一种真菌羧酸酯酶及其编码基因与应用.pdf

上传人:1****2 文档编号:42690 上传时间:2018-01-18 格式:PDF 页数:19 大小:2.65MB
返回 下载 相关 举报
摘要
申请专利号:

CN201310066622.X

申请日:

2013.03.04

公开号:

CN104031898A

公开日:

2014.09.10

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):C12N 9/18申请日:20130304|||公开

IPC分类号:

C12N9/18; C12N15/55; C12N15/63; C12N5/10; C12N1/21; C12N15/11; C12P7/62; C12P7/04; C12P7/54

主分类号:

C12N9/18

申请人:

中国农业大学

发明人:

杨绍青; 江正强; 徐海博; 刘昱; 闫巧娟; 段晓杰

地址:

100094 北京市海淀区圆明园西路2号

优先权:

专利代理机构:

北京纪凯知识产权代理有限公司 11245

代理人:

关畅

PDF下载: PDF下载
内容摘要

本发明公开了一种真菌羧酸酯酶及其编码基因与应用。本发明提供了一种蛋白,是如下(a)或(b):(a)由序列表中序列2所示的氨基酸序列组成的蛋白质;(b)将序列表中序列2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有羧酸酯酶活性的由序列2衍生的蛋白质。本发明的实验证明,本发明发明一种新的羧酸酯酶,其最适反应温度为45℃,最适反应pH值为6.5;用本发明的羧酸酯酶可以较快水解乙酸芳樟酯,并且可以高效合成丁酸丁酯,具有较好的工业化应用前景。

权利要求书

1.  一种蛋白,是如下(a)或(b):
(a)由序列表中序列2所示的氨基酸序列组成的蛋白质;
(b)将序列表中序列2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有羧酸酯酶活性的由序列2衍生的蛋白质。

2.
  编码权利要求1所述蛋白的DNA分子。

3.
  如权利要求2所述的DNA分子,其特征在于:所述DNA分子是如下(1)-(5)中任一种的DNA分子:
(1)编码区为序列表中序列1所示的DNA分子;
(2)编码区为序列表中序列1自5’末端第55-1026位核苷酸所示的DNA分子;
(3)编码区为序列表中序列1自5’末端第55-1029位核苷酸所示的DNA分子;
(4)在严格条件下与(1)或(2)或(3)限定的DNA序列杂交且编码具有羧酸酯酶活性蛋白的DNA分子;
(5)与(1)或(2)或(3)限定的DNA序列至少具有70%、至少具有75%、至少具有80%、至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有羧酸酯酶活性蛋白的DNA分子。

4.
  含有权利要求2或3所述DNA分子的重组载体、表达盒、转基因细胞系或重组菌。

5.
  如权利要求4所述的重组载体,其特征在于:
所述重组载体为将权利要求2或3所述DNA分子插入表达载体中,得到表达权利要求1所述蛋白的重组载体。

6.
  扩增权利要求2或3所述DNA分子全长或其任意片段的引物对。

7.
  权利要求1所述蛋白作为羧酸酯酶中的应用。

8.
  权利要求1所述蛋白在水解乙酸芳樟酯中的应用。

9.
  权利要求1所述蛋白在合成风味酯中的应用。

10.
  根据权利要求9所述的应用,其特征在于:所述风味酯为丁酸丁酯;
所述应用为丁酸、丁醇和权利要求1所述蛋白在溶剂中反应,得到丁酸丁酯;
所述丁酸、丁醇和权利要求1所述蛋白的配比具体为0.15M:0.125M:50U。

说明书

一种真菌羧酸酯酶及其编码基因与应用
技术领域
本发明涉及生物技术领域,尤其涉及一种真菌羧酸酯酶及其编码基因与应用。
背景技术
酯酶(EC.3.1.1.x)通常同时具有水解和合成的能力,水解时催化酯键产物为相应的酸和醇,合成时把酸的羧基与醇的羟基缩合并缩水,产物为酯类或其它香味物质。其中最重要的两种酯酶是脂肪酶[EC.3.1.1.3]和羧酸酯酶[EC.3.1.1.1]。脂肪酶因其催化中心附近存在“盖子”结构而具有“界面效应”,而羧酸酯酶不具有该现象。羧酸酯酶催化反应遵循经典的米氏动力学,而脂肪酶只有当底物达到一定浓度后才能表现出较高的催化活性。另外,羧酸酯酶对短碳链酯类(一般少于10个碳原子)具有较高的催化活性,而脂肪酶倾向于催化含有较长碳链(多于10个碳原子)的水不溶性酯类(Bornscheuer,2002.Microbial carboxyl esterases:classification,properties and application in biocatalysis.FEMS Microbiol Rev26:73-81)。羧酸酯酶具有许多独特的特性,如它们在有机相中可以完成酯化、转酯、酯交换等众多反应,而且其中的大多数反应具有不对称选择性,可以专一性地用于制备许多用化学法难以合成的手性化合物(如液晶、光学活性药物、农药等)及其前体(彭立风等,2000.微生物脂肪酶的应用[J].食品与发酵工业,26:68-73)。
羧酸酯酶具有广泛的底物特异性,在有机溶剂中具有较高的稳定性,并且一些羧酸酯酶还具有较高的对映选择性,这使羧酸酯酶在食品、制药等行业中具有广泛的应用前景。羧酸酯酶可以用来合成一些短链酯类,如丁酸乙酯、乙酸异戊酯、丁酸丁酯和辛酸乙酯等(Fendri et al.,2012.A thermoactive uropygial esterase fromchichen:Purification,characterization and synthesis of flavor esters.IntJ Biol Macromol50:1238-1244),这些具有水果香味的酯类物质在食品工业中具有重要的应用价值。目前,临床上所用的1200多种化学药物中,约有480多种为手性药物,药物的生物活性与其手性对映体构型密切相关,并非两种异构体都具有相同的活性,而酯酶可用于制药工业中手性药物的酶法拆分(Quax and Broekhuizen,1994.Development of a new Bacillus carboxyl esterase for use in resolution of chiraldrugs.Appl Microbial Biotechnol41:425-431)。
羧酸酯酶广泛存在于动物、植物和微生物中。微生物羧酸酯酶主要来源于细菌、古细菌和放线菌,其中以细菌羧酸酯酶的研究最为广泛。如芽胞杆菌(Eggert et al.,2000.A novel extracellular esterase from Bacillus subtilis and its conversionto a monoacylglycerol hydrolase.Eur J Biochem267:6459-6469),假交替单胞菌 (Cieslinski et al.,2007.A cold adapted esterase from Psychrotrophicpseudoalteromas sp.strain643A.Arch Microbiol188:27-36),高温厌氧杆菌(Raoet al.,2011.A thermostable esterase from Thermoanaerobacter tengcongensisopening up a new family of bacterial lipolytic enzymes.Biochim Biophys Acta1814:1695-1702),酒酒球菌(Sumby et al.,2009.Cloning and characterizationof an intracellular esterase from the wine-associated lactic acid bacteriumOeinococcus oeni.Appl Environ Microb75:6729-6735),地衣芽胞杆菌(Yang et al.,2012.Cloning,expression and biochemical characterization of a novel,moderately thermostable GDSL family esterase from GeobacillusthermodenitrificansT2.J Biosci Bioeng Article in press)和分支杆菌(Guo etal.,2010.Characterization of a novel esterase rv0045c from Mycobateriumtuberculosis.PLOS ONE5:10)等来源的羧酸酯酶已经得到较为深入的研究。然而,关于丝状真菌酯酶的研究报道相对较少。Purdy和Kolattukudy(Purdy andKolattukudy,1975.Hydrolysis of plant cuticle by plant pathogens.Purification,amino acid composition,and molecular weight of two isoenzymesof cutinase and a nonspecific esterase from Fusarium solani f.pisi.Biochem14:2832-2836)最早报道了一种Fusarium solani f.pisi来源的非特异性酯酶。Calero-Rueda等(Calero-Rueda et al.,2009.Study of a sterol esterase secretedby Ophiostoma piceae:Sequence,model and biochemical properties.Biochimicaet Biophysica Acta1794:1099-1106)研究了沥青长喙壳菌(Ophiostoma piceae)酯酶的序列、模型及生化性质。Chen和Fang(Chen et al.,2011.Research on theesterification property of esterase produced by Monascus sp.African JBiotechnol10(26):5166-5172)从中国传统酿酒大曲中分离得到一株红曲霉Monascus sp.并研究了该菌所产酯酶粗酶液的酯化特性。关于嗜热真菌酯酶的相关研究报道,仅见Fan等(Fan and Mattey,1999.Small enzymes with esterase activitiesfrom two thermophilic fungi,Emericella nidulans and Talaromyces emersonii.Biotechnol Lett21:1071-1076)研究了嗜热真菌Emericella nidulans和Talaromyces emersonii来源酯酶的分子量分布,以及Kontkanen等(Kontkanen et al.,2006.Purification and characterisation of a novel steryl esterase fromMelanocarpus albomyces.Enzyme Microbial Technol39:265-273)从热白丝菌(Melanocarpus albomyces)中纯化得到一种固醇酯酶并研究了其酶学性质。
由于酯酶的相关研究主要局限于少数种属,真菌酯酶的研究还不够深入,且种类较少。实际上产酯酶的真菌种类远多于目前已报道的。因此,进一步从自然界中筛选 产酯酶的真菌,尤其是嗜热真菌菌株对于拓宽酯酶的来源、丰富酯酶的种类具有重要的意义。
目前,世界各国都在致力于开发性能优良的羧酸酯酶,期待在食品、制药和日用化工等领域有重大突破。因此,筛选分泌酯酶的嗜热真菌菌株,生产性能优良的酯酶,并应用羧酸酯酶制备食品中应用的风味物质或日化中应用的香料以解决化学合成工艺所带来的高能耗和环境污染问题具有重要的意义。
发明内容
本发明的一个目的是提供一种真菌羧酸酯酶及其编码基因。
本发明提供的蛋白,命名为RmEstA,为羧酸酯酶,是如下(a)或(b):
(a)由序列表中序列2所示的氨基酸序列组成的蛋白质;
(b)将序列表中序列2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有羧酸酯酶活性的由序列2衍生的蛋白质。
上述一个或几个氨基酸残基的取代和/或缺失和/或添加为不超过10个氨基酸残基的取代和/或缺失和/或添加。
其中,序列表中的序列2由324个氨基酸组成,分子量约为35kDa。
为了使a)中的蛋白便于纯化,可在a)的蛋白质氨基末端或羧基末端连接上如表1所示的标签。
表1为标签的序列

标签残基序列Poly-Arg5-6(通常为5个)RRRRRPoly-His2-10(通常为6个)HHHHHHFLAG8DYKDDDDKStrep-tagⅡ8WSHPQFEKc-myc10EQKLISEEDL

上述b)中的蛋白可人工合成,也可先合成其编码基因,再进行生物表达获得。上述b)中蛋白的编码基因可通过将序列表中序列1的第55-1029位所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5'端和/或3'端连上表1所示的标签的编码序列得到。
编码上述蛋白的DNA分子也是本发明保护的范围。
上述DNA分子是如下(1)-(5)中任一种的DNA分子:
(1)编码区为序列表中序列1所示的DNA分子;
(2)编码区为序列表中序列1自5’末端第55-1026位核苷酸所示的DNA分子;
(3)编码区为序列表中序列1自5’末端第55-1029位核苷酸所示的DNA分子;
(4)在严格条件下与(1)或(2)或(3)限定的DNA序列杂交且编码具有羧酸酯酶活性蛋白的DNA分子;
(5)与(1)或(2)或(3)限定的DNA序列至少具有70%、至少具有75%、至少具有80%、至少具有85%、至少具有90%、至少具有95%、至少具有96%、至少具有97%、至少具有98%或至少具有99%同源性且编码具有羧酸酯酶活性蛋白的DNA分子。
上述严格条件下为在6×SSC,0.5%SDS的溶液中,在65°C下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次。
其中序列表中序列1由1162个碱基组成,编码序列为自5'端第55-1029位碱基,编码序列表中序列2所示的第1-324位氨基酸序列组成的蛋白质;序列1自5'端第1-54位碱基为5'端非翻译区,序列1自5'端第1030-1162位碱基为3'端非翻译区。
含有上述DNA分子的重组载体、表达盒、转基因细胞系或重组菌也是本发明保护的范围。
上述重组载体为将上述DNA分子插入表达载体中,得到表达上述蛋白的重组载体。在本发明的实施例中,表达载体为pET-30a(+)载体;重组载体pET-30a(+)-RmEstA为将序列表中序列1自5’末端第55-1026位核苷酸所示的DNA分子插入pET-30a(+)载体的NdeⅠ和XhoⅠ酶切位点间得到的载体。
上述重组菌是将上述DNA分子通过上述的重组载体导入大肠杆菌(Escherichiacoli)中,得到的重组菌,其中上述大肠杆菌是BL21(DE3)。
扩增上述DNA分子全长或其任意片段的引物对也是本发明保护的范围。
上述引物对具体为由RmEstAF:GGGTTTCATATGACTGTCGGAAACCCACCAA(NdeⅠ)和RmEstAR:ATTCCGCTCGAGTGCATTATACTTTGCATAAATGTCACG(XhoⅠ)组成的引物对。
上述蛋白作为羧酸酯酶中的应用也是本发明保护的范围。其最适反应温度为45℃,最适pH值为6.5。
上述蛋白在水解乙酸芳樟酯中的应用也是本发明保护的范围。
上述蛋白在合成风味酯中的应用也是本发明保护的范围;其中,所述风味酯具体为丁酸丁酯;所述应用为丁酸、丁醇和上述蛋白在溶剂中反应,得到丁酸丁酯;所述丁酸、丁醇和上述蛋白的配比具体为0.15M:0.125M:50U。
本发明的实验证明,本发明发现了一种新的羧酸酯酶,其最适反应温度为45℃,最适pH值为6.5。用本发明的羧酸酯酶可以较快水解乙酸芳樟酯,并且可以合成丁酸丁酯等多种风味酯类化合物,具有较好的工业化应用前景。
附图说明
图1为羧酸酯酶的电泳图及酶谱检测图
图2为所纯化羧酸酯酶的最适作用pH
图3为所纯化羧酸酯酶的pH稳定性
图4为所纯化羧酸酯酶的最适作用温度
图5为所纯化羧酸酯酶的温度稳定性
图6为所纯化羧酸酯酶水解乙酸芳樟酯薄层层析检测图
图7为所纯化羧酸酯酶水解乙酸芳樟酯HPLC定量分析图
图8为所纯化羧酸酯酶合成丁酸丁酯的反应历程图
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
下述实施例所述引物的合成及测序工作均由上海生工生物工程有限公司(北京公司)完成。
下述实施例的主要原料及试剂:乙酸芳樟酯、芳樟醇、丁酸、丁醇、丁酸丁酯、丁酸-4-甲基伞形酮、乙酸-1-萘酯、快红染料和罗丹明B购自Sigma(美国)公司;胰蛋白胨购自英国Oxoid公司;对硝基苯癸酸酯购自天津希恩思公司;琼脂和可溶性淀粉(培养基)购自北京康明威培养基技术有限责任公司;K2HPO4和MgSO4·7H2O购自北京化工厂。
下述实施例中所涉及的50mM磷酸盐缓冲液(pH6.5)的配方如下:分别配制50mM的磷酸二氢钠水溶液和50mM的磷酸氢二钠水溶液,然后将这两种溶液以合适的体积比混合至混合溶液的pH为6.5。
下述实施例的米黑根毛霉(Rhizomucor miehei)CAU432于2009年9月采自河南地区的土壤样品,并分离纯化得到,记载过该生物材料的非专利文献是:Tang et al.,2012.Purification and characterization of a novel beta-1,3-1,4-glucanase(lichenase)from thermophilic Rhizomucor miehei with high specific activityand its gene sequence.J Agric Food Chem60:2354-2361;公众可从中国农业大学获得。
实施例1、羧酸酯酶基因的发明及获得
1、羧酸酯酶基因基因组保守区片断PCR扩增
根据GenBank中报道的酯酶氨基酸序列,经过比对分析保守序列,利用在线软件Block Maker(http://blocks.fhcrc.org/blocks/blockmkr/make_blocks.html)搜索保守区,再利用在线引物设计软件CODEHOP(http://blocks.fhcrc.org/codehop.html)设计简并引物,简并引物和对应保守氨 基酸的序列如下:
EstDF(正向):CCGTCGCCGGCGAYWSNGCNGG(LAVAGDSAG)
EstDR(反向):CTCGCCCTCGTCTCKNARNACRTC(DVLRDEGE)
其中:Y=C/T,W=A/T,S=C/G,N=A/T/C/G,K=G/T,R=A/G
PCR反应以米黑根毛霉(Rhizomucor miehei)CAU432的基因组DNA为模板,EstDF和EstDR为引物,使用Ex Taq DNA聚合酶扩增。PCR反应条件为:94℃,5min;94℃,30s;60℃~55℃,30s;72℃,1min,共10个循环;94℃,30s;55℃,30s;72℃,1min;20个循环;72℃,10min。PCR产物经1%的琼脂糖凝胶电泳检测,显示在400bp左右有一特异条带,经回收连接pMD18-T载体,热激法转化E.coli DH5α,菌落PCR鉴定重组子后测序。测序结果经NCBI Blast搜索比对,与酯酶有较高同源性。
2、羧酸酯酶基因全长cDNA扩增
根据克隆得到的DNA片段,分别设计5'RACE和3'RACE引物。引物序列如下:
Est5'GSP:ATCCGATTCAGCAGTGAATAAAAGA
Est5'NGSP:AGCAGTGAATAAAAGAGCTGG
Est3'GSP:GGAGCTACATTGTCTGCTGCAGTA
Est3'NGSP:TACATTGTCTGCTGCAGTATCC
用纯化的mRNA作为模板,按照SMART RACE cDNA Amplification Kit方法反转录合成5'、3'RACE-Ready cDNA。以上述5'、3'RACE-Ready cDNA为模板,对应的GSP、NGSP为基因特异性引物,分别进行两轮嵌套PCR反应。回收目的片段连接pMD18-T载体,热激转化E.coli DH5α,菌落PCR鉴定重组子后分别测序。其中,通过5'RACE获得861bp的产物,3'RACE获得646bp的产物。
经序列拼接后,获得1162bp的全长cDNA序列,其中包含975bp的完整开放阅读框(ORF),全长cDNA序列的核苷酸序列为序列表中的序列1,其中完整开放阅读框(ORF)为序列表中的序列1自5’末端第55-1029位核苷酸。序列表中的序列1所示的基因命名为RmEstA,为羧酸酯酶基因;该基因编码由324个氨基酸组成的蛋白,命名为RmEstA,为羧酸酯酶,该蛋白的氨基酸为序列表中的序列2。
该蛋白经SignalP(http://www.cbs.dtu.dk/services/SignalP/)预测无信号肽。使用BlastP与NCBI上的蛋白序列比对,该蛋白与部分细菌如Paenibacillusmucilaginosus、Herbaspirillum sp.、Ralstonia solanacearum和Pseudomonas sp.等来源的酯酶同源性最高,均为44%,与真菌来源酯酶的同源性最高仅为43%(Rhizopusdelemar),表明该酶具有很好的新颖性。
实施例2、羧酸酯酶的功能验证
1、构建重组菌
根据基因序列设计表达引物,上下游引物分别添加NdeⅠ和XhoⅠ酶切位点。引物分别如下:
RmEstAF:GGGTTTCATATGACTGTCGGAAACCCACCAA(NdeⅠ)
RmEstAR:ATTCCGCTCGAGTGCATTATACTTTGCATAAATGTCACG(XhoⅠ)
用上述引物RmEstAF和RmEstAR,以米黑根毛霉(Rhizomucor miehei)CAU432的cDNA为模板进行PCR扩增。PCR反应条件为:94℃预变性5min,94℃变性30s,55℃退火30s,72℃延伸1min,共30个循环;72℃总延伸10min。
得到972bp的PCR产物;经过测序,该PCR产物具有序列表中序列1自5’末端第55-1026位核苷酸,编码的蛋白为序列表中序列2的第1-324位所示氨基酸序列组成的蛋白质。
琼脂糖凝胶试剂盒回收扩增产物;在将回收后的产物经NdeⅠ和XhoⅠ双酶切,与经过同样酶切的pET-30a(+)载体(Novagen,Madison,WI,USA)连接,转化E.coliBL21(DE3),在含卡那霉素(50μg/mL)的LB平板筛选阳性转化子。
提取阳性转化子的质粒,送去测序,该质粒为将序列表中序列1自5’末端第55-1026位核苷酸所示的DNA分子插入pET-30a(+)载体的NdeⅠ和XhoⅠ酶切位点间得到的载体,将该载体命名为pET-30a(+)-RmEstA,将含有该载体的阳性转化子命名为BL21(DE3)/pET-30a(+)-RmEstA。
将空载体pET-30a(+)转入BL21(DE3)中,得到BL21(DE3)/pET-30a(+)。
2、羧酸酯酶表达
将BL21(DE3)/pET-30a(+)-RmEstA于500mL含卡那霉素(50μg/mL)的LB培养基中扩大培养,37℃振荡培养至OD600达到0.6-0.8时加入IPTG至终浓度1mmol/L,30℃诱导培养过夜,离心(7000转/分钟,5分钟)收集细胞。50mM磷酸盐缓冲液(pH6.5)重悬后超声破碎(0度下超声破碎,功率200W,90个循环,每个循环为破碎3秒,间隔4秒),离心(7000转/分钟,5分钟)收集上清液,即为粗酶液。
按照上述的方法将BL21(DE3)/pET-30a(+)处理,收集上清液,得到对照液。
3、羧酸酯酶纯化
1)、纯化与SDS-PAGE鉴定
基于pET-30a(+)质粒中有编码His-Tag标签蛋白的序列,选择Ni-IDA亲和柱纯化重组蛋白。平衡缓冲液(20mM Tris-HCl,500mM NaCl,20mM咪唑,pH7.9)平衡Ni-IDA柱5-10个柱体积。
将上述步骤2得到的粗酶液以0.5mL/min流速上样,分别用平衡缓冲液及含50mM咪唑的Tris-HCl缓冲液以1mL/min流速洗涤至OD280﹤0.05,最后以含有200mM咪唑的Tris-HCl缓冲液洗涤,分部收集后测定酶活力,合并有酶活力的组分即为目标蛋白 溶液。
采用同样的方法纯化对照液,收集得到对照蛋白溶液。
将上述目标蛋白溶液分别用SDS-PAGE法(Laemmli U K,1970.Cleavage ofstructural proteins during the assembly of the head of bacteriophage T4.Nature227:680-685)检测蛋白纯度,并用酶谱(Karpushova et al.,2005.Cloning,recombinant expression and biochemical characterisation of novel esterasesfrom Bacillus sp.associated with the marine sponge Aplysina aerophoba.ApplMicrobiol Biotechnol67:59-69)方法检测蛋白活性。以对照蛋白溶液作为对照。
结果如图1所示,其中,列M为低分子量标准蛋白质Marker;列1为目标蛋白溶液;列2为羧酸酯酶酶谱(目标蛋白溶液进行酶谱染色;如果染上色就可以进一步说明是酯酶);结果表明,纯化后目标蛋白RmEstA得到明显的单一条带,分子量大小为35kDa,酶谱结果表明目标蛋白RmEstA有羧酸酯酶活性,为羧酸酯酶。
对照蛋白溶液没有目的条带,不为羧酸酯酶。
2)羧酸酯酶的蛋白含量及酶活力检测
蛋白含量测定参照Lowry等(Lowry et al.,1951.Protein measurement with thefolin phenol reagent.J Biol Chem193:265-275)的方法,以牛血清白蛋白作为标准蛋白,计算标准曲线为:y=50.085x-0.3174,其中y为蛋白浓度(mg/ml),x为吸光度值。
羧酸酯酶酶活力测定方法参照Sumby等(Sumby et al.,2009.Cloning andcharacterization of an intracellular esterase from the wine-associated lacticacid bacterium Oenococcus oeni.Appl Environ Microb75:6729-6735)的方法,具体如下:将50μL20mM对硝基苯癸酸酯的异丙醇溶液加入到400μL50mM磷酸盐缓冲液(pH6.5)中,在45℃水浴中预热3min,然后加入50μL适当稀释的目标蛋白溶液反应10min。反应完毕后加入500μL冷却至4℃的300mM磷酸盐缓冲液(pH7.0)并在冰水浴中冷却2min。最后测量反应溶液在410nm处的吸光度值。
酶活力单位(U)定义为在以上条件下,每分钟反应生成1μmol对硝基苯酚所需要的酶量。
以对照蛋白溶液作为对照。
目标蛋白RmEstA的纯化及酶活结果见表2,粗酶液经过Ni-TDA纯化后得到的目标蛋白RmEstA的比酶活力达到1480U/mg蛋白,纯化倍数为12倍,酶活力回收率为75%;而对照蛋白的酶活为0。
表2为羧酸酯酶纯化及酶活结果表


上述结果进一步证明目标蛋白RmEstA为羧酸酯酶。
实施例3、羧酸酯酶的酶学性质
1、羧酸酯酶的最适pH及pH稳定性
羧酸酯酶最适pH的测定:将上述由实施例2的3的1)得到的目标蛋白溶液溶于5种50mM不同缓冲液体系中(酶蛋白的终浓度为1-2μg/ml),缓冲液体系分别为:甘氨酸/盐酸(pH2.5,3.0,3.5)、柠檬酸/柠檬酸钠(pH3.0,3.5,4.0,4.5,5.0,5.5,6.0)、MES(2-(N-吗啉代)乙磺酸)(pH5.5,6.0,6.5)、磷酸氢二钠/磷酸二氢钠(pH6.0,6.5,7.0,7.5,8.0)、Tris-HCl(pH7.5,8.0,8.5,9.0,9.5)和甘氨酸/氢氧化钠(pH9.1,9.6,10.1,10.6),然后在45°C条件下按照实施例2的3的2)中的酶活力测定方法测定羧酸酯酶的酶活力,以酶活力最高点作为100%。
羧酸酯酶的最适pH结果如图2所示,其中(◆)甘氨酸/盐酸(pH2.5-3.5),(□)柠檬酸/柠檬酸钠(pH3.0-6.0),(▲)MES buffer(pH5.5-6.5),(◇)磷酸氢二钠/磷酸二氢钠(pH6.0-8.0),(■)Tris-HCl(pH7.5-9.0),(△)甘氨酸/氢氧化钠(pH9.1-10.6)。实验测得该羧酸酯酶的最适pH为6.5。
pH稳定性的测定:用上述1中不同缓冲液分别稀释由实施例2的3的1)得到的目标蛋白溶液,将稀释后的酶液(酶蛋白浓度为40μg/ml左右)置于45°C水浴中分别处理30min后迅速置于冰水中冷却30min,然后测定残余酶活力,酶活力测定方法同上。以未经处理的酶液作为对照,最后计算残余酶活力占未处理对照酶活力的百分比。
羧酸酯酶的pH稳定性如图3所示,其中(◆)甘氨酸/盐酸(pH2.5-3.5),(□)柠檬酸/柠檬酸钠(pH3.0-6.0),(▲)MES buffer(pH5.5-6.5),(◇)磷酸氢二钠/磷酸二氢钠(pH6.0-8.0),(■)Tris-HCl(pH7.5-9.0),(△)甘氨酸/氢氧化钠(pH9.1-10.6)。可以看出,羧酸酯酶在pH4.5-10.6的范围内热处理30min后仍保持酶活力的80%以上。说明该酶具有较宽的pH稳定范围。
2、羧酸酯酶的最适温度及温度稳定性
羧酸酯酶最适反应温度的测定:将上述由实施例2的3的1)得到的目标蛋白溶液适当稀释于50mM pH6.5的磷酸氢二钠/磷酸二氢钠缓冲液中(酶蛋白的浓度为2μg/ml左右),然后分别在30-80℃下测定羧酸酯酶的酶活力,酶活力测定方法同上。
羧酸酯酶的最适温度测定结果如图4所示,该酶的最适温度为45℃。
羧酸酯酶的温度稳定性测定:将上述由实施例2的3的1)得到的目标蛋白溶液分别在不同的温度下处理30min,缓冲液为50mM pH6.5的磷酸盐缓冲液,然后置于冰水浴中冷却30min,最后测定样品的残余酶活力,酶活力测定方法同上。以未经处理的酶液作为对照,计算残余酶活力占未处理对照酶活力的百分比。
羧酸酯酶的温度稳定性测定结果如图5所示,表明该酶在≤55℃时(30-55℃)保持稳定。
实施例4、羧酸酯酶(RmEstA)的应用
一、羧酸酯酶(RmEstA)对乙酸芳樟酯的水解作用
1、RmEstA对乙酸芳樟酯的水解
以50mM、pH6.5的磷酸盐缓冲液配制1mL15%的乙酸芳樟酯溶液,添加1mg/mL的由实施例2的3的1)得到的目标蛋白溶液,37℃保温水解6h,不同时间取出一定体积样品并加入4倍体积的乙醇终止反应。
采用薄层层析法(TLC)分析样品组成,展层系统为石油醚:乙酸乙酯=7:1。将薄层板在含有5mg/mL芳草醛的硫酸溶液30%(v/v)中快速浸泡,然后在110℃烤箱中加热显色(Kang et al.,2011.A novle famiy Ⅶ esterase with industrialpotential from compost metagenoimc library.Microb Cell Fact10:41)。
TLC分析水解结果如图6所示,其中M1为乙酸芳樟酯标准品,M2为芳樟醇标准品,0为不加目标蛋白溶液的对照样品,0.5、1、2、4和6分别表示水解0.5、1、2、4和6小时的产物。结果表明羧酸酯酶(RmEstA)能高效率水解乙酸芳樟酯,水解6h后,乙酸芳樟酯完全转化为芳樟醇。
采用HPLC法定量分析水解产物各组分的量。HPLC的检测条件为:流动相采用60%乙腈水溶液,流速为0.8ml/min,色谱柱采用Hydrosphere C18(250×4.6mm I.D S-5μm,12nm,YMC公司),检测器为紫外检测器,检测波长为210nm。标准品同上。
HPLC定量分析水解乙酸芳樟酯的结果如图7所示,结果表明水解1小时后48%的乙酸芳樟酯已经被水解,3小时后水解率达到80%,6小时后已完全水解,这一结果与TLC定性分析的结果相吻合。
二、羧酸酯酶(RmEstA)合成风味酯的应用
1、固定化羧酸酯酶的制备
参照Hassan等人的方法(Dandavate and Madamwar,2007.Novel approach forsynthesis of ethyl isovalerate using surfactant coated Candida rugosa lipaseimmobilized in microemulsion based organogels.Enzyme Microb Technol41:265-270)制备固定化羧酸酯酶,具体如下:
往100mM的磷酸缓冲液(pH6.5)中加入2-(2-乙基已基)磺基琥珀酸钠(AOT) 和由实施例2的3的1)得到的目标蛋白溶液,使AOT和酯酶的浓度分别为1mM和60mg/mL,得到酶溶液。将上述酶溶液在4℃下放置16h,然后往1ml该溶液中加入0.9ml正庚烷、0.0084g AOT和0.1ml100mM的磷酸缓冲液(pH6.5),使水和AOT的物质量的比(W/O)为60,AOT的终浓度为0.1M且溶液终体积为2mL(溶液A)。
制备5mL浓度为15%的明胶溶液(溶液B),加热至50℃。
将溶液A和溶液B混合,并冷却至室温,自然晾干16h,最后将该固定化酶切成碎片,放置于-20℃冰箱备用,得到固定化酯酶。
2、丁酸丁酯的合成
1)丁酸丁酯的合成
10mL正庚醇溶液中加入丁酸(终浓度0.1M)、丁醇(终浓度0.1M)和上述1得到的固定化酯酶或实施例2的3的1)得到的目标蛋白溶液(游离酶)(酶的终浓度均为50U)。将盛有以上溶液的试管放入45℃水浴摇床中,150rpm震荡反应7d。每隔24h取出100μL溶液检测生成丁酸丁酯的量。
酯类物质的检测参照De Barros(De Barros et al.,2011.Optimization offlavor esters synthesis by Fusarium solani pisi cutinase.J.Food Biochem36:275-284)等的方法。采用VarianCP-Chirasil-Dex CB手性毛细管色谱柱(25m×0.25mm×0.25μm)为固定相,FID检测,检测器温度250℃,进样口温度200℃。程序升温,初始柱温为50℃,保持4min,然后以每分钟15℃升温至150℃,保持3min;载气为氢气。
结果如图8所示,(■)表示固定化后的酯酶,(□)表示游离酶;试验结果表明上述1得到的固定化酯酶和实施例2的3的1)得到的目标蛋白溶液(游离酶)均能以丁酸和丁醇为底物高效合成风味物质丁酸丁酯,其中固定化酯酶的转化率较高,转化率为73%。
2)优化丁酸和丁醇的浓度
采用单因素试验优化丁酸和丁醇的浓度。首先,丁酸的浓度保持0.1M,调节丁醇至不同的浓度(0.05M、0.075M、0.1M、0.125M、0.15M、0.175M),按照上述合成方法合成丁酸丁酯(采用固定化羧酸酯酶),分别检测丁酸丁酯的转化率。结果如表3所示,可以看出,丁醇的浓度为0.125M时,转化率较高;
然后,固定丁醇的浓度为0.125M,调节丁酸为不同的浓度(0.05M、0.075M、0.1M、0.125M、0.15M、0.175M),按照上述合成方法合成丁酸丁酯(采用固定化羧酸酯酶),分别检测丁酸丁酯的转化率,结果如表3所示,最后得到丁酸(终浓度0.1M)、丁醇(终浓度0.1M)的最优浓度。
从表3的结果可以看出,优化丁酸和丁酯的浓度后,转化率得到显著的提高, 当丁醇的浓度为0.125M时(丁酸为0.1M),转化率提高到87%,继续优化丁酸的浓度为0.15M时(丁醇的浓度为0.125M),转化率提高到92%。
此外,酯酶还可以合成乙酸异戊酯和己酸乙酯等其它风味酯类化合物。这一特性表明该酶在风味酯类物质的合成方面具有重要的应用潜力。
表3丁酸丁酯的合成条件优化
丁酸浓度(M)丁醇浓度(M)转化率(%)0.10.0534±0.50.10.07556±1.20.10.173±2.50.10.12587±2.50.10.1578±2.10.10.17555±1.80.050.12544±1.30.0750.12559±1.10.10.12582±2.10.1250.12587±2.50.150.12592±3.50.1750.12574±2.8




一种真菌羧酸酯酶及其编码基因与应用.pdf_第1页
第1页 / 共19页
一种真菌羧酸酯酶及其编码基因与应用.pdf_第2页
第2页 / 共19页
一种真菌羧酸酯酶及其编码基因与应用.pdf_第3页
第3页 / 共19页
点击查看更多>>
资源描述

《一种真菌羧酸酯酶及其编码基因与应用.pdf》由会员分享,可在线阅读,更多相关《一种真菌羧酸酯酶及其编码基因与应用.pdf(19页珍藏版)》请在专利查询网上搜索。

1、10申请公布号CN104031898A43申请公布日20140910CN104031898A21申请号201310066622X22申请日20130304C12N9/18200601C12N15/55200601C12N15/63200601C12N5/10200601C12N1/21200601C12N15/11200601C12P7/62200601C12P7/04200601C12P7/5420060171申请人中国农业大学地址100094北京市海淀区圆明园西路2号72发明人杨绍青江正强徐海博刘昱闫巧娟段晓杰74专利代理机构北京纪凯知识产权代理有限公司11245代理人关畅54发明名称一种。

2、真菌羧酸酯酶及其编码基因与应用57摘要本发明公开了一种真菌羧酸酯酶及其编码基因与应用。本发明提供了一种蛋白,是如下(A)或(B)(A)由序列表中序列2所示的氨基酸序列组成的蛋白质;(B)将序列表中序列2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有羧酸酯酶活性的由序列2衍生的蛋白质。本发明的实验证明,本发明发明一种新的羧酸酯酶,其最适反应温度为45,最适反应PH值为65;用本发明的羧酸酯酶可以较快水解乙酸芳樟酯,并且可以高效合成丁酸丁酯,具有较好的工业化应用前景。51INTCL权利要求书1页说明书11页序列表4页附图2页19中华人民共和国国家知识产权局12发明专利申请。

3、权利要求书1页说明书11页序列表4页附图2页10申请公布号CN104031898ACN104031898A1/1页21一种蛋白,是如下(A)或(B)(A)由序列表中序列2所示的氨基酸序列组成的蛋白质;(B)将序列表中序列2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有羧酸酯酶活性的由序列2衍生的蛋白质。2编码权利要求1所述蛋白的DNA分子。3如权利要求2所述的DNA分子,其特征在于所述DNA分子是如下(1)(5)中任一种的DNA分子(1)编码区为序列表中序列1所示的DNA分子;(2)编码区为序列表中序列1自5末端第551026位核苷酸所示的DNA分子;(3)编码区为序。

4、列表中序列1自5末端第551029位核苷酸所示的DNA分子;(4)在严格条件下与(1)或(2)或(3)限定的DNA序列杂交且编码具有羧酸酯酶活性蛋白的DNA分子;(5)与(1)或(2)或(3)限定的DNA序列至少具有70、至少具有75、至少具有80、至少具有85、至少具有90、至少具有95、至少具有96、至少具有97、至少具有98或至少具有99同源性且编码具有羧酸酯酶活性蛋白的DNA分子。4含有权利要求2或3所述DNA分子的重组载体、表达盒、转基因细胞系或重组菌。5如权利要求4所述的重组载体,其特征在于所述重组载体为将权利要求2或3所述DNA分子插入表达载体中,得到表达权利要求1所述蛋白的重组。

5、载体。6扩增权利要求2或3所述DNA分子全长或其任意片段的引物对。7权利要求1所述蛋白作为羧酸酯酶中的应用。8权利要求1所述蛋白在水解乙酸芳樟酯中的应用。9权利要求1所述蛋白在合成风味酯中的应用。10根据权利要求9所述的应用,其特征在于所述风味酯为丁酸丁酯;所述应用为丁酸、丁醇和权利要求1所述蛋白在溶剂中反应,得到丁酸丁酯;所述丁酸、丁醇和权利要求1所述蛋白的配比具体为015M0125M50U。权利要求书CN104031898A1/11页3一种真菌羧酸酯酶及其编码基因与应用技术领域0001本发明涉及生物技术领域,尤其涉及一种真菌羧酸酯酶及其编码基因与应用。背景技术0002酯酶(EC311X)通。

6、常同时具有水解和合成的能力,水解时催化酯键产物为相应的酸和醇,合成时把酸的羧基与醇的羟基缩合并缩水,产物为酯类或其它香味物质。其中最重要的两种酯酶是脂肪酶EC3113和羧酸酯酶EC3111。脂肪酶因其催化中心附近存在“盖子”结构而具有“界面效应”,而羧酸酯酶不具有该现象。羧酸酯酶催化反应遵循经典的米氏动力学,而脂肪酶只有当底物达到一定浓度后才能表现出较高的催化活性。另外,羧酸酯酶对短碳链酯类(一般少于10个碳原子)具有较高的催化活性,而脂肪酶倾向于催化含有较长碳链(多于10个碳原子)的水不溶性酯类(BORNSCHEUER,2002MICROBIALCARBOXYLESTERASESCLASSI。

7、FICATION,PROPERTIESANDAPPLICATIONINBIOCATALYSISFEMSMICROBIOLREV267381)。羧酸酯酶具有许多独特的特性,如它们在有机相中可以完成酯化、转酯、酯交换等众多反应,而且其中的大多数反应具有不对称选择性,可以专一性地用于制备许多用化学法难以合成的手性化合物(如液晶、光学活性药物、农药等)及其前体(彭立风等,2000微生物脂肪酶的应用J食品与发酵工业,266873)。0003羧酸酯酶具有广泛的底物特异性,在有机溶剂中具有较高的稳定性,并且一些羧酸酯酶还具有较高的对映选择性,这使羧酸酯酶在食品、制药等行业中具有广泛的应用前景。羧酸酯酶可以用。

8、来合成一些短链酯类,如丁酸乙酯、乙酸异戊酯、丁酸丁酯和辛酸乙酯等(FENDRIETAL,2012ATHERMOACTIVEUROPYGIALESTERASEFROMCHICHENPURIFICATION,CHARACTERIZATIONANDSYNTHESISOFFLAVORESTERSINTJBIOLMACROMOL5012381244),这些具有水果香味的酯类物质在食品工业中具有重要的应用价值。目前,临床上所用的1200多种化学药物中,约有480多种为手性药物,药物的生物活性与其手性对映体构型密切相关,并非两种异构体都具有相同的活性,而酯酶可用于制药工业中手性药物的酶法拆分(QUAXAND。

9、BROEKHUIZEN,1994DEVELOPMENTOFANEWBACILLUSCARBOXYLESTERASEFORUSEINRESOLUTIONOFCHIRALDRUGSAPPLMICROBIALBIOTECHNOL41425431)。0004羧酸酯酶广泛存在于动物、植物和微生物中。微生物羧酸酯酶主要来源于细菌、古细菌和放线菌,其中以细菌羧酸酯酶的研究最为广泛。如芽胞杆菌(EGGERTETAL,2000ANOVELEXTRACELLULARESTERASEFROMBACILLUSSUBTILISANDITSCONVERSIONTOAMONOACYLGLYCEROLHYDROLASEEUR。

10、JBIOCHEM26764596469),假交替单胞菌(CIESLINSKIETAL,2007ACOLDADAPTEDESTERASEFROMPSYCHROTROPHICPSEUDOALTEROMASSPSTRAIN643AARCHMICROBIOL1882736),高温厌氧杆菌(RAOETAL,2011ATHERMOSTABLEESTERASEFROMTHERMOANAEROBACTERTENGCONGENSISOPENINGUPANEWFAMILYOFBACTERIALLIPOLYTICENZYMESBIOCHIMBIOPHYSACTA181416951702),酒酒球菌(SUMBYETA。

11、L,2009CLONINGANDCHARACTERIZATIONOFANINTRACELLULAR说明书CN104031898A2/11页4ESTERASEFROMTHEWINEASSOCIATEDLACTICACIDBACTERIUMOEINOCOCCUSOENIAPPLENVIRONMICROB7567296735),地衣芽胞杆菌(YANGETAL,2012CLONING,EXPRESSIONANDBIOCHEMICALCHARACTERIZATIONOFANOVEL,MODERATELYTHERMOSTABLEGDSLFAMILYESTERASEFROMGEOBACILLUSTHERMO。

12、DENITRIFICANST2JBIOSCIBIOENGARTICLEINPRESS)和分支杆菌(GUOETAL,2010CHARACTERIZATIONOFANOVELESTERASERV0045CFROMMYCOBATERIUMTUBERCULOSISPLOSONE510)等来源的羧酸酯酶已经得到较为深入的研究。然而,关于丝状真菌酯酶的研究报道相对较少。PURDY和KOLATTUKUDY(PURDYANDKOLATTUKUDY,1975HYDROLYSISOFPLANTCUTICLEBYPLANTPATHOGENSPURIFICATION,AMINOACIDCOMPOSITION,ANDM。

13、OLECULARWEIGHTOFTWOISOENZYMESOFCUTINASEANDANONSPECIFICESTERASEFROMFUSARIUMSOLANIFPISIBIOCHEM1428322836)最早报道了一种FUSARIUMSOLANIFPISI来源的非特异性酯酶。CALERORUEDA等(CALERORUEDAETAL,2009STUDYOFASTEROLESTERASESECRETEDBYOPHIOSTOMAPICEAESEQUENCE,MODELANDBIOCHEMICALPROPERTIESBIOCHIMICAETBIOPHYSICAACTA179410991106)研究了。

14、沥青长喙壳菌(OPHIOSTOMAPICEAE)酯酶的序列、模型及生化性质。CHEN和FANG(CHENETAL,2011RESEARCHONTHEESTERIFICATIONPROPERTYOFESTERASEPRODUCEDBYMONASCUSSPAFRICANJBIOTECHNOL102651665172)从中国传统酿酒大曲中分离得到一株红曲霉MONASCUSSP并研究了该菌所产酯酶粗酶液的酯化特性。关于嗜热真菌酯酶的相关研究报道,仅见FAN等(FANANDMATTEY,1999SMALLENZYMESWITHESTERASEACTIVITIESFROMTWOTHERMOPHILICFU。

15、NGI,EMERICELLANIDULANSANDTALAROMYCESEMERSONIIBIOTECHNOLLETT2110711076)研究了嗜热真菌EMERICELLANIDULANS和TALAROMYCESEMERSONII来源酯酶的分子量分布,以及KONTKANEN等(KONTKANENETAL,2006PURIFICATIONANDCHARACTERISATIONOFANOVELSTERYLESTERASEFROMMELANOCARPUSALBOMYCESENZYMEMICROBIALTECHNOL39265273)从热白丝菌(MELANOCARPUSALBOMYCES)中纯化得到。

16、一种固醇酯酶并研究了其酶学性质。0005由于酯酶的相关研究主要局限于少数种属,真菌酯酶的研究还不够深入,且种类较少。实际上产酯酶的真菌种类远多于目前已报道的。因此,进一步从自然界中筛选产酯酶的真菌,尤其是嗜热真菌菌株对于拓宽酯酶的来源、丰富酯酶的种类具有重要的意义。0006目前,世界各国都在致力于开发性能优良的羧酸酯酶,期待在食品、制药和日用化工等领域有重大突破。因此,筛选分泌酯酶的嗜热真菌菌株,生产性能优良的酯酶,并应用羧酸酯酶制备食品中应用的风味物质或日化中应用的香料以解决化学合成工艺所带来的高能耗和环境污染问题具有重要的意义。发明内容0007本发明的一个目的是提供一种真菌羧酸酯酶及其编码。

17、基因。0008本发明提供的蛋白,命名为RMESTA,为羧酸酯酶,是如下(A)或(B)0009(A)由序列表中序列2所示的氨基酸序列组成的蛋白质;0010(B)将序列表中序列2所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有羧酸酯酶活性的由序列2衍生的蛋白质。说明书CN104031898A3/11页50011上述一个或几个氨基酸残基的取代和/或缺失和/或添加为不超过10个氨基酸残基的取代和/或缺失和/或添加。0012其中,序列表中的序列2由324个氨基酸组成,分子量约为35KDA。0013为了使A)中的蛋白便于纯化,可在A)的蛋白质氨基末端或羧基末端连接上如表1所示的标签。

18、。0014表1为标签的序列0015标签残基序列POLYARG56(通常为5个)RRRRRPOLYHIS210(通常为6个)HHHHHHFLAG8DYKDDDDKSTREPTAG8WSHPQFEKCMYC10EQKLISEEDL0016上述B)中的蛋白可人工合成,也可先合成其编码基因,再进行生物表达获得。上述B)中蛋白的编码基因可通过将序列表中序列1的第551029位所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5端和/或3端连上表1所示的标签的编码序列得到。0017编码上述蛋白的DNA分子也是本发明保护的范围。0018上述DNA分子是如下(。

19、1)(5)中任一种的DNA分子0019(1)编码区为序列表中序列1所示的DNA分子;0020(2)编码区为序列表中序列1自5末端第551026位核苷酸所示的DNA分子;0021(3)编码区为序列表中序列1自5末端第551029位核苷酸所示的DNA分子;0022(4)在严格条件下与(1)或(2)或(3)限定的DNA序列杂交且编码具有羧酸酯酶活性蛋白的DNA分子;0023(5)与(1)或(2)或(3)限定的DNA序列至少具有70、至少具有75、至少具有80、至少具有85、至少具有90、至少具有95、至少具有96、至少具有97、至少具有98或至少具有99同源性且编码具有羧酸酯酶活性蛋白的DNA分子。。

20、0024上述严格条件下为在6SSC,05SDS的溶液中,在65C下杂交,然后用2SSC,01SDS和1SSC,01SDS各洗膜一次。0025其中序列表中序列1由1162个碱基组成,编码序列为自5端第551029位碱基,编码序列表中序列2所示的第1324位氨基酸序列组成的蛋白质;序列1自5端第154位碱基为5端非翻译区,序列1自5端第10301162位碱基为3端非翻译区。0026含有上述DNA分子的重组载体、表达盒、转基因细胞系或重组菌也是本发明保护的范围。0027上述重组载体为将上述DNA分子插入表达载体中,得到表达上述蛋白的重组载说明书CN104031898A4/11页6体。在本发明的实施例。

21、中,表达载体为PET30A()载体;重组载体PET30A()RMESTA为将序列表中序列1自5末端第551026位核苷酸所示的DNA分子插入PET30A()载体的NDE和XHO酶切位点间得到的载体。0028上述重组菌是将上述DNA分子通过上述的重组载体导入大肠杆菌(ESCHERICHIACOLI中,得到的重组菌,其中上述大肠杆菌是BL21(DE3)。0029扩增上述DNA分子全长或其任意片段的引物对也是本发明保护的范围。0030上述引物对具体为由RMESTAFGGGTTTCATATGACTGTCGGAAACCCACCAA(NDE)和RMESTARATTCCGCTCGAGTGCATTATACTT。

22、TGCATAAATGTCACG(XHO)组成的引物对。0031上述蛋白作为羧酸酯酶中的应用也是本发明保护的范围。其最适反应温度为45,最适PH值为65。0032上述蛋白在水解乙酸芳樟酯中的应用也是本发明保护的范围。0033上述蛋白在合成风味酯中的应用也是本发明保护的范围;其中,所述风味酯具体为丁酸丁酯;所述应用为丁酸、丁醇和上述蛋白在溶剂中反应,得到丁酸丁酯;所述丁酸、丁醇和上述蛋白的配比具体为015M0125M50U。0034本发明的实验证明,本发明发现了一种新的羧酸酯酶,其最适反应温度为45,最适PH值为65。用本发明的羧酸酯酶可以较快水解乙酸芳樟酯,并且可以合成丁酸丁酯等多种风味酯类化合。

23、物,具有较好的工业化应用前景。附图说明0035图1为羧酸酯酶的电泳图及酶谱检测图0036图2为所纯化羧酸酯酶的最适作用PH0037图3为所纯化羧酸酯酶的PH稳定性0038图4为所纯化羧酸酯酶的最适作用温度0039图5为所纯化羧酸酯酶的温度稳定性0040图6为所纯化羧酸酯酶水解乙酸芳樟酯薄层层析检测图0041图7为所纯化羧酸酯酶水解乙酸芳樟酯HPLC定量分析图0042图8为所纯化羧酸酯酶合成丁酸丁酯的反应历程图具体实施方式0043下述实施例中所使用的实验方法如无特殊说明,均为常规方法。0044下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。0045下述实施例所述引物的合成及测序。

24、工作均由上海生工生物工程有限公司(北京公司)完成。0046下述实施例的主要原料及试剂乙酸芳樟酯、芳樟醇、丁酸、丁醇、丁酸丁酯、丁酸4甲基伞形酮、乙酸1萘酯、快红染料和罗丹明B购自SIGMA(美国)公司;胰蛋白胨购自英国OXOID公司;对硝基苯癸酸酯购自天津希恩思公司;琼脂和可溶性淀粉(培养基)购自北京康明威培养基技术有限责任公司;K2HPO4和MGSO47H2O购自北京化工厂。0047下述实施例中所涉及的50MM磷酸盐缓冲液(PH65)的配方如下分别配制50MM的磷酸二氢钠水溶液和50MM的磷酸氢二钠水溶液,然后将这两种溶液以合适的体积比混说明书CN104031898A5/11页7合至混合溶液。

25、的PH为65。0048下述实施例的米黑根毛霉(RHIZOMUCORMIEHEICAU432于2009年9月采自河南地区的土壤样品,并分离纯化得到,记载过该生物材料的非专利文献是TANGETAL,2012PURIFICATIONANDCHARACTERIZATIONOFANOVELBETA1,31,4GLUCANASELICHENASEFROMTHERMOPHILICRHIZOMUCORMIEHEIWITHHIGHSPECIFICACTIVITYANDITSGENESEQUENCEJAGRICFOODCHEM6023542361;公众可从中国农业大学获得。0049实施例1、羧酸酯酶基因的发明及获。

26、得00501、羧酸酯酶基因基因组保守区片断PCR扩增0051根据GENBANK中报道的酯酶氨基酸序列,经过比对分析保守序列,利用在线软件BLOCKMAKER(HTTP/BLOCKSFHCRCORG/BLOCKS/BLOCKMKR/MAKE_BLOCKSHTML)搜索保守区,再利用在线引物设计软件CODEHOP(HTTP/BLOCKSFHCRCORG/CODEHOPHTML)设计简并引物,简并引物和对应保守氨基酸的序列如下0052ESTDF(正向)CCGTCGCCGGCGAYWSNGCNGG(LAVAGDSAG)0053ESTDR(反向)CTCGCCCTCGTCTCKNARNACRTC(DVLR。

27、DEGE)0054其中YC/T,WA/T,SC/G,NA/T/C/G,KG/T,RA/G0055PCR反应以米黑根毛霉(RHIZOMUCORMIEHEICAU432的基因组DNA为模板,ESTDF和ESTDR为引物,使用EXTAQDNA聚合酶扩增。PCR反应条件为94,5MIN;94,30S;6055,30S;72,1MIN,共10个循环;94,30S;55,30S;72,1MIN;20个循环;72,10MIN。PCR产物经1的琼脂糖凝胶电泳检测,显示在400BP左右有一特异条带,经回收连接PMD18T载体,热激法转化ECOLIDH5,菌落PCR鉴定重组子后测序。测序结果经NCBIBLAST搜。

28、索比对,与酯酶有较高同源性。00562、羧酸酯酶基因全长CDNA扩增0057根据克隆得到的DNA片段,分别设计5RACE和3RACE引物。引物序列如下0058EST5GSPATCCGATTCAGCAGTGAATAAAAGA0059EST5NGSPAGCAGTGAATAAAAGAGCTGG0060EST3GSPGGAGCTACATTGTCTGCTGCAGTA0061EST3NGSPTACATTGTCTGCTGCAGTATCC0062用纯化的MRNA作为模板,按照SMARTRACECDNAAMPLIFICATIONKIT方法反转录合成5、3RACEREADYCDNA。以上述5、3RACEREADY。

29、CDNA为模板,对应的GSP、NGSP为基因特异性引物,分别进行两轮嵌套PCR反应。回收目的片段连接PMD18T载体,热激转化ECOLIDH5,菌落PCR鉴定重组子后分别测序。其中,通过5RACE获得861BP的产物,3RACE获得646BP的产物。0063经序列拼接后,获得1162BP的全长CDNA序列,其中包含975BP的完整开放阅读框(ORF),全长CDNA序列的核苷酸序列为序列表中的序列1,其中完整开放阅读框(ORF)为序列表中的序列1自5末端第551029位核苷酸。序列表中的序列1所示的基因命名为RMESTA,为羧酸酯酶基因;该基因编码由324个氨基酸组成的蛋白,命名为RMESTA,。

30、为羧酸酯酶,该蛋白的氨基酸为序列表中的序列2。0064该蛋白经SIGNALP(HTTP/WWWCBSDTUDK/SERVICES/SIGNALP/)预测无信号肽。使用BLASTP与NCBI上的蛋白序列比对,该蛋白与部分细菌如说明书CN104031898A6/11页8PAENIBACILLUSMUCILAGINOSUS、HERBASPIRILLUMSP、RALSTONIASOLANACEARUM和PSEUDOMONASSP等来源的酯酶同源性最高,均为44,与真菌来源酯酶的同源性最高仅为43(RHIZOPUSDELEMAR),表明该酶具有很好的新颖性。0065实施例2、羧酸酯酶的功能验证00661。

31、、构建重组菌0067根据基因序列设计表达引物,上下游引物分别添加NDE和XHO酶切位点。引物分别如下0068RMESTAFGGGTTTCATATGACTGTCGGAAACCCACCAA(NDE)0069RMESTARATTCCGCTCGAGTGCATTATACTTTGCATAAATGTCACG(XHO)0070用上述引物RMESTAF和RMESTAR,以米黑根毛霉(RHIZOMUCORMIEHEICAU432的CDNA为模板进行PCR扩增。PCR反应条件为94预变性5MIN,94变性30S,55退火30S,72延伸1MIN,共30个循环;72总延伸10MIN。0071得到972BP的PCR产物。

32、;经过测序,该PCR产物具有序列表中序列1自5末端第551026位核苷酸,编码的蛋白为序列表中序列2的第1324位所示氨基酸序列组成的蛋白质。0072琼脂糖凝胶试剂盒回收扩增产物;在将回收后的产物经NDE和XHO双酶切,与经过同样酶切的PET30A()载体(NOVAGEN,MADISON,WI,USA)连接,转化ECOLIBL21(DE3),在含卡那霉素(50G/ML)的LB平板筛选阳性转化子。0073提取阳性转化子的质粒,送去测序,该质粒为将序列表中序列1自5末端第551026位核苷酸所示的DNA分子插入PET30A()载体的NDE和XHO酶切位点间得到的载体,将该载体命名为PET30A()。

33、RMESTA,将含有该载体的阳性转化子命名为BL21(DE3)/PET30A()RMESTA。0074将空载体PET30A()转入BL21(DE3)中,得到BL21(DE3)/PET30A()。00752、羧酸酯酶表达0076将BL21(DE3)/PET30A()RMESTA于500ML含卡那霉素(50G/ML)的LB培养基中扩大培养,37振荡培养至OD600达到0608时加入IPTG至终浓度1MMOL/L,30诱导培养过夜,离心(7000转/分钟,5分钟)收集细胞。50MM磷酸盐缓冲液(PH65)重悬后超声破碎(0度下超声破碎,功率200W,90个循环,每个循环为破碎3秒,间隔4秒),离心(。

34、7000转/分钟,5分钟)收集上清液,即为粗酶液。0077按照上述的方法将BL21(DE3)/PET30A()处理,收集上清液,得到对照液。00783、羧酸酯酶纯化00791)、纯化与SDSPAGE鉴定0080基于PET30A()质粒中有编码HISTAG标签蛋白的序列,选择NIIDA亲和柱纯化重组蛋白。平衡缓冲液(20MMTRISHCL,500MMNACL,20MM咪唑,PH79)平衡NIIDA柱510个柱体积。0081将上述步骤2得到的粗酶液以05ML/MIN流速上样,分别用平衡缓冲液及含50MM咪唑的TRISHCL缓冲液以1ML/MIN流速洗涤至OD280005,最后以含有200MM咪唑的。

35、TRISHCL缓冲液洗涤,分部收集后测定酶活力,合并有酶活力的组分即为目标蛋白溶液。0082采用同样的方法纯化对照液,收集得到对照蛋白溶液。说明书CN104031898A7/11页90083将上述目标蛋白溶液分别用SDSPAGE法(LAEMMLIUK,1970CLEAVAGEOFSTRUCTURALPROTEINSDURINGTHEASSEMBLYOFTHEHEADOFBACTERIOPHAGET4NATURE227680685)检测蛋白纯度,并用酶谱(KARPUSHOVAETAL,2005CLONING,RECOMBINANTEXPRESSIONANDBIOCHEMICALCHARACTER。

36、ISATIONOFNOVELESTERASESFROMBACILLUSSPASSOCIATEDWITHTHEMARINESPONGEAPLYSINAAEROPHOBAAPPLMICROBIOLBIOTECHNOL675969)方法检测蛋白活性。以对照蛋白溶液作为对照。0084结果如图1所示,其中,列M为低分子量标准蛋白质MARKER;列1为目标蛋白溶液;列2为羧酸酯酶酶谱(目标蛋白溶液进行酶谱染色;如果染上色就可以进一步说明是酯酶);结果表明,纯化后目标蛋白RMESTA得到明显的单一条带,分子量大小为35KDA,酶谱结果表明目标蛋白RMESTA有羧酸酯酶活性,为羧酸酯酶。0085对照蛋白溶液没。

37、有目的条带,不为羧酸酯酶。00862)羧酸酯酶的蛋白含量及酶活力检测0087蛋白含量测定参照LOWRY等(LOWRYETAL,1951PROTEINMEASUREMENTWITHTHEFOLINPHENOLREAGENTJBIOLCHEM193265275)的方法,以牛血清白蛋白作为标准蛋白,计算标准曲线为Y50085X03174,其中Y为蛋白浓度MG/ML,X为吸光度值。0088羧酸酯酶酶活力测定方法参照SUMBY等(SUMBYETAL,2009CLONINGANDCHARACTERIZATIONOFANINTRACELLULARESTERASEFROMTHEWINEASSOCIATEDLA。

38、CTICACIDBACTERIUMOENOCOCCUSOENIAPPLENVIRONMICROB7567296735)的方法,具体如下将50L20MM对硝基苯癸酸酯的异丙醇溶液加入到400L50MM磷酸盐缓冲液(PH65)中,在45水浴中预热3MIN,然后加入50L适当稀释的目标蛋白溶液反应10MIN。反应完毕后加入500L冷却至4的300MM磷酸盐缓冲液(PH70)并在冰水浴中冷却2MIN。最后测量反应溶液在410NM处的吸光度值。0089酶活力单位(U)定义为在以上条件下,每分钟反应生成1MOL对硝基苯酚所需要的酶量。0090以对照蛋白溶液作为对照。0091目标蛋白RMESTA的纯化及酶活。

39、结果见表2,粗酶液经过NITDA纯化后得到的目标蛋白RMESTA的比酶活力达到1480U/MG蛋白,纯化倍数为12倍,酶活力回收率为75;而对照蛋白的酶活为0。0092表2为羧酸酯酶纯化及酶活结果表009300940095上述结果进一步证明目标蛋白RMESTA为羧酸酯酶。0096实施例3、羧酸酯酶的酶学性质说明书CN104031898A8/11页1000971、羧酸酯酶的最适PH及PH稳定性0098羧酸酯酶最适PH的测定将上述由实施例2的3的1)得到的目标蛋白溶液溶于5种50MM不同缓冲液体系中(酶蛋白的终浓度为12G/ML),缓冲液体系分别为甘氨酸/盐酸(PH25,30,35)、柠檬酸/柠檬。

40、酸钠(PH30,35,40,45,50,55,60)、MES(2(N吗啉代)乙磺酸)(PH55,60,65)、磷酸氢二钠/磷酸二氢钠(PH60,65,70,75,80)、TRISHCL(PH75,80,85,90,95)和甘氨酸/氢氧化钠(PH91,96,101,106),然后在45C条件下按照实施例2的3的2)中的酶活力测定方法测定羧酸酯酶的酶活力,以酶活力最高点作为100。0099羧酸酯酶的最适PH结果如图2所示,其中()甘氨酸/盐酸(PH2535),()柠檬酸/柠檬酸钠(PH3060),()MESBUFFER(PH5565),()磷酸氢二钠/磷酸二氢钠(PH6080),()TRISHCL。

41、(PH7590),()甘氨酸/氢氧化钠(PH91106)。实验测得该羧酸酯酶的最适PH为65。0100PH稳定性的测定用上述1中不同缓冲液分别稀释由实施例2的3的1)得到的目标蛋白溶液,将稀释后的酶液(酶蛋白浓度为40G/ML左右)置于45C水浴中分别处理30MIN后迅速置于冰水中冷却30MIN,然后测定残余酶活力,酶活力测定方法同上。以未经处理的酶液作为对照,最后计算残余酶活力占未处理对照酶活力的百分比。0101羧酸酯酶的PH稳定性如图3所示,其中()甘氨酸/盐酸(PH2535),柠檬酸/柠檬酸钠(PH3060),()MESBUFFER(PH5565),()磷酸氢二钠/磷酸二氢钠(PH608。

42、0),()TRISHCL(PH7590),()甘氨酸/氢氧化钠(PH91106)。可以看出,羧酸酯酶在PH45106的范围内热处理30MIN后仍保持酶活力的80以上。说明该酶具有较宽的PH稳定范围。01022、羧酸酯酶的最适温度及温度稳定性0103羧酸酯酶最适反应温度的测定将上述由实施例2的3的1)得到的目标蛋白溶液适当稀释于50MMPH65的磷酸氢二钠/磷酸二氢钠缓冲液中(酶蛋白的浓度为2G/ML左右),然后分别在3080下测定羧酸酯酶的酶活力,酶活力测定方法同上。0104羧酸酯酶的最适温度测定结果如图4所示,该酶的最适温度为45。0105羧酸酯酶的温度稳定性测定将上述由实施例2的3的1)得。

43、到的目标蛋白溶液分别在不同的温度下处理30MIN,缓冲液为50MMPH65的磷酸盐缓冲液,然后置于冰水浴中冷却30MIN,最后测定样品的残余酶活力,酶活力测定方法同上。以未经处理的酶液作为对照,计算残余酶活力占未处理对照酶活力的百分比。0106羧酸酯酶的温度稳定性测定结果如图5所示,表明该酶在55时(3055)保持稳定。0107实施例4、羧酸酯酶(RMESTA)的应用0108一、羧酸酯酶(RMESTA)对乙酸芳樟酯的水解作用01091、RMESTA对乙酸芳樟酯的水解0110以50MM、PH65的磷酸盐缓冲液配制1ML15的乙酸芳樟酯溶液,添加1MG/ML的由实施例2的3的1)得到的目标蛋白溶液。

44、,37保温水解6H,不同时间取出一定体积样品并加入4倍体积的乙醇终止反应。0111采用薄层层析法(TLC)分析样品组成,展层系统为石油醚乙酸乙酯71。将薄说明书CN104031898A109/11页11层板在含有5MG/ML芳草醛的硫酸溶液30(V/V)中快速浸泡,然后在110烤箱中加热显色KANGETAL,2011ANOVLEFAMIYESTERASEWITHINDUSTRIALPOTENTIALFROMCOMPOSTMETAGENOIMCLIBRARYMICROBCELLFACT1041。0112TLC分析水解结果如图6所示,其中M1为乙酸芳樟酯标准品,M2为芳樟醇标准品,0为不加目标蛋白。

45、溶液的对照样品,05、1、2、4和6分别表示水解05、1、2、4和6小时的产物。结果表明羧酸酯酶(RMESTA)能高效率水解乙酸芳樟酯,水解6H后,乙酸芳樟酯完全转化为芳樟醇。0113采用HPLC法定量分析水解产物各组分的量。HPLC的检测条件为流动相采用60乙腈水溶液,流速为08ML/MIN,色谱柱采用HYDROSPHEREC18(25046MMIDS5M,12NM,YMC公司),检测器为紫外检测器,检测波长为210NM。标准品同上。0114HPLC定量分析水解乙酸芳樟酯的结果如图7所示,结果表明水解1小时后48的乙酸芳樟酯已经被水解,3小时后水解率达到80,6小时后已完全水解,这一结果与T。

46、LC定性分析的结果相吻合。0115二、羧酸酯酶(RMESTA)合成风味酯的应用01161、固定化羧酸酯酶的制备0117参照HASSAN等人的方法(DANDAVATEANDMADAMWAR,2007NOVELAPPROACHFORSYNTHESISOFETHYLISOVALERATEUSINGSURFACTANTCOATEDCANDIDARUGOSALIPASEIMMOBILIZEDINMICROEMULSIONBASEDORGANOGELSENZYMEMICROBTECHNOL41265270)制备固定化羧酸酯酶,具体如下0118往100MM的磷酸缓冲液(PH65)中加入22乙基已基磺基琥珀酸。

47、钠AOT和由实施例2的3的1)得到的目标蛋白溶液,使AOT和酯酶的浓度分别为1MM和60MG/ML,得到酶溶液。将上述酶溶液在4下放置16H,然后往1ML该溶液中加入09ML正庚烷、00084GAOT和01ML100MM的磷酸缓冲液(PH65),使水和AOT的物质量的比(W/O)为60,AOT的终浓度为01M且溶液终体积为2ML(溶液A)。0119制备5ML浓度为15的明胶溶液(溶液B),加热至50。0120将溶液A和溶液B混合,并冷却至室温,自然晾干16H,最后将该固定化酶切成碎片,放置于20冰箱备用,得到固定化酯酶。01212、丁酸丁酯的合成01221)丁酸丁酯的合成012310ML正庚醇。

48、溶液中加入丁酸(终浓度01M)、丁醇(终浓度01M)和上述1得到的固定化酯酶或实施例2的3的1)得到的目标蛋白溶液(游离酶)(酶的终浓度均为50U)。将盛有以上溶液的试管放入45水浴摇床中,150RPM震荡反应7D。每隔24H取出100L溶液检测生成丁酸丁酯的量。0124酯类物质的检测参照DEBARROSDEBARROSETAL,2011OPTIMIZATIONOFFLAVORESTERSSYNTHESISBYFUSARIUMSOLANIPISICUTINASEJFOODBIOCHEM36275284等的方法。采用VARIANCPCHIRASILDEXCB手性毛细管色谱柱(25M025MM02。

49、5M)为固定相,FID检测,检测器温度250,进样口温度200。程序升温,初始柱温为50,保持4MIN,然后以每分钟15升温至150,保持3MIN;载气为氢气。说明书CN104031898A1110/11页120125结果如图8所示,()表示固定化后的酯酶,()表示游离酶;试验结果表明上述1得到的固定化酯酶和实施例2的3的1)得到的目标蛋白溶液(游离酶)均能以丁酸和丁醇为底物高效合成风味物质丁酸丁酯,其中固定化酯酶的转化率较高,转化率为73。01262)优化丁酸和丁醇的浓度0127采用单因素试验优化丁酸和丁醇的浓度。首先,丁酸的浓度保持01M,调节丁醇至不同的浓度(005M、0075M、01M、0125M、015M、0175M),按照上述合成方法合成丁酸丁酯(采用固定化羧酸酯酶),分别检测丁酸丁酯的转化率。结果如表3所示,可以看出,丁醇的浓度为0125M时,转化率较高;0128然后,固定丁醇的浓度为0125M,调节丁酸为不同的浓度(005M、0075M、01M、0125M、015M、0175M),按照上述合成方法合成丁酸丁酯(采用固定化羧酸酯酶),分别检测。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 生物化学;啤酒;烈性酒;果汁酒;醋;微生物学;酶学;突变或遗传工程


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1