气流中二氧化碳的去除 本发明涉及气流中二氧化碳(CO2)的去除,具体是涉及在空气分离前去除其中的CO2进行空气的预净化。
自然界及工业产生的各种气体常含有少量CO2,例如,大气中通常含有约250ppm的CO2。由于某些方法的制约或是气体的特定最后用途,有时需要从该气体中去除CO2。例如,空气将采取低温蒸馏、低温吸附等低温分离技术(低温空气分离)分离成各种组分产物时,它就必须基本上不含CO2和水汽,因为这些操作需在这些化合物的凝固点以下的温度进行;所以如果不将它们预先去除,它们会堵塞空气分离的设备。
可以用多种方法去除气流中的CO2和水汽,例如凝结,逆热交换冷冻和吸附。一种特别优选的方法是利用一种对CO2(和水汽)吸附作用强于对气流中其它组分的吸附剂进行的吸附。例如,常令气流通过沸石13X床层来去除有待进行低温分离的空气流中的CO2。1975年5月27日授权于Sherman等的美国专利3,885,927揭示了,利用至少含90%(当量百分率)钡阳离子的X型沸石,在一40-120F可由含量不大于1000ppmCO2地气流中去除其CO2。1988年10月4日授权于Rastelli等人的美国专利4,775,396揭示了在-50-100℃利用变压吸附可吸附除去气流中的CO2,该吸附剂SiO2/Al2O3的摩尔比约2-100,至少含有20%(当量)的选自锌、稀土,氢和铵离子中一种或多种的阳离子,并含有不多于80%(当量)的碱金属或碱土金属离子。
沸石13X可在低温下有效去除空气流中的少量CO2(和水汽),低温指5℃及更低的温度,因为它对上述组分的吸附强于对氮,氧或氩的吸附。但是,随被分离气体温度的升高,沸石13X吸附CO2的能力迅速衰减,当温度高于20℃时这个吸附分离的方法就不适用了。由于环境温度常显著高于5℃的优选吸附温度,例如有时会遇到40℃乃至更高的环境温度,还由于吸附过程中吸附床层会因吸附放热和气体压缩产生热而具有明显升温的倾向,所以常必需用外冷却法冷却送往以吸附法为基础的空气预净化车间的空气,维持其温度低于20℃。这样做就降低了空气分离过程的总效率,因为为了提供必要的冷却需要消耗能量。
在以吸附为基础的商业化空气分离预净化过程中,若能完全无需冷却或是大大减少所需的冷却量,这是十分优越的,因为这将增强空气分离过程整体上的经济吸引力。本发明就提供了一种具有此优点的新的CO2吸附方法。
根据本发明,在-50至80℃条件下,将气体通过由硅/铝原子比为1.0-1.15的X型沸石床去除CO2来净化气体。本发明的方法可用于净化极性小于CO2和所含CO2杂质分压至多25毫巴或以上的任何气体。可用本发明方法净化的典型气体是空气、氮气、氧气、氩气、氢气、氦气、甲烷等。
吸附剂可以是钠X沸石,即它的可交换阳离子基本上全为钠离子,或者它可以含有一种或多种选自周期表IA、IIA和IIIA族,镧系离子,铬(III)离子,铁(III)离子,锌(II)离子和铜(II)离子的各种一价,二价,三价可交换阳离子。优选吸附剂是其可交换阳离子选自以下一种或多种的X沸石:离子态的钠,钾,锂,钙,镁,钡,硒,铝,钪,镓,铟,钇,镧,铈,镨和钕。最优选的阳离子是钠,锂,钙,镁,铝,铈和镧及其混合物。
在本发明的一个优选实施方法中,X型沸石的硅对铝的原子比约为1.0-1.1,在一个最优实施方法中,此比约为1.0。
本发明方法的吸附步骤在约20-80℃进行较有利。在约30-60℃进行吸附,可获得非常好的结果。
CO2净化宜循环进行,采用变压吸附(PSA),变温吸附(TSA)或其结合更宜。在最优实施方法中,采用TSA法。
气流中CO2的浓度以其分压不超过2.5×103Pa(25mbar)为宜,不超过1.0×103Pa(10mbar)更好,不超过5×102pa(5mbar)最好。
本发明方法可以只有CO2吸附的单一操作,也可以包括CO2吸附和空气分离、氢氧化、CO氧化等中的一种或多种净化操作相结合。在一个优选过程中,是先用前述方法由空气中去除CO2,然后用低温蒸馏法将经上述净化后的空气分离成氮气,氧气、氩气或其中两种或两种以上的混合物。
以X型吸附剂吸附CO2还可用于由气流中去除水汽,如果存在的话,在一个优选实施例中,将气流通过干燥剂(最好是氧化铝、硅胶或沸石或其混合物)在CO2吸附前除湿。
本发明方法特别适用于在约20℃下由气流中去除低浓度(ppm级)的CO2。如前文所述,虽然本发明方法也可成功地用于由气流中去除其分压超过2.5×103Pa(25mbar)的CO2,但当CO2分压不超过2.5×103Pa(25mbar)时,这种去除更有效。
用于本发明方法的吸附剂是硅对铝的原子比不大于1.15的X型沸石,即其硅对铝的原子比约在1.0-1.15之间。本发明的优选吸附剂是硅对铝的原子比在1.0-1.1之间的X型沸石,最优的是该比约为1.0的X型沸石,一般称为低硅X沸石或LSX沸石。由于沸石结构中会有缺陷,会有杂质(如夹杂的氧化铝和/或铝酸盐),分析测量中会有误差,所以低至0.9的X型沸石的表观硅铝比也曾有报导。但是,硅对铝的理论最小原子比为1.0,并以此理论最小值用于本发明,而且,我们拟将具有可能最低硅铝原子比的X型沸石均包括在本发明范围内。
沸石可以是“钠X”沸石,即其可交换阳离子基本上全是钠离子,或者是任何其交换阳离子是钠以外阳离子的许多已知离子交换X型沸石中的某一种。可占据X型沸石上可交换阳离子位置的离子,包括周期表中的IA、IIA、IIIA族、IIIB族,镧系元素三价离子,锌(II)离子,铜(II)离子,铬(III)离子,铁(III)离子,铵离子,氢离子或是其中两种或多种的混合离子。优选的IA族离子是钠、钾、锂离子;优先的IIA族离子是镁、钙、锶、钡离子;优选的IIIA和IIIB族离子是铝、钪、镓、铟、钇离子;优选的三价镧系离子是镧、铈、镨、钕离子。最优选的X型沸石具有选自以下一种或多种的可交换阳离子:钠、锂、钙、镁、铝、铈、镧、镨、钕等离子。
本发明方法可以仅在一个吸附容器内进行,也可以在由两个或多个平行放置且采用吸附和解吸循环操作的床层组中进行。在这样的系统中,两床层作异相循环,以保证从吸附系统出来的净化气流是准连续的。
本发明方法常以循环法实施,例如变温吸附,变压吸附、变真空吸附、或其组合。本方法采用变温吸附去除空气中少量的CO2特别有用。此方法的去除CO2过程与某种空气分离过程例如空气的低温蒸馏相偶合是尤其理想的,这样就生产出高纯氮、氧、氩或其中两种或多种的高纯气体产品。
吸附步骤的操作温度可在约-50℃(低最)至80℃(最高)的范围内变化。曾发现,在高于约20℃时,本发明方法的效率比相应的使用常规吸附剂方法时高许多,特别是被净化气流中CO2浓度分压不高于2.5×103Pa(25mbar)时。这一特点使本方法具有可在吸附过程中温度高于20℃,甚至高于30℃的温热气候中使用的优点。虽然吸附步骤可在高达80℃进行,温度仍以不高于60℃为宜,不高于50℃最佳。
采用变压吸附循环时,吸附步骤的操作压力通常在约2×104-2×106Pa(0.2-20bar)之间,以约1×105-1.0×106Pa(1-10bar)为佳,而对变温吸附循环而言,一般约为一个大气压或以上。
如果吸附过程采用PSA,再生步骤的操作温度一般与吸附步骤温度相近,而其压力低于吸附压力。PSA循环中再生压力一般约在2.0×103-5×105Pa(20-5000mbar),约以1.0×104-2.0×105Pa(100-2000mbar)为佳。当吸附过程采用TSA时,床层再生温度则高于吸附温度,一般约在50-250℃之间,约以100-200℃为佳。当PSA和TSA结合使用时,床层再生时的温度和压力分别高于和低于吸附时的温度和压力。
本发明循环过程开始时,将有待去除CO2的原料气体流引入其中有前述吸附剂床层的吸附容器中。当气体流过吸附剂床层时,CO2被吸附,基本上不含CO2的未被吸附的产物气体由未吸附气体出口从容器流出。随着吸附过程的进展,吸附剂床层中形成一个含CO2的前沿,该前沿向床层末端的未吸附气体出口缓慢移动。在吸附进行过程中,当被吸附CO2的前沿穿过吸附容器移动至容器中一个预定的合适位置时,即终止该容器中的吸附过程,然后将其转入再生阶段。在再生过程中,对内含CO2的容器减压(如果吸附循环是变压吸附),或加热(如果采用的是变温吸附),或同时减压和加热(如果采用的是变压和变温结合的过程)。
吸附床再生的方法取决于所用吸附过程的类型。采用变压吸附时,再生阶段通常包括逆流减压步骤,此时对床层逆流抽气直到达到所需的低压力。如果需要,可以利用抽真空设备,如真空泵,使床内压力降至大气压力以下。
有些时候,除了逆流减压步骤外,可能还需要采用从吸附剂床层排出的未吸附产物气流来逆流吹洗床层的步骤。在这种情况下,床层就可以用未吸附气体逆流吹洗之,而吹洗步骤通常于逆流减压临近结束时,或在其结束之后开始。吹洗过程中,当整个系统只有一个吸附容器时,吹洗气体可由一个中间的储器引入吸附剂床层;而当吸附系统有多个平行布置且异相运作的吸附容器时,吹洗气则可由另一个处于吸附阶段的容器引入。
吸附循环除包括吸附和再生这两基本步骤以外,还可包括其它一些步骤。例如,较有利的做法可以是分步进行吸附床的减压,其中第一减压步骤的产物被部分用于吸附系统中另一床层的加压。这种做法会进一步减少未吸附气体产物中的气体杂质。
根据本发明的一个优选实施方法,一股气流,例如空气,被引入一个内装前述低硅X型沸石的吸附容器中。该气流的温度可低至-50℃或其以下,或是高达80℃。如果气流中CO2浓度不是很高,即其分压不超过2.5×103Pa(25mbar)太多的话,气流中的全部CO2即可基本去除,从吸附容器的未吸附气体产物出口排出的气体产物中基本上不含CO2。当CO2吸附前沿到达吸附容器中某个预定点(它通常靠近未吸附气体产物出口)时,即终止该容器中的吸附过程,以前述方式之一对其中的吸附剂床层进行再生。如果吸附车间中的是一多床系统,则此时立即启动第二床层的吸附过程,这样就不会中断净化过程的连续性。对经净化的气体可进一步处理。例如,在低温空气分离操作中,预净化空气被送入低温蒸馏(或吸附)车间,分馏出一种或多种高纯度气体(例如80%的纯氧、氮或氩)。如果需要,由空气分离车间产生的废气流可再循环至预净化车间,用作床层再生时的吹洗气体。上述过程可以无限期地有效进行下去,因为吸附效果基本不会受到吸附过程中升温造成的负面影响。
应该知道,在本发明范围中还包括了使用常规设备监测及自动调节系统中的气流,以令其有效地完全自动而连续地流动。
下面的实施例将进一步说明本发明,其中若非另作说明,份数、百分数和比值皆按体积计。实施例1
对于硅铝原子比为1.25的常规钠X型沸石(NaX)和硅/铝比为1.02的钠X型沸石(NaLSX),在5℃、35℃和50℃,取2×102-3.0×104Pa(300mbar)300mbar范围内的一系列不同压力,利用Cahn微天平测定了CO2的平衡等温吸附线。在第一次测定前和每一温度下等温线的测定之间,在350℃对每一份吸附剂样品(约60mg)都抽真空1.5小时使其活化。每一次测定均进行至达到平衡,对最低的CO2分压来说,平衡需长达3小时。除了NaX和NaLSX样品,还在35℃,以所述范围的压力,对锂和稀土交换型X沸石及锂和钙交换型X沸石进行了测定。实验结果见表。
表 压力.,102Pa(mbar) 2 5 10 25 50 100 300 吸附剂 温度.,℃ CO2吸附量,mmol/gm吸附剂 NaX 5 1.24 1.80 2.23 2.92 3.53 4.11 4.79 NaLSX 5 2.44 2.89 3.36 4.21 4.94 5.58 6.23 NaX 35 0.45 0.87 1.26 1.82 2.26 2.78 3.73 NaLSX 35 1.50 2.05 2.41 2.89 3.38 4.01 5.16 Li,RE LSX 35 1.74 2.44 2.85 3.29 3.63 4.02 4.68 Li,CaLSX 35 1.78 2.58 3.06 3.56 3.92 4.33 5.03 NaX 50 0.25 0.55 0.87 1.41 1.83 2.27 3.14 NaLSX 50 1.01 1.61 2.03 2.51 2.89 3.39 4.46
此表清楚地表明,在中等高的CO2分压(高至3.0×104Pa(300mbar))情况下,本发明LSX吸附剂的CO2吸附能力比常规使用的NaX型吸附剂高30-40%。估计这是LSX的离子交换容量比常规的X吸附剂大12.5%的结果。本发明的意外特性可以从例如2.5×103Pa(25mbar)或其更低压力,尤其是5×102Pa(5mbar)(对应于15大气压普通空气中的CO2分压)且温度高于20℃的测试结果中显示出来。本发明吸附剂的吸附能力在相同情况下是常规X吸附剂的二倍以上,有时是四倍以上。事实是,表1表明了本发明吸附剂50℃的吸附能力相当于常规X吸附剂在其通常操作温度5℃的吸附能力。而常规X吸附剂在50℃的吸附能力太低,已根本无法在工业中应用。还在35℃测定了由实施例1所用的LSX沸石制得的锂—稀土交换吸附剂样品(Li,RE LSX)(含有86%(当量)锂离子和12%(当量)稀土离子,由Moly Corp.,Inc出品的组成约为67%LaCl3,23%NdCl3,9%PrCl3,1%CeCl3的商品化稀土混合稀土氯化物溶液衍生而得)和由实施例1所用的LSX沸石制得的锂—钙交换吸附剂样品(Li,Ca LSX)(含95%(当量)锂离子和5%(当量)钙离子)。
虽然上面具体根据一定的设备布局,一定的吸附循环和一定的设备对本发明作了叙述,但这些具体特征只是本发明的例证而已,还可以尝试许多变化的方案。例如,吸附循环可用两床以上的均衡步骤,还可根据需要,用或不用吹洗和/或未吸附气体产物反馈的步骤。而且,可以改变每一步的延续时间和操作条件。本发明的范围仅由下面的权利要求书限定。