所述太阳能电池用Cu-In-Zn-Sn-(Se,S)基薄膜是含五种元素或含六种元素化合物薄膜,将CIS-基(例如Cu-In-S-基,Cu-In-Sn-基,Cu-In-(S,Se)-基,Cu-In-Ga-Se-基,Cu-In-Ga-(Se,S)-基等) 化合物中的部分第IIIA族元素用Zn+Sn来替代。所述太阳能电池用Cu-In-Zn-Sn-(Se,S)基薄膜是含有五种或六种元素的化合物,其化学式为CuIn1-a-b-cGaaZnbSncSe2-ySy(式中,a,b,c及y是化学式中各原子的取代比率及且其皆为满足下列条件的实数,0≤a<1,0<b<1,0<c<1,0<a+b+c<1,及0≤y≤2)。具体地说,所述太阳能电池用Cu-In-Zn-Sn-(Se,S)基薄膜是第IB-IIIA-VA族化合物半导体CIS化合物,例如包含三种元素的化合物CuInSe2,CuInS2,CuGaSe2,CuGaS2,包含四种元素的化合物CuIn1-xGaxSe2(式中,x是原子的取代比率且为满足下式的实数,0<x<1),包含五种元素或六种元素的化合物CuIn1-xGaxSe2-ySy(式中,x,y是各原子的取代比率且皆为满足下式的实数,0<x<1,0<y<2),CuInaAlbGacSe2(式中,a,b,c是各原子的取代比率且皆为满足下式的实数,0<a<1,0<b<1,0<c<1,a+b+c=1),CuInaAlbGacSe2-ySy(式中,a,b,c,y是原子的取代比率且皆为满足下式的实数,0<a<1,0<b<1,0<c<1,a+b+c=1,0<y<2)。上述含五种或六种元素化合物薄膜是通过将部分In,Ga,Al等IIIA族元素被Zn+Sn取代而形成的。所述太阳能电池用Cu-In-Zn-Sn-(Se,S)薄膜优选Cu-In-Zn-Sn-S薄膜,Cu-In-Zn-Sn-Se薄膜或Cu-In-Zn-Sn-S-Se薄膜。
所述Cu-In-Zn-Sn-(Se,S)薄膜中,优选(Zn+Sn)与(In+Zn+Sn)的比值大于0且小于或等于0.5。当(Zn+Sn)与(In+Zn+Sn)的比值大于0且小于或等于0.5时,太阳能电池的转换率高。
所述本发明的太阳能电池用Cu-In-Zn-Sn-(Se,S)基薄膜解决了现有太阳能电池用化合物半导体薄膜的高制造成本及低转换效率问题,可应用在太阳能电池的光吸收层。
本发明提供把所述太阳能电池用Cu-In-Zn-Sn-(Se,S)基薄膜作为光吸收层的太阳能电池。另外,本发明提供太阳能电池用Cu-In-Zn-Sn-(Se, S)基薄膜的制造方法。
以下详细说明本发明的太阳能电池用Cu-In-Zn-Sn-(Se, S)基薄膜的制造方法。
本发明的一实施例中,本发明提供太阳能电池用Cu-In-Zn-Sn-(Se, S)基薄膜的制造方法,其特征是包含:步骤1,在基板上形成CZTS基薄膜;步骤2:在步骤1中形成的CZTS基薄膜上沉积In及Se)。
首先在基板上形成CZTS基薄膜(步骤1)。可用在薄膜太阳能电池上的所述基板是公知的任一基板就可,例如可使用玻璃基板例如钠石灰玻璃基板、陶瓷基板例如氧化铝基板、金属基板例如不锈钢基板和铜箔带、及聚合物基板,但不受限于此。可优先使用以钼形成背电极的钠石灰玻璃基板。
本发明的一实施例中,以钼形成背电极的钠石灰玻璃基板上,对Cu,ZnS,及Sn利用沉积方法例如共溅射方法或射频溅射方法等形成CZTS基薄膜。
接着,在所述基板上形成的CZTS基薄膜上沉积In和Se(步骤2)。
所述CZTS基薄膜上沉积In和Se的步骤可使用多种沉积方法例如真空共蒸镀法、MOCVD(有机金属化学气相沉积)方法、及电沉积法等,优先使用真空共蒸镀法。为了所述CZTS基薄膜上沉积In和Se而使用的真空共蒸镀法、MOCVD(有机金属化学气相沉积)方法、及电沉积法等是所属技术领域的技术人员所知晓的方法,故省略其说明。
所述步骤2中,在CZTS基薄膜上沉积In及Se的过程中为了促进所述CZTS基薄膜的前驱体和In及Se的反应,基板的温度优选维持在400~600℃来实行步骤2。当基板的温度在400~500℃时,在CZTS基薄膜内Sn的构成损失可减到最少,但晶粒的尺寸小,温度在500~600℃时,相反的晶粒的尺寸变大,但会发生Sn的损失。由此,起始CZTS基薄膜内的Sn构成比必需大于最终Cu-In-Zn-Sn-(Se,S)基薄膜内的Sn构成比。In和Se的供给时间影响In的最终构成,考量Sn的损失等因素供给时间较佳在30分以内。
所述太阳能电池用Cu-In-Zn-Sn-(Se,S)薄膜的制造方法中,步骤2所述太阳能电池用Cu-In-Zn-Sn-(Se,S)薄膜内,优选(Zn+Sn)与(In+Zn+Sn)的比值大于0且小于或等于0.5。改变泻流室(effusion cell)的温度可以调整In和Sn的沉积量。
另外,在本发明的另一实施例中,提供太阳能电池用Cu-In-Zn-Sn-(Se, S)薄膜的制造方法,其特征是包含:步骤A,在基板上形成CIS基薄膜);步骤B,在步骤A种形成的CIS基薄膜上沉积Zn,Sn及Se)。
首先在基板上形成CIS基薄膜(步骤A)。接着,实行在所述CIS基薄膜上沉积Zn,Sn及Se的步骤(步骤B)。所述CIS基薄膜上沉积Zn,Sn及Se的步骤可使用真空共蒸镀法、MOCVD(有机金属化学气相沉积)方法、及电沉积法等,较佳使用真空共蒸镀法。
在本发明的一实施例中,在所述CIS基薄膜上可利用真空共蒸镀法沉积Zn,Sn及Se形成Cu-In-Zn-Sn-(Se, S)基薄膜。此时,为了防止Sn以Sn-Se二元化合物的型态再蒸发,基板的温度较佳维持在300~400℃来实行步骤B。所述步骤B中,沉积Zn,Sn及Se的时间会影响In的最终构成,考量Sn的损失等因素沉积时间较佳在30分以内。
在本发明的太阳能电池用Cu-In-Zn-Sn-(Se,S)薄膜的制造方法中,步骤B所述太阳能电池用Cu-In-Zn-Sn-(Se,S)基薄膜内,优选(Zn+Sn)与(In+Zn+Sn)的比值大于0且小于或等于0.5。改变泻流室的温度可以调整Zn,Sn及Se的沉积量。
以下,虽然本发明结合其较佳实施例进行说明,下述实施例只是本发明的例示,本领域的技术人员将认识到不脱离本发明的范畴及技术思想的情况下,可实行多种变更及修改,这些变更及修改应属于本发明的权利要求范围。
<实施例>
<实施例1>太阳能电池用Cu-In-Zn-Sn-S-Se薄膜的制备
以直流溅射方式在钠石灰玻璃基板上沉积约1μm厚度的钼背电极。接着所述基板上以共溅射方法沉积Cu,ZnS,Sn形成CZTS(Cu-Zn-Sn-S)薄膜。在后热处理中为了防止CZTS薄膜的剥离及构成的变化,以溅射法在CZTS薄膜上沉积了铜覆盖膜。以改变溅射的功率和时间可调整所述CZTS薄膜的厚度和构成。形成的所述CZTS薄膜的厚度是1μm,其Cu:Zn:Sn:S原子比是约40:22:20:18。In和Se以真空共蒸镀法沉积在铜覆盖膜上形成太阳能电池用Cu-In-Zn-Sn-S-Se薄膜。此时为了促进上述CZTS薄膜的前驱体和In及Se的反应,基板的温度维持在520℃,通过改变泻流室的温度调整In和Sn的量,沉积15分制备形成太阳能电池用的Cu-In-Zn-Sn-S-Se薄膜。如此制备的太阳能电池用Cu-In-Zn-Sn-S-Se薄膜中的(Zn+Sn)与(In+Zn+Sn)的比值是0.06。这是指获得的Cu-In-Zn-Sn-S-Se薄膜中In的总量的6%In被Zn+Sn取代,即In的使用量减少了6%。
<实施例2> 太阳能电池用Cu-In-Zn-Sn-Se薄膜的制备
以直流溅射方式在钠石灰玻璃基板上沉积约1μm厚度的钼背电极。接着所述基板上以三步共蒸法沉积形成CISe(CuInSe2)薄膜。Zn,Sn及Se以真空共蒸镀法沉积在CISe薄膜上形成太阳能电池用Cu-In-Zn-Sn-Se薄膜。此时,为了防止Sn以Sn-Se二元化合物的型态再蒸发,基板的温度维持在400℃,通过改变泻流室的温度调整Zn和Sn的量,沉积Zn,Sn及Se的时间改成5分和10分,制备二个太阳能电池用Cu-In-Zn-Sn-Se薄膜。沉积5分钟Zn,Sn及Se制备的太阳能电池用Cu-In-Zn-Sn-Se薄膜中(Zn+Sn)与(In+Zn+Sn)的比值是0.16,沉积10分钟Zn,Sn及Se制备的太阳能电池用Cu-In-Zn-Sn-Se薄膜中的(Zn+Sn)与(In+Zn+Sn)的比值是0.17。这是指获得的Cu-In-Zn-Sn-Se薄膜中In总量的16%和17%被Zn+Sn取代,即In的使用量减少了16%和17%的用量。