一种利用微通道反应器制备亚砜或砜的方法.pdf

上传人:zhu****_FC 文档编号:4223350 上传时间:2018-09-08 格式:PDF 页数:20 大小:1.41MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410328348.3

申请日:

2014.07.10

公开号:

CN104058911A

公开日:

2014.09.24

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):C07B 45/00申请日:20140710|||公开

IPC分类号:

C07B45/00; C07C315/02; C07C317/14; C07C317/04; C07C317/22; C07C317/44; C07D401/12

主分类号:

C07B45/00

申请人:

联化科技股份有限公司; 联化科技(台州)有限公司

发明人:

王萍; 潘强彪; 邹本立; 荆琪; 杨优焱

地址:

318020 浙江省台州市黄岩区江口经济开发区永椒路8号

优先权:

专利代理机构:

上海弼兴律师事务所 31283

代理人:

薛琦

PDF下载: PDF下载
内容摘要

本发明公开了利用微通道反应器制备亚砜和砜的方法。本发明提供了一种制备亚砜或砜的方法,其包括以下步骤:将硫醚1与溶剂形成的均相溶液,氧化剂分别经计量泵打入微通道反应器中,在微通道中接触并进行氧化反应,得到亚砜或砜即可,所述的氧化反应的时间为1秒~300秒;本发明的制备方法反应时间极短、反应条件控制精准、安全性高、适合于千克级产品的快速制备、能够连续生产、亚砜和砜的选择性高、产品收率高、纯度好、适合于大规模工业化生产。

权利要求书

权利要求书
1.  一种制备亚砜或砜的方法,其特征在于包括以下步骤:将硫醚1与溶剂形成的均相溶液,氧化剂分别经计量泵打入微通道反应器中,在微通道中接触并进行氧化反应,得到亚砜或砜即可,所述的氧化反应的时间为1秒~300秒;

其中,R1和R2各自独立的为取代或未取代的C1~C6烷基、取代或未取代的C5~C10芳基或者取代或未取代C4~C10的杂环芳基,所述的“取代或未取代的C1~C6烷基”、“取代或未取代的C5~C10芳基”或“取代或未取代的C4~C10杂环芳基”中所述的“取代”为被C1~C6烷基、C1~C6烷氧基、硝基、卤素、和“卤素取代的C1~C6烷基”中的一个或多个所取代,当存在多个取代基时,所述的取代基相同或不同。

2.  如权利要求1所述的制备亚砜或砜的方法,其特征在于:当所述的“取代或未取代的C1~C6烷基”、“取代或未取代的C5~C10芳基”或“取代或未取代的C4~C10杂环芳基”中所述的“取代”为被C1~C6烷基所取代时,所述的“C1~C6烷基”为C1~C4烷基;
当所述的“取代或未取代的C1~C6烷基”、“取代或未取代的C5~C10芳基”或“取代或未取代的C4~C10杂环芳基”中所述的“取代”为被C1~C6烷氧基所取代时,所述的“C1~C6烷氧基”为甲氧基;
当所述的“取代或未取代的C1~C6烷基”、“取代或未取代的C5~C10芳基”或“取代或未取代的C4~C10杂环芳基”中所述的“取代”为被卤素所取代时,所述的“卤素”为F、Cl、Br或I;
当所述的“取代或未取代的C1~C6烷基”、“取代或未取代的C5~C10芳基”或“取代或未取代的C4~C10杂环芳基”中所述的“取代”为被“卤素取代的C1~C6烷基”所取代时,所述的“卤素取代的C1~C6烷基”为“卤素取代的C1~C4烷基”,所述的“卤素”为氟、氯或溴。

3.  如权利要求2所述的制备亚砜或砜的方法,其特征在于:
当所述的“取代或未取代的C1~C6烷基”、“取代或未取代的C5~C10芳基”或“取代或未取代的C4~C10杂环芳基”中所述的“取代”为被C1~C4烷基所取代时,所述的“C1~C4烷基”为甲基、乙基、丙基、异丙基、正丁基、异丁基或叔丁基;
当所述的“取代或未取代的C1~C6烷基”、“取代或未取代的C5~C10芳基”或“取代或未取代的C4~C10杂环芳基”中所述的“取代”为被“卤素取代的C1~C4烷基”取代时,所述的“卤素取代的C1~C4烷基”为卤素取代的甲基、卤素取代的乙基、卤素取代的丙基、卤素取代的异丙基或卤素取代的叔丁基。

4.  如权利要求1所述的制备亚砜或砜的方法,其特征在于:
当所述的R1和R2各自独立的为取代或未取代的C1~C6烷基时,所述的“取代或未取代的C1~C6烷基”为取代或未取代的C1~C4烷基;
当所述的R1和R2各自独立的为取代或未取代的C5~C10芳基时,所述的“取代或未取代的C5~C10芳基”为取代或未取代的C5~C6芳基;
当所述的R1和R2各自独立的为取代或未取代的C4~C10杂环芳基时,所述的“取代或未取代的C4~C10杂环芳基”为“杂原子为氮或氧原子、杂原子数为1-3个的取代或未取代的C4~C7杂环芳基”。

5.  如权利要求4所述的制备亚砜或砜的方法,其特征在于:当所述的R1和R2各自独立的为取代或未取代的C1~C4烷基时,所述的“取代或未取代的C1~C4烷基”为取代或未取代的甲基、取代或未取代的乙基、取代或未取代的丙基、取代或未取代的异丙基、取代或未取代的正丁基、取代或未取代的异丁基、或者取代或未取代的叔丁基;
当所述的R1和R2各自独立的为取代或未取代的C5~C6芳基时,所述的“取代或未取代的C5~C6芳基”为取代或未取代的苯基;
当所述的R1和R2各自独立的为“杂原子为氮或氧原子、杂原子数为1-3个的取代或未取代的C4~C7杂环芳基”时,所述的“杂原子为氮或氧原子、杂原子数为1-3个的取代的C4~C7杂环芳基”为“取代或未取代的苯并咪唑基”或“取代或未取代的吡啶基”。

6.  如权利要求5所述的制备亚砜或砜的方法,其特征在于:
当所述的R1和R2各自独立的为取代的甲基时,所述的“取代的甲基”为三氟甲基;
当所述的R1和R2各自独立的为取代或未取代的苯基时,所述的“取代的苯基”为2-硝基苯基、3-硝基苯基、4-硝基苯基或
当所述的R1和R2各自独立的为取代的苯并咪唑基时,所述的“取代的苯并咪唑基”为或
当所述的R1和R2各自独立的为取代的吡啶基时,所述的“取代的吡啶基”为或

7.  如权利要求1所述的制备亚砜或砜的方法,其特征在于:在制备亚砜或砜的方法中,所述的微通道反应器其微通道尺寸在10um~1000um。

8.  如权利要求1所述的制备亚砜或砜的方法,其特征在于:
在制备亚砜的方法中,所述的溶剂为醇类溶剂、腈类溶剂、羧酸类溶剂、卤代烃类溶剂和水中的一种或多种;
和/或,
在制备砜的方法中,所述的溶剂为羧酸类溶剂、卤代烃类溶剂和水中的一种或多种;
和/或,
在制备亚砜或砜的方法中,所述的溶剂与硫醚1的质量比为1:1~15:1;
和/或,
在制备亚砜或砜的方法中,所述的氧化剂为双氧水;
和/或,
在制备亚砜或砜的方法中,所述的氧化剂与硫醚1的摩尔比为1:1~8:1;
和/或,
制备亚砜或砜的方法在催化剂存在的条件下进行;
和/或,
在制备亚砜或砜的方法中,所述的氧化剂分为1~3股进料,所述的均相溶液为单独1股进料;
和/或,
在制备亚砜或砜的方法中,所述的氧化反应的温度为40℃~150℃。

9.  如权利要求8所述的制备亚砜或砜的方法,其特征在于:
在制备亚砜的方法中,所述的醇类溶剂为C1~C4的醇溶剂;所述的腈类溶剂溶剂为乙腈;所述的羧酸类溶剂为乙酸;所述的卤代烃类溶剂为氯代烃类溶剂;
和/或,
在制备砜的方法中,所述的羧酸类溶剂为乙酸;所述的卤代烃类溶剂为氯代烃类溶剂;
和/或,
在制备亚砜或砜的方法中,所述的溶剂与硫醚1的质量比为3:1~10:1;
和/或,
在制备亚砜或砜的方法中,当所述的氧化剂采用双氧水时,所述的双氧水的质量百分比为27%~50%,所述的质量百分比是指过氧化氢的质量占双 氧水总质量的百分比;
和/或,
在制备亚砜或砜的方法中,所述的氧化剂与所述的硫醚1的摩尔比为1.5:1~8:1;
和/或,
在制备亚砜或砜的方法中,当在催化剂存在的条件下进行时,所述的催化剂为钛酸四异丙酯、酒石酸酯钛、钨酸钠、磷钼酸、乙酰丙酮铁、盐酸或硫酸;
和/或,
在制备亚砜或砜的方法中,当在催化剂存在的条件下进行时,所述的催化剂与所述的硫醚1质量比值为0~0.3,但不包括0;
和/或,
在制备亚砜或砜的方法中,所述的氧化反应的温度为50℃~130℃。

10.  如权利要求9所述的制备亚砜或砜的方法,其特征在于:
制备亚砜的反应中,当在催化剂存在的条件下进行反应时,所述的催化剂与所述的硫醚1质量比值为0.01~0.1;
和/或,
制备亚砜的反应中,所述的氧化反应的温度为70℃~100℃;
和/或,
制备砜的反应中,当在催化剂存在的条件下进行反应时,所述的催化剂与所述的硫醚1质量比值为0.1~0.2;
和/或,
制备砜的反应中,所述的氧化反应的温度为100℃~130℃;
和/或,
在制备亚砜或砜的方法中,所述的氧化反应的时间为1秒~50秒。

说明书

说明书一种利用微通道反应器制备亚砜或砜的方法
技术领域
本发明涉及一种利用微通道反应器制备亚砜或砜的方法。
背景技术
亚砜和砜是一种重要的化工原料,也是合成其他医药农药的中间体,主要用作精细化工、医药、农药、合成纤维、塑料、印染、稀有金属提取剂、有机合成。亚砜和砜主要用作制药及其他有机合成的原料,也用于抗酸和抗溃疡药物、眼科用药、抗麻风药、抗生素、阿莫达非尼等兴奋剂药物、除草剂和杀虫剂、电解液功能添加剂,也可用做工程塑料和膜材料的原料。
目前工业上常用的硫醚与硝酸及硝酸盐氧化法、硫醚与卤素化合物合成法、金属氧化物催化法、双氧水等过氧化物反应法、氧气氧化法等制备亚砜和砜。但是现有的制备方法存在催化剂昂贵难以除净、操作繁琐,需分批滴加氧化剂、反应时间长,完成反应需十几小时、有安全隐患,反应剧烈放热易冲料甚至爆炸等缺陷。
寻找一种反应时间短、反应条件控制精准、安全性高、适合于千克级产品、环境友好的工业化生产亚砜或砜的制备方法是目前急需解决的技术问题。
发明内容
本发明所要解决的技术问题是为了克服现有技术中亚砜或砜的制备方法反应时间长、反应危险性高、不适合于千克级产品的制备、不能连续生产、亚砜和砜的选择性差、产品收率低、纯度差、不适合于大规模工业化生产的缺陷,而提供了一种利用微通道反应器制备亚砜或砜的方法。本发明的制备方法反应时间极短、反应条件控制精准、安全性高、适合于千克级产品的快速制备、能够连续生产、亚砜或砜的选择性高、产品收率高、纯度好、适合于大规模工业化生产。
本发明提供了一种制备亚砜或砜的方法,其包括以下步骤:
将硫醚1与溶剂形成的均相溶液,氧化剂分别经计量泵打入微通道反应器中,在微通道中接触并进行氧化反应,得到亚砜或砜即可,所述的氧化反应的时间为1秒~300秒;

其中,R1和R2各自独立的为取代或未取代的C1~C6烷基(所述的“取代或未取代的C1~C6烷基”优选取代或未取代的C1~C4烷基,例如取代或未取代的甲基、取代或未取代的乙基、取代或未取代的丙基、取代或未取代的异丙基、取代或未取代的正丁基、取代或未取代的异丁基、或者取代或未取代的叔丁基;所述的“取代的甲基”可以为三氟甲基)、取代或未取代的C5~C10芳基(所述的“取代或未取代的C5~C10芳基”优选取代或未取代的C5~C6芳基,所述的取代或未取代的C5~C6芳基优选取代或未取代的苯基;所述的取代的苯基优选2-硝基苯基、3-硝基苯基、4-硝基苯基或)或者取代或未取代的C4~C10杂环芳基(优选“杂原子为氮或氧原子、杂原子数为1-3个的取代或未取代的C4~C7杂环芳基”,所述的“杂原子为氮或氧原子、杂原子数为1-3个的取代的C4~C7杂环芳基”优选“取代或未取代的苯并咪唑基”或“取代或未取代的吡啶基”;所述的取代的苯并咪唑基优选或所述的取代的吡 啶基优选或),所述的“取代或未取代的C1~C6烷基”、“取代或未取代的C5~C10芳基”或“取代或未取代的杂环芳基”中所述的“取代”为被C1~C6烷基(优选C1~C4烷基,例如甲基、乙基、丙基、异丙基、正丁基、异丁基或叔丁基)、C1~C6烷氧基(优选甲氧基)、硝基、卤素(例如F、Cl、Br或I,优选Br或Cl)、和“卤素取代的C1~C6烷基”(优选“卤素取代的C1~C4烷基”,所述的“卤素”可以为氟、氯或溴;例如卤素取代的甲基、卤素取代的乙基、卤素取代的丙基、卤素取代的异丙基或卤素取代的叔丁基;所述的卤素取代的甲基优选二氟甲基或三氟甲基)中的一个或多个所取代,当存在多个取代基时,所述的取代基可以相同或不同。
在制备亚砜或砜的方法中,所述的微通道反应器可以为商业化类型。其微通道尺寸在10um~1000um。进一步优选Corning微通道反应器。
在制备亚砜的方法中,所述的溶剂可以为本领域中该类反应的常规溶剂,本发明中特别优选醇类溶剂、腈类溶剂、羧酸类溶剂、卤代烃类溶剂和水中的一种或多种。所述的醇类溶剂优选C1~C4的醇溶剂,所述的C1~C4的醇溶剂优选甲醇和/或乙醇;所述的腈类溶剂溶剂优选乙腈;所述的羧酸类溶剂优选乙酸;所述的卤代烃类溶剂优选氯代烃类溶剂,所述的氯代烃类溶剂优选二氯甲烷。所述的溶剂进一步优选甲醇、乙腈、二氯甲烷、乙酸或水,再进一步优选乙酸。
在制备砜的方法中,所述的溶剂可以为本领域中该类反应的常规溶剂,本发明中特别优选羧酸类溶剂、卤代烃类溶剂和水中的一种或多种。所述的羧酸类溶剂优选乙酸;所述的卤代烃类溶剂优选氯代烃类溶剂,所述的氯代烃类溶剂优选二氯甲烷。所述的溶剂进一步优选甲醇、乙腈、二氯甲烷、乙 酸或水,再进一步优选乙酸。
在制备亚砜或砜的方法中,所述的溶剂与硫醚1的质量比优选1:1~15:1,进一步优选3:1~10:1。
在制备亚砜或砜的方法中,所述的氧化剂可以为本领域中该类氧化反应的常规氧化剂,优选双氧水。
在制备亚砜或砜的方法中,当所述的氧化剂采用双氧水时,所述的双氧水的质量百分比优选27%~50%,所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比。
在制备亚砜或砜的方法中,所述的氧化剂与所述的硫醚1的摩尔比优选1:1~8:1,进一步优选1.5:1~8:1。制备亚砜的反应中,所述的双氧水与所述的硫醚1的摩尔比再进一步优选1.5:1~3:1;制备砜的反应中,所述的双氧水与所述的硫醚1的摩尔比再进一步优选3:1~7:1。
制备亚砜或砜的方法优选在催化剂存在的条件下进行,所述的催化剂为本领域中该类反应的常规催化剂,优选钛酸四异丙酯、酒石酸酯钛、钨酸钠、磷钼酸、乙酰丙酮铁,盐酸或硫酸,进一步优选硫酸;所述的盐酸可以为本领域中常规市售盐酸试剂,所述的盐酸的质量百分浓度优选5%~37%,所述的质量百分浓度是指氯化氢的质量占盐酸水溶液总质量的百分比。
在制备亚砜或砜的方法中,当在催化剂存在的条件下进行反应时,所述的催化剂与所述的硫醚1质量比值优选0~0.3(但不包括0),进一步优选0~0.2(但不包括0)。制备亚砜的反应中,当在催化剂存在的条件下进行反应时,所述的催化剂与所述的硫醚1质量比值优选0.01~0.1,进一步优选0.01~0.05。制备砜的反应中,当在催化剂存在的条件下进行反应时,所述的催化剂与所述的硫醚1质量比值优选0.1~0.2。
在制备亚砜或砜的方法中,所述的氧化剂优选分为1~3股进料;所述的均相溶液优选为单独1股进料。制备砜的方法中,进一步优选所述的氧化剂优选分为2~3股进料;所述的均相溶液优选为单独1股进料。
所述的氧化反应的温度优选40℃~150℃,进一步优选50℃~130℃,再进一步优选75℃~120℃。当制备亚砜时,所述的氧化反应的温度优选70℃~100℃,制备砜时,所述的氧化反应的温度优选100℃~130℃。
在制备亚砜或砜的方法中,所述的氧化反应的时间优选1秒~50秒,进一步优选4秒~15秒。
本发明中,没有特别指定的时候,所述的“烷基”为包括具有指定碳原子数目的支链或直链的饱和脂肪族烃基;如在“C1~C20烷基”中定义为包括在直链或者支链结构中具有1、2、3、4、5、6、7、8、9、11、11、12、13、14、15、16、17、18、19或者20个碳原子的基团。例如,“C1~C10烷基”具体包括甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、戊基、己基、庚基、辛基、壬基和癸基等等。
本发明中,没有特别指定的时候,所述的“芳基”是指任何稳定的在各环中可高达7个原子的单环或者双环碳环,其中至少一个环是芳香环;上述芳基单元的实例包括苯基、萘基、四氢萘基、2,3-二氢化茚基、联苯基、菲基、蒽基或者苊基(acenaphthyl)。可以理解,在芳基取代基是二环取代基,且其中一个环是非芳香环的情况中,连接是通过芳环进行的。
本发明中,没有特别指定的时候,所述的“杂环芳基”表示各环中可高达7个原子的稳定单环或者二环,其中至少一个环是芳香环并且含有1-4个选自O、N和S的杂原子;在此定义范围内的杂环芳基包括但不限于:吖啶基、咔唑基、噌啉基、喹喔啉基、吡唑基、吲哚基、苯并三唑基、呋喃基、噻吩基、苯并噻吩基、苯并呋喃基、喹啉基、异喹啉基、噁唑基、异噁唑基、吲哚基、吡嗪基、哒嗪基、吡啶基、嘧啶基、吡咯基、四氢喹啉。“杂芳基”还应当理解为包括任何含氮杂芳基的N-氧化物衍生物。在其中杂芳基取代基是二环取代基并且一个环是非芳香环或者不包含杂原子的情况下,可以理解,连接分别通过芳环或者通过包含环的杂原子进行。
本发明中,没有特别指定的时候,所述的“卤素”表示氟、氯、溴、碘或砹。
本发明中,所述的确定了碳数范围的“Cx1~Cy1”的取代基(x1和y1为整数)、如“Cx1~Cy1”的烷基、“Cx1~Cy1”的芳基或“Cx1~Cy1”的杂环芳基,均表示未包含取代基的碳数,例如C1~C6烷基表示未包含取代基的C1~C6烷基。
在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明所用试剂和原料均市售可得。
本发明中,所述的室温指环境温度,为10℃~35℃。
本发明的积极进步效果在于:
1、本发明采用连续流的微通道反应器,反应过程安全平稳,无温度压力失控现象,解决了该类反应的安全隐患。
2、反应时间从传统的数小时缩短到几十秒钟,显著提高了反应效率。
3、原料与催化剂及促进剂在微通道中混合极佳,温度精确控制,反应无返混。
4、本发明采用了便宜易得的双氧水为氧化剂,避免使用比较昂贵的过氧化物例如间氯过氧苯甲酸、过硫酸氢钾等,在微通道反应器中提高了反应的选择性,且减少了对环境污染。
附图说明
图1为本发明硫醚氧化制备亚砜和砜反应工艺流程图;
图2为本发明所使用的Corning微通道反应器流程示意图,1、2-原料罐,3、4-原料泵,5、6-截止阀,7-Corning微通道,8-原料收集罐。
图3为本发明所使用的Corning微通道反应器多股进料流程示意图,1、2-原料罐,3、4、10-原料泵,5、6、11-截止阀,7-Corning微通道,8-原料收集罐。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。下列实施例中未注明具体条件的实验方法,按照常规方法和条件,或按照商品说明书选择。
实施例1

1、原料配制:称取100.0克2-(异丙硫醚基)硝基苯,将其倒入装有300.0克乙酸的容器中,搅拌使其混合均匀后密封。再称取126.4克质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用本发明的装置图2,按照下属步骤:(1)原料罐1中含有2-(异丙硫醚基)硝基苯的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30%双氧水通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料2-(异丙硫醚基)硝基苯的乙酸溶液与氧化剂按照以上比例(即100.0克的2-(异丙硫醚基)硝基苯+300.0克乙酸的溶液:126.4克30%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为95℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为5秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料2-(异丙硫醚基)硝基苯残余0.32%,亚砜纯度为97.6%,砜纯度为0.2%(LC分析结果)。收率95%。
实施例2

1、原料配制:称取100.0克2-(异丙硫醚基)硝基苯,将其倒入装有300.0 克乙酸的容器中,再在室温下滴加1.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取126.4克质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用本发明的装置图2,按照下属步骤:(1)原料罐1中含有2-(异丙硫醚基)硝基苯、浓硫酸的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比)通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料2-(异丙硫醚基)硝基苯、浓硫酸的乙酸溶液与氧化剂按照以上比例(即100.0克的2-(异丙硫醚基)硝基苯+300.0克乙酸的溶液:126.4克30%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为85℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为4秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料2-(异丙硫醚基)硝基苯无残余,亚砜纯度为96.5%,砜纯度为1.2%(LC分析结果)。收率95%。
实施例3

1、原料配制:称取100.0克二甲基硫醚置于容器中密封,将其倒入装有300.0克乙酸的容器中,搅拌使其混合均匀后密封。再称取401.4克30%双氧水,将其置于另一容器中,密封。
2、利用图2本发明的装置图,按照下属步骤:(1)原料罐1中二甲基硫醚通过泵3进入微通道反应7,原料罐2中的氧化剂质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比) 通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料二甲基硫醚与氧化剂按照以上比例(即100.0克的2-甲基硫醚:401.4克30%的双氧水这个比例进料),在设定的温度为50℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为10秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料二甲基硫醚无残余,亚砜纯度为99.0%,砜纯度为0.1%(GC分析结果)。收率98%。
实施例4

1、原料配制:称取100.0克二苯硫醚,将其倒入装有300.0克乙酸的容器中,再在室温下滴加5.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取133.9克质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图2本发明的装置图,按照下属步骤:(1)原料罐1中含有二苯硫醚、浓硫酸的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30%双氧水通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料二苯硫醚与氧化剂按照以上比例(即100.0克的2-苯硫醚+300.0克乙酸的溶液+1.0克浓硫酸:133.9克30%的双氧水这个比例进料),在设定的温度为100℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为5秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料二苯硫醚无残余,亚砜纯度为98.6%,砜纯度为0.3%(LC分析结果)。收率96%。
实施例5

1、原料配制:称取10.0千克2-氯乙基苯硫醚,将其倒入装有30.0千克乙酸的容器中,搅拌使其混合均匀后密封。再称取14.4千克质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图2本发明的装置图,按照下属步骤:(1)原料罐1中含有2-氯乙基苯硫醚的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30%双氧水通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料2-氯乙基苯硫醚与氧化剂按照以上比例(即100.0千克的2-氯乙基苯硫醚+30千克乙酸:14.4千克30%的双氧水这个比例进料),在设定的温度为85℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为8秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料2-氯乙基苯硫醚无残余,亚砜纯度为98.0%,砜纯度为0.1%(LC分析结果)。收率93%。
实施例6

1、原料配制:称取10.0千克4-氯茴香硫醚,将其倒入装有60.0千克乙酸的容器中,搅拌使其混合均匀后密封。再称取15.7千克质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图2本发明的装置图,按照下属步骤:(1)原料罐1中含有4-氯茴香硫醚的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂 30%双氧水通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料4-氯茴香硫醚与氧化剂按照以上比例(即10.0千克的4-氯茴香硫醚+30千克乙酸:15.7千克30%的双氧水这个比例进料),在设定的温度为90℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为8秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料4-氯茴香硫醚无残余,亚砜纯度为99.1%,砜纯度为0.2%(LC分析结果)。收率95%。
实施例7

1、原料配制:称取10.0千克2-甲氧基茴香硫醚,将其倒入装有30.0千克乙酸的容器中,搅拌使其混合均匀后密封。再称取16.2千克质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图2本发明的装置图,按照下属步骤:(1)原料罐1中含有2-甲氧基茴香硫醚的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30%双氧水通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料2-甲氧基茴香硫醚与氧化剂按照以上比例(即10.0千克的2-甲氧基茴香硫醚+30.0千克乙酸的溶液:16.2千克30%的双氧水这个比例进料),在设定的温度为80℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为6秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料2-甲氧基茴香硫醚无残余,亚砜纯度为98.7%,砜 纯度为0.1%(LC分析结果)。收率96%。
实施例8

1、原料配制:称取100.0克2-(异丙硫醚基)硝基苯,将其倒入装有150.0克乙酸的容器中,再在室温下滴加20.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取248.3克质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图3本发明的装置图,按照下属步骤:(1)原料罐1中含有2-(异丙硫醚基)硝基苯、浓硫酸的乙酸溶液通过泵3进入微通道反应器7。原料罐2中的氧化剂质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比)分2股进入微通道反应器7,前一股通过泵4,截止阀6进入反应器7,用量为2.0当量,后一股通过泵10,截止阀11进入反应器7,用量为2.4当量;(2)反应过程中采用连续流微通道反应器,原料2-(异丙硫醚基)硝基苯、浓硫酸的乙酸溶液与氧化剂按照以上比例(即100.0克的2-(异丙硫醚基)硝基苯+150.0克乙酸的溶液+10.0克浓硫酸:248.3克50%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为110℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为10秒,三股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料2-(异丙硫醚基)硝基苯无残余,亚砜纯度为0.6%,砜纯度为94.7%(LC分析结果)。收率92%。
实施例9

1、原料配制:称取100.0克二甲基硫醚,将其倒入装有300.0克乙酸的容器中,再在室温下滴加10.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取394.1克质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图3本发明的装置图,按照下属步骤:(1)原料罐1中含有二甲基硫醚、浓硫酸的乙酸溶液通过泵3进入微通道反应器7。原料罐2中的氧化剂质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比)分2股进入微通道反应器7,前一股通过泵4,截止阀6进入反应器7,用量为2.0当量,后一股通过泵10,截止阀11进入反应器7,用量为1.6当量;(2)反应过程中采用连续流微通道反应器,原料二甲基硫醚、浓硫酸的乙酸溶液与氧化剂按照以上比例(即100.0克的2-甲硫醚+300.0克乙酸的溶液+10.0克浓硫酸:394.1克50%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为100℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为10秒,三股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过GC分析。
3、反应产物中原料二甲基硫醚无残余,亚砜纯度为0.4%,砜纯度为94.7%(GC分析结果)。收率94%。
实施例10

1、原料配制:称取100.0克二苯硫醚,将其倒入装有600.0克乙酸的容器中,再在室温下滴加15.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取262.9克质量百分比为50%的双氧水(所述的质量百分比是指过氧化 氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图3本发明的装置图,按照下属步骤:(1)原料罐1中含有二苯硫醚、浓硫酸的乙酸溶液通过泵3进入微通道反应器7。原料罐2中的氧化剂质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比)分2股进入微通道反应器7,前一股通过泵4,截止阀6进入反应器7,用量为5.0当量,后一股通过泵10,截止阀11进入反应器7,用量为2.2当量;(2)反应过程中采用连续流微通道反应器,原料二苯硫醚、浓硫酸的乙酸溶液与氧化剂按照以上比例(即100.0克的2-苯硫醚+300.0克乙酸的溶液+15克浓硫酸:262.9克50%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为130℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为10秒,三股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料二苯硫醚无残余,亚砜纯度为0.1%,砜纯度为94.3%(LC分析结果)。收率92%。
实施例11

1、原料配制:称取10.0千克2-氯乙基苯硫醚,将其倒入装有30.0千克乙酸的容器中,再在室温下滴加1.0千克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取28.4千克质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图3本发明的装置图,按照下属步骤:(1)原料罐1中含有2-氯乙基苯硫醚、浓硫酸的乙酸溶液通过泵3进入微通道反应器7。原料罐2中的氧化剂质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的 质量占双氧水总质量的百分比)分2股进入微通道反应器7,前一股通过泵4,截止阀6进入反应器7,用量为5.0当量,后一股通过泵10,截止阀11进入反应器7,用量为2.2当量;(2)反应过程中采用连续流微通道反应器,原料2-氯乙基苯硫醚、浓硫酸的乙酸溶液与氧化剂按照以上比例(即10.0千克2-氯乙基苯硫醚+30.千克乙酸的溶液+1.0千克浓硫酸:28.4千克50%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为105℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为12秒,三股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料2-氯乙基苯硫醚无残余,亚砜纯度为0.2%,砜纯度为95.1%(LC分析结果)。收率93%。
实施例12

1、原料配制:称取1.0千克4-氯茴香硫醚,将其倒入装有4.0千克乙酸的容器中,再在室温下滴加0.1千克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取3.1千克质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图3本发明的装置图,按照下属步骤:(1)原料罐1中含有4-氯茴香硫醚、浓硫酸的乙酸溶液通过泵3进入微通道反应器7。原料罐2中的氧化剂质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比)分2股进入微通道反应器7,前一股通过泵4,截止阀6进入反应器7,用量为5.0当量,后一股通过泵10,截止阀11进入反应器7,用量为2.2当量;(2)反应过程中采用连续流微通道反应器,原料4-氯茴香硫醚、浓硫酸的乙酸溶液与氧化剂按照以上比例(即1.0千克4-氯茴香硫醚+4.0千克乙酸的溶液+0.1千克浓硫酸:3.1千克50%的双氧水这 个比例进料),经计量泵打入微通道反应器7,在设定的温度为110℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为15秒,三股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料4-氯茴香硫醚无残余,亚砜纯度为0.4%,砜纯度为94.7%(LC分析结果)。收率92%。
实施例13

1、原料配制:称取1.0千克2-甲氧基茴香硫醚,将其倒入装有10.0千克乙酸的容器中,再在室温下滴加0.1千克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取3.2千克质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图3本发明的装置图,按照下属步骤:(1)原料罐1中含有2-甲氧基茴香硫醚、浓硫酸的乙酸溶液通过泵3进入微通道反应器7。原料罐2中的氧化剂质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比)分2股进入微通道反应器7,前一股通过泵4,截止阀6进入反应器7,用量为5.0当量,后一股通过泵10,截止阀11进入反应器7,用量为2.2当量;(2)反应过程中采用连续流微通道反应器,原料2-甲氧基茴香硫醚、浓硫酸的乙酸溶液与氧化剂按照以上比例(即1.0千克2-甲氧基茴香硫醚+4.0千克乙酸的溶液+0.1千克浓硫酸:3.2千克50%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为105℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为10秒,三股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来 防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料2-甲氧基茴香硫醚无残余,亚砜纯度为0.5%,砜纯度为93.2%(LC分析结果)。收率92%。
实施例14:奥美拉唑的合成

1、原料配制:称取1.0千克奥美拉唑前驱体硫醚,将其倒入装有6.0千克乙酸的容器中,搅拌使其混合均匀后密封。再称取0.76千克质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、在材质为特种玻璃的心型微通道中,利用本发明的装置图2,按照下属步骤:(1)原料罐1中含有硫醚的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30%双氧水通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料硫醚的乙酸溶液与氧化剂按照以上比例(即1.0千克奥美拉唑前驱体硫醚+6.0千克乙酸的溶液:0.76千克30%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为70℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为6秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料硫醚无残余,奥美拉唑纯度为99.1%,砜纯度为0.1%(LC分析结果)。收率96%。
实施例15:舒林酸前驱体的合成

1、原料配制:称取1.0千克舒林酸前驱体硫醚,将其倒入装有3.0千克乙酸的容器中,搅拌使其混合均匀后密封。再称取0.7千克质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用本发明的装置图2,按照下属步骤:(1)原料罐1中含有硫醚的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30%双氧水通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料硫醚的乙酸溶液与氧化剂按照以上比例(即1.0千克舒林酸前驱体硫醚+3.0千克乙酸的溶液:0.7千克30%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为75℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为7秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料硫醚残余,亚砜纯度为99.3%,无砜(LC分析结果)。收率98%。
实施例16:潘多拉唑的合成

1、原料配制:称取1.0千克潘多拉唑前驱体硫醚,将其倒入装有3.0千克乙酸的容器中,搅拌使其混合均匀后密封。再称取0.64千克质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、在材质为特种玻璃的心型微通道中,利用本发明的装置图2,按照下 属步骤:(1)原料罐1中含有硫醚的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30%双氧水通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料硫醚的乙酸溶液与氧化剂按照以上比例(即1.0千克潘多拉唑前驱体硫醚+3.0千克乙酸的溶液:0.64千克30%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为70℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为6秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料硫醚无残余,潘多拉唑纯度为99.1%,砜纯度为0.1%(LC分析结果)。收率96%。
对比实施例1

1、原料配制:称取100.0克2-(异丙硫醚基)硝基苯,将其倒入装有300.0克乙酸的容器中,搅拌使其混合均匀后密封。再称取126.4克质量百分比为30%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用本发明的装置图2,按照下属步骤:(1)原料罐1中含有2-(异丙硫醚基)硝基苯的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30%双氧水通过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料2-(异丙硫醚基)硝基苯的乙酸溶液与氧化剂按照以上比例(即100.0克的2-(异丙硫醚基)硝基苯+300.0克乙酸的溶液:126.4克30%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为40℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为5秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和 6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料2-(异丙硫醚基)硝基苯残余90.46%,亚砜纯度为7.6%(LC分析结果)。大部分没有反应。
对比实施例2

1、原料配制:称取100.0克二苯硫醚,将其倒入装有600.0克乙酸的容器中,再在室温下滴加15.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取262.9克质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。
2、利用图2本发明的装置图,按照下属步骤:(1)原料罐1中含有二苯硫醚、浓硫酸的乙酸溶液通过泵3进入微通道反应器7。原料罐2中的氧化剂质量百分比为50%的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比)通过泵4,截止阀6进入反应器7(2)反应过程中采用连续流微通道反应器,原料二苯硫醚、浓硫酸的乙酸溶液与氧化剂按照以上比例(即100.0克的2-苯硫醚+300.0克乙酸的溶液+15克浓硫酸:262.9克50%的双氧水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为130℃下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为10秒,三股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。
3、反应产物中原料二苯硫醚28.6%,亚砜纯度为42.7%,砜纯度为25.6%(LC分析结果)。
虽然本发明通过不同的具体的实施方案解释,应该理解,在阅读了本说明书之后,本发明的不同的改变对本领域技术人员而言是显而易见的。因此, 应该理解,在此公开的本发明意在涵盖落在附后的权利要求的范围内的此类改变。

一种利用微通道反应器制备亚砜或砜的方法.pdf_第1页
第1页 / 共20页
一种利用微通道反应器制备亚砜或砜的方法.pdf_第2页
第2页 / 共20页
一种利用微通道反应器制备亚砜或砜的方法.pdf_第3页
第3页 / 共20页
点击查看更多>>
资源描述

《一种利用微通道反应器制备亚砜或砜的方法.pdf》由会员分享,可在线阅读,更多相关《一种利用微通道反应器制备亚砜或砜的方法.pdf(20页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 CN 104058911 A (43)申请公布日 2014.09.24 C N 1 0 4 0 5 8 9 1 1 A (21)申请号 201410328348.3 (22)申请日 2014.07.10 C07B 45/00(2006.01) C07C 315/02(2006.01) C07C 317/14(2006.01) C07C 317/04(2006.01) C07C 317/22(2006.01) C07C 317/44(2006.01) C07D 401/12(2006.01) (71)申请人联化科技股份有限公司 地址 318020 浙江省台州市黄岩区江口经济 。

2、开发区永椒路8号 申请人联化科技(台州)有限公司 (72)发明人王萍 潘强彪 邹本立 荆琪 杨优焱 (74)专利代理机构上海弼兴律师事务所 31283 代理人薛琦 (54) 发明名称 一种利用微通道反应器制备亚砜或砜的方法 (57) 摘要 本发明公开了利用微通道反应器制备亚砜 和砜的方法。本发明提供了一种制备亚砜或砜 的方法,其包括以下步骤:将硫醚1与溶剂形成 的均相溶液,氧化剂分别经计量泵打入微通道反 应器中,在微通道中接触并进行氧化反应,得到 亚砜或砜即可,所述的氧化反应的时间为1秒 300秒;本发明的制备方法反应时间极短、反应 条件控制精准、安全性高、适合于千克级产品的 快速制备、能够连。

3、续生产、亚砜和砜的选择性高、 产品收率高、纯度好、适合于大规模工业化生产。 (51)Int.Cl. 权利要求书4页 说明书14页 附图1页 (19)中华人民共和国国家知识产权局 (12)发明专利申请 权利要求书4页 说明书14页 附图1页 (10)申请公布号 CN 104058911 A CN 104058911 A 1/4页 2 1.一种制备亚砜或砜的方法,其特征在于包括以下步骤:将硫醚1与溶剂形成的均相 溶液,氧化剂分别经计量泵打入微通道反应器中,在微通道中接触并进行氧化反应,得到亚 砜或砜即可,所述的氧化反应的时间为1秒300秒; 其中,R 1 和R 2 各自独立的为取代或未取代的C 1。

4、 C 6 烷基、取代或未取代的C 5 C 10 芳 基或者取代或未取代C 4 C 10 的杂环芳基,所述的“取代或未取代的C 1 C 6 烷基”、“取代 或未取代的C 5 C 10 芳基”或“取代或未取代的C 4 C 10 杂环芳基”中所述的“取代”为被 C 1 C 6 烷基、C 1 C 6 烷氧基、硝基、卤素、和“卤素取代的C 1 C 6 烷基”中的 一个或多个所取代,当存在多个取代基时,所述的取代基相同或不同。 2.如权利要求1所述的制备亚砜或砜的方法,其特征在于:当所述的“取代或未取代的 C 1 C 6 烷基”、“取代或未取代的C 5 C 10 芳基”或“取代或未取代的C 4 C 10 。

5、杂环芳基”中 所述的“取代”为被C 1 C 6 烷基所取代时,所述的“C 1 C 6 烷基”为C 1 C 4 烷基; 当所述的“取代或未取代的C 1 C 6 烷基”、“取代或未取代的C 5 C 10 芳基”或“取代或 未取代的C 4 C 10 杂环芳基”中所述的“取代”为被C 1 C 6 烷氧基所取代时,所述的“C 1 C 6 烷氧基”为甲氧基; 当所述的“取代或未取代的C 1 C 6 烷基”、“取代或未取代的C 5 C 10 芳基”或“取代或 未取代的C 4 C 10 杂环芳基”中所述的“取代”为被卤素所取代时,所述的“卤素”为F、Cl、 Br或I; 当所述的“取代或未取代的C 1 C 6 。

6、烷基”、“取代或未取代的C 5 C 10 芳基”或“取代或 未取代的C 4 C 10 杂环芳基”中所述的“取代”为被“卤素取代的C 1 C 6 烷基”所取代时, 所述的“卤素取代的C 1 C 6 烷基”为“卤素取代的C 1 C 4 烷基”,所述的“卤素”为氟、氯或 溴。 3.如权利要求2所述的制备亚砜或砜的方法,其特征在于: 当所述的“取代或未取代的C 1 C 6 烷基”、“取代或未取代的C 5 C 10 芳基”或“取代或 未取代的C 4 C 10 杂环芳基”中所述的“取代”为被C 1 C 4 烷基所取代时,所述的“C 1 C 4 烷基”为甲基、乙基、丙基、异丙基、正丁基、异丁基或叔丁基; 当。

7、所述的“取代或未取代的C 1 C 6 烷基”、“取代或未取代的C 5 C 10 芳基”或“取代或 未取代的C 4 C 10 杂环芳基”中所述的“取代”为被“卤素取代的C 1 C 4 烷基”取代时,所 述的“卤素取代的C 1 C 4 烷基”为卤素取代的甲基、卤素取代的乙基、卤素取代的丙基、卤 素取代的异丙基或卤素取代的叔丁基。 4.如权利要求1所述的制备亚砜或砜的方法,其特征在于: 权 利 要 求 书CN 104058911 A 2/4页 3 当所述的R 1 和R 2 各自独立的为取代或未取代的C 1 C 6 烷基时,所述的“取代或未取 代的C 1 C 6 烷基”为取代或未取代的C 1 C 4 。

8、烷基; 当所述的R 1 和R 2 各自独立的为取代或未取代的C 5 C 10 芳基时,所述的“取代或未取 代的C 5 C 10 芳基”为取代或未取代的C 5 C 6 芳基; 当所述的R 1 和R 2 各自独立的为取代或未取代的C 4 C 10 杂环芳基时,所述的“取代或 未取代的C 4 C 10 杂环芳基”为“杂原子为氮或氧原子、杂原子数为1-3个的取代或未取代 的C 4 C 7 杂环芳基”。 5.如权利要求4所述的制备亚砜或砜的方法,其特征在于:当所述的R 1 和R 2 各自独立 的为取代或未取代的C 1 C 4 烷基时,所述的“取代或未取代的C 1 C 4 烷基”为取代或未取 代的甲基、取。

9、代或未取代的乙基、取代或未取代的丙基、取代或未取代的异丙基、取代或未 取代的正丁基、取代或未取代的异丁基、或者取代或未取代的叔丁基; 当所述的R 1 和R 2 各自独立的为取代或未取代的C 5 C 6 芳基时,所述的“取代或未取 代的C 5 C 6 芳基”为取代或未取代的苯基; 当所述的R 1 和R 2 各自独立的为“杂原子为氮或氧原子、杂原子数为1-3个的取代或未 取代的C 4 C 7 杂环芳基”时,所述的“杂原子为氮或氧原子、杂原子数为1-3个的取代的 C 4 C 7 杂环芳基”为“取代或未取代的苯并咪唑基”或“取代或未取代的吡啶基”。 6.如权利要求5所述的制备亚砜或砜的方法,其特征在于。

10、: 当所述的R 1 和R 2 各自独立的为取代的甲基时,所述的“取代的甲基”为三氟甲基; 当所述的R 1 和R 2 各自独立的为取代或未取代的苯基时,所述的“取代的苯基”为2-硝 基苯基、3-硝基苯基、4-硝基苯基或 当所述的R 1 和R 2 各自独立的为取代的苯并咪唑基时,所述的“取代的苯并咪唑基”为 或 当所述的R 1 和R 2 各自独立的为取代的吡啶基时,所述的“取代的吡啶基”为 或 7.如权利要求1所述的制备亚砜或砜的方法,其特征在于:在制备亚砜或砜的方法中, 所述的微通道反应器其微通道尺寸在10um1000um。 8.如权利要求1所述的制备亚砜或砜的方法,其特征在于: 在制备亚砜的方。

11、法中,所述的溶剂为醇类溶剂、腈类溶剂、羧酸类溶剂、卤代烃类溶剂 和水中的一种或多种; 和/或, 权 利 要 求 书CN 104058911 A 3/4页 4 在制备砜的方法中,所述的溶剂为羧酸类溶剂、卤代烃类溶剂和水中的一种或多种; 和/或, 在制备亚砜或砜的方法中,所述的溶剂与硫醚1的质量比为1:115:1; 和/或, 在制备亚砜或砜的方法中,所述的氧化剂为双氧水; 和/或, 在制备亚砜或砜的方法中,所述的氧化剂与硫醚1的摩尔比为1:18:1; 和/或, 制备亚砜或砜的方法在催化剂存在的条件下进行; 和/或, 在制备亚砜或砜的方法中,所述的氧化剂分为13股进料,所述的均相溶液为单独1 股进料。

12、; 和/或, 在制备亚砜或砜的方法中,所述的氧化反应的温度为40150。 9.如权利要求8所述的制备亚砜或砜的方法,其特征在于: 在制备亚砜的方法中,所述的醇类溶剂为C 1 C 4 的醇溶剂;所述的腈类溶剂溶剂为乙 腈;所述的羧酸类溶剂为乙酸;所述的卤代烃类溶剂为氯代烃类溶剂; 和/或, 在制备砜的方法中,所述的羧酸类溶剂为乙酸;所述的卤代烃类溶剂为氯代烃类溶 剂; 和/或, 在制备亚砜或砜的方法中,所述的溶剂与硫醚1的质量比为3:110:1; 和/或, 在制备亚砜或砜的方法中,当所述的氧化剂采用双氧水时,所述的双氧水的质量百分 比为2750,所述的质量百分比是指过氧化氢的质量占双氧水总质量的。

13、百分比; 和/或, 在制备亚砜或砜的方法中,所述的氧化剂与所述的硫醚1的摩尔比为1.5:18:1; 和/或, 在制备亚砜或砜的方法中,当在催化剂存在的条件下进行时,所述的催化剂为钛酸四 异丙酯、酒石酸酯钛、钨酸钠、磷钼酸、乙酰丙酮铁、盐酸或硫酸; 和/或, 在制备亚砜或砜的方法中,当在催化剂存在的条件下进行时,所述的催化剂与所述的 硫醚1质量比值为00.3,但不包括0; 和/或, 在制备亚砜或砜的方法中,所述的氧化反应的温度为50130。 10.如权利要求9所述的制备亚砜或砜的方法,其特征在于: 制备亚砜的反应中,当在催化剂存在的条件下进行反应时,所述的催化剂与所述的硫 醚1质量比值为0.01。

14、0.1; 和/或, 权 利 要 求 书CN 104058911 A 4/4页 5 制备亚砜的反应中,所述的氧化反应的温度为70100; 和/或, 制备砜的反应中,当在催化剂存在的条件下进行反应时,所述的催化剂与所述的硫醚1 质量比值为0.10.2; 和/或, 制备砜的反应中,所述的氧化反应的温度为100130; 和/或, 在制备亚砜或砜的方法中,所述的氧化反应的时间为1秒50秒。 权 利 要 求 书CN 104058911 A 1/14页 6 一种利用微通道反应器制备亚砜或砜的方法 技术领域 0001 本发明涉及一种利用微通道反应器制备亚砜或砜的方法。 背景技术 0002 亚砜和砜是一种重要的。

15、化工原料,也是合成其他医药农药的中间体,主要用作精 细化工、医药、农药、合成纤维、塑料、印染、稀有金属提取剂、有机合成。亚砜和砜主要用作 制药及其他有机合成的原料,也用于抗酸和抗溃疡药物、眼科用药、抗麻风药、抗生素、阿莫 达非尼等兴奋剂药物、除草剂和杀虫剂、电解液功能添加剂,也可用做工程塑料和膜材料的 原料。 0003 目前工业上常用的硫醚与硝酸及硝酸盐氧化法、硫醚与卤素化合物合成法、金属 氧化物催化法、双氧水等过氧化物反应法、氧气氧化法等制备亚砜和砜。但是现有的制备方 法存在催化剂昂贵难以除净、操作繁琐,需分批滴加氧化剂、反应时间长,完成反应需十几 小时、有安全隐患,反应剧烈放热易冲料甚至爆。

16、炸等缺陷。 0004 寻找一种反应时间短、反应条件控制精准、安全性高、适合于千克级产品、环境友 好的工业化生产亚砜或砜的制备方法是目前急需解决的技术问题。 发明内容 0005 本发明所要解决的技术问题是为了克服现有技术中亚砜或砜的制备方法反应时 间长、反应危险性高、不适合于千克级产品的制备、不能连续生产、亚砜和砜的选择性差、产 品收率低、纯度差、不适合于大规模工业化生产的缺陷,而提供了一种利用微通道反应器制 备亚砜或砜的方法。本发明的制备方法反应时间极短、反应条件控制精准、安全性高、适合 于千克级产品的快速制备、能够连续生产、亚砜或砜的选择性高、产品收率高、纯度好、适合 于大规模工业化生产。 。

17、0006 本发明提供了一种制备亚砜或砜的方法,其包括以下步骤: 0007 将硫醚1与溶剂形成的均相溶液,氧化剂分别经计量泵打入微通道反应器中,在 微通道中接触并进行氧化反应,得到亚砜或砜即可,所述的氧化反应的时间为1秒300 秒; 0008 0009 其中,R 1 和R 2 各自独立的为取代或未取代的C 1 C 6 烷基(所述的“取代或未取 代的C 1 C 6 烷基”优选取代或未取代的C 1 C 4 烷基,例如取代或未取代的甲基、取代或未 说 明 书CN 104058911 A 2/14页 7 取代的乙基、取代或未取代的丙基、取代或未取代的异丙基、取代或未取代的正丁基、取代 或未取代的异丁基、。

18、或者取代或未取代的叔丁基;所述的“取代的甲基”可以为三氟甲基)、 取代或未取代的C 5 C 10 芳基(所述的“取代或未取代的C 5 C 10 芳基”优选取代或未取 代的C 5 C 6 芳基,所述的取代或未取代的C 5 C 6 芳基优选取代或未取代的苯基;所述的 取代的苯基优选2-硝基苯基、3-硝基苯基、4-硝基苯基或)或 者取代或未取代的C 4 C 10 杂环芳基(优选“杂原子为氮或氧原子、杂原子数为1-3个的取 代或未取代的C 4 C 7 杂环芳基”,所述的“杂原子为氮或氧原子、杂原子数为1-3个的取代 的C 4 C 7 杂环芳基”优选“取代或未取代的苯并咪唑基”或“取代或未取代的吡啶基”。

19、;所 述的取代的苯并咪唑基优选或所述的取代的吡啶基 优选或),所述的“取代或未取代的C 1 C 6 烷基”、“取代或未取 代的C 5 C 10 芳基”或“取代或未取代的杂环芳基”中所述的“取代”为被C 1 C 6 烷基(优 选C 1 C 4 烷基,例如甲基、乙基、丙基、异丙基、正丁基、异丁基或叔丁基)、C 1 C 6 烷氧基 (优选甲氧基)、硝基、卤素(例如F、Cl、Br或I,优选Br或Cl)、和“卤素取 代的C 1 C 6 烷基”(优选“卤素取代的C 1 C 4 烷基”,所述的“卤素”可以为氟、氯或溴;例 如卤素取代的甲基、卤素取代的乙基、卤素取代的丙基、卤素取代的异丙基或卤素取代的叔 丁基。

20、;所述的卤素取代的甲基优选二氟甲基或三氟甲基)中的一个或多个所取代,当存在 多个取代基时,所述的取代基可以相同或不同。 0010 在制备亚砜或砜的方法中,所述的微通道反应器可以为商业化类型。其微通道尺 寸在10um1000um。进一步优选Corning微通道反应器。 0011 在制备亚砜的方法中,所述的溶剂可以为本领域中该类反应的常规溶剂,本发明 中特别优选醇类溶剂、腈类溶剂、羧酸类溶剂、卤代烃类溶剂和水中的一种或多种。所述的 醇类溶剂优选C 1 C 4 的醇溶剂,所述的C 1 C 4 的醇溶剂优选甲醇和/或乙醇;所述的腈 类溶剂溶剂优选乙腈;所述的羧酸类溶剂优选乙酸;所述的卤代烃类溶剂优选氯。

21、代烃类溶 剂,所述的氯代烃类溶剂优选二氯甲烷。所述的溶剂进一步优选甲醇、乙腈、二氯甲烷、乙酸 或水,再进一步优选乙酸。 0012 在制备砜的方法中,所述的溶剂可以为本领域中该类反应的常规溶剂,本发明中 特别优选羧酸类溶剂、卤代烃类溶剂和水中的一种或多种。所述的羧酸类溶剂优选乙酸;所 述的卤代烃类溶剂优选氯代烃类溶剂,所述的氯代烃类溶剂优选二氯甲烷。所述的溶剂进 说 明 书CN 104058911 A 3/14页 8 一步优选甲醇、乙腈、二氯甲烷、乙酸或水,再进一步优选乙酸。 0013 在制备亚砜或砜的方法中,所述的溶剂与硫醚1的质量比优选1:115:1,进一步 优选3:110:1。 0014 。

22、在制备亚砜或砜的方法中,所述的氧化剂可以为本领域中该类氧化反应的常规氧 化剂,优选双氧水。 0015 在制备亚砜或砜的方法中,当所述的氧化剂采用双氧水时,所述的双氧水的质量 百分比优选2750,所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分 比。 0016 在制备亚砜或砜的方法中,所述的氧化剂与所述的硫醚1的摩尔比优选1:1 8:1,进一步优选1.5:18:1。制备亚砜的反应中,所述的双氧水与所述的硫醚1的摩尔比 再进一步优选1.5:13:1;制备砜的反应中,所述的双氧水与所述的硫醚1的摩尔比再进 一步优选3:17:1。 0017 制备亚砜或砜的方法优选在催化剂存在的条件下进行,所述的。

23、催化剂为本领域中 该类反应的常规催化剂,优选钛酸四异丙酯、酒石酸酯钛、钨酸钠、磷钼酸、乙酰丙酮铁,盐 酸或硫酸,进一步优选硫酸;所述的盐酸可以为本领域中常规市售盐酸试剂,所述的盐酸的 质量百分浓度优选537,所述的质量百分浓度是指氯化氢的质量占盐酸水溶液总质 量的百分比。 0018 在制备亚砜或砜的方法中,当在催化剂存在的条件下进行反应时,所述的催化剂 与所述的硫醚1质量比值优选00.3(但不包括0),进一步优选00.2(但不包括0)。 制备亚砜的反应中,当在催化剂存在的条件下进行反应时,所述的催化剂与所述的硫醚1 质量比值优选0.010.1,进一步优选0.010.05。制备砜的反应中,当在催。

24、化剂存在的 条件下进行反应时,所述的催化剂与所述的硫醚1质量比值优选0.10.2。 0019 在制备亚砜或砜的方法中,所述的氧化剂优选分为13股进料;所述的均相溶液 优选为单独1股进料。制备砜的方法中,进一步优选所述的氧化剂优选分为23股进料; 所述的均相溶液优选为单独1股进料。 0020 所述的氧化反应的温度优选40150,进一步优选50130,再进一步优 选75120。当制备亚砜时,所述的氧化反应的温度优选70100,制备砜时,所 述的氧化反应的温度优选100130。 0021 在制备亚砜或砜的方法中,所述的氧化反应的时间优选1秒50秒,进一步优选 4秒15秒。 0022 本发明中,没有特。

25、别指定的时候,所述的“烷基”为包括具有指定碳原子数目的支 链或直链的饱和脂肪族烃基;如在“C 1 C 20 烷基”中定义为包括在直链或者支链结构中具 有1、2、3、4、5、6、7、8、9、11、11、12、13、14、15、16、17、18、19或者20个碳原子的基团。例如, “C 1 C 10 烷基”具体包括甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、戊基、己基、 庚基、辛基、壬基和癸基等等。 0023 本发明中,没有特别指定的时候,所述的“芳基”是指任何稳定的在各环中可高达7 个原子的单环或者双环碳环,其中至少一个环是芳香环;上述芳基单元的实例包括苯基、萘 基、四氢萘基、2,3-二。

26、氢化茚基、联苯基、菲基、蒽基或者苊基(acenaphthyl)。可以理解,在 芳基取代基是二环取代基,且其中一个环是非芳香环的情况中,连接是通过芳环进行的。 说 明 书CN 104058911 A 4/14页 9 0024 本发明中,没有特别指定的时候,所述的“杂环芳基”表示各环中可高达7个原子 的稳定单环或者二环,其中至少一个环是芳香环并且含有1-4个选自O、N和S的杂原子;在 此定义范围内的杂环芳基包括但不限于:吖啶基、咔唑基、噌啉基、喹喔啉基、吡唑基、吲哚 基、苯并三唑基、呋喃基、噻吩基、苯并噻吩基、苯并呋喃基、喹啉基、异喹啉基、噁唑基、异噁 唑基、吲哚基、吡嗪基、哒嗪基、吡啶基、嘧啶基。

27、、吡咯基、四氢喹啉。“杂芳基”还应当理解为 包括任何含氮杂芳基的N-氧化物衍生物。在其中杂芳基取代基是二环取代基并且一个环 是非芳香环或者不包含杂原子的情况下,可以理解,连接分别通过芳环或者通过包含环的 杂原子进行。 0025 本发明中,没有特别指定的时候,所述的“卤素”表示氟、氯、溴、碘或砹。 0026 本发明中,所述的确定了碳数范围的“C x1 C y1 ”的取代基(x1和y1为整数)、如 “C x1 C y1 ”的烷基、“C x1 C y1 ”的芳基或“C x1 C y1 ”的杂环芳基,均表示未包含取代基的碳 数,例如C 1 C 6 烷基表示未包含取代基的C 1 C 6 烷基。 0027。

28、 在不违背本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳 实例。 0028 本发明所用试剂和原料均市售可得。 0029 本发明中,所述的室温指环境温度,为1035。 0030 本发明的积极进步效果在于: 0031 1、本发明采用连续流的微通道反应器,反应过程安全平稳,无温度压力失控现象, 解决了该类反应的安全隐患。 0032 2、反应时间从传统的数小时缩短到几十秒钟,显著提高了反应效率。 0033 3、原料与催化剂及促进剂在微通道中混合极佳,温度精确控制,反应无返混。 0034 4、本发明采用了便宜易得的双氧水为氧化剂,避免使用比较昂贵的过氧化物例如 间氯过氧苯甲酸、过硫酸氢。

29、钾等,在微通道反应器中提高了反应的选择性,且减少了对环境 污染。 附图说明 0035 图1为本发明硫醚氧化制备亚砜和砜反应工艺流程图; 0036 图2为本发明所使用的Corning微通道反应器流程示意图,1、2-原料罐,3、4-原 料泵,5、6-截止阀,7-Corning微通道,8-原料收集罐。 0037 图3为本发明所使用的Corning微通道反应器多股进料流程示意图,1、2-原料罐, 3、4、10-原料泵,5、6、11-截止阀,7-Corning微通道,8-原料收集罐。 具体实施方式 0038 下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实 施例范围之中。下列实施例。

30、中未注明具体条件的实验方法,按照常规方法和条件,或按照商 品说明书选择。 0039 实施例1 0040 说 明 书CN 104058911 A 5/14页 10 0041 1、原料配制:称取100.0克2-(异丙硫醚基)硝基苯,将其倒入装有300.0克乙 酸的容器中,搅拌使其混合均匀后密封。再称取126.4克质量百分比为30的双氧水(所 述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密 封。 0042 2、利用本发明的装置图2,按照下属步骤:(1)原料罐1中含有2-(异丙硫醚基) 硝基苯的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30双氧水通过泵4 。

31、进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料2-(异丙硫醚基)硝 基苯的乙酸溶液与氧化剂按照以上比例(即100.0克的2-(异丙硫醚基)硝基苯+300.0 克乙酸的溶液:126.4克30的双氧水这个比例进料),经计量泵打入微通道反应器7,在设 定的温度为95下混合反应;(3)通过调节泵的流量来控制反应物料的停留时间为5秒,两 股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5) 在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经过LC分析。 0043 3、反应产物中原料2-(异丙硫醚基)硝基苯残余0.32,亚砜纯度为97.6,。

32、砜 纯度为0.2(LC分析结果)。收率95。 0044 实施例2 0045 0046 1、原料配制:称取100.0克2-(异丙硫醚基)硝基苯,将其倒入装有300.0克乙 酸的容器中,再在室温下滴加1.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取 126.4克质量百分比为30的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总 质量的百分比),将其置于另一容器中,密封。 0047 2、利用本发明的装置图2,按照下属步骤:(1)原料罐1中含有2-(异丙硫醚基) 硝基苯、浓硫酸的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂质量百分比 为30的双氧水(所述的质量百分比是指过氧化氢的质。

33、量占双氧水总质量的百分比)通 过泵4进入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料2-(异丙硫醚 基)硝基苯、浓硫酸的乙酸溶液与氧化剂按照以上比例(即100.0克的2-(异丙硫醚基) 硝基苯+300.0克乙酸的溶液:126.4克30的双氧水这个比例进料),经计量泵打入微通 道反应器7,在设定的温度为85下混合反应;(3)通过调节泵的流量来控制反应物料的停 留时间为4秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止 物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物 经过LC分析。 0048 3、反应产物中原料2-(异丙硫。

34、醚基)硝基苯无残余,亚砜纯度为96.5,砜纯度为 1.2(LC分析结果)。收率95。 说 明 书CN 104058911 A 10 6/14页 11 0049 实施例3 0050 0051 1、原料配制:称取100.0克二甲基硫醚置于容器中密封,将其倒入装有300.0克乙 酸的容器中,搅拌使其混合均匀后密封。再称取401.4克30双氧水,将其置于另一容器 中,密封。 0052 2、利用图2本发明的装置图,按照下属步骤:(1)原料罐1中二甲基硫醚通过泵3 进入微通道反应7,原料罐2中的氧化剂质量百分比为30的双氧水(所述的质量百分比 是指过氧化氢的质量占双氧水总质量的百分比)通过泵4进入微通道反。

35、应器7;(2)反应 过程中采用连续流微通道反应器,原料二甲基硫醚与氧化剂按照以上比例(即100.0克的 2-甲基硫醚:401.4克30的双氧水这个比例进料),在设定的温度为50下混合反应; (3)通过调节泵的流量来控制反应物料的停留时间为10秒,两股物料在反应模块内混合反 应;(4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后, 氧化产物连续出料收集到取样瓶8中,产物经过LC分析。 0053 3、反应产物中原料二甲基硫醚无残余,亚砜纯度为99.0,砜纯度为0.1(GC分 析结果)。收率98。 0054 实施例4 0055 0056 1、原料配制:称取100.0克二。

36、苯硫醚,将其倒入装有300.0克乙酸的容器中,再在 室温下滴加5.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取133.9克质量百分 比为30的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比), 将其置于另一容器中,密封。 0057 2、利用图2本发明的装置图,按照下属步骤:(1)原料罐1中含有二苯硫醚、浓硫 酸的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30双氧水通过泵4进 入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料二苯硫醚与氧化剂按照 以上比例(即100.0克的2-苯硫醚+300.0克乙酸的溶液+1.0克浓硫酸:133.9克30的 双氧。

37、水这个比例进料),在设定的温度为100下混合反应;(3)通过调节泵的流量来控制 反应物料的停留时间为5秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀 5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样 瓶8中,产物经过LC分析。 0058 3、反应产物中原料二苯硫醚无残余,亚砜纯度为98.6,砜纯度为0.3(LC分析 结果)。收率96。 0059 实施例5 0060 说 明 书CN 104058911 A 11 7/14页 12 0061 1、原料配制:称取10.0千克2-氯乙基苯硫醚,将其倒入装有30.0千克乙酸的容 器中,搅拌使其混合均匀后密封。

38、。再称取14.4千克质量百分比为30的双氧水(所述的质 量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。 0062 2、利用图2本发明的装置图,按照下属步骤:(1)原料罐1中含有2-氯乙基苯硫醚 的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30双氧水通过泵4进入 微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料2-氯乙基苯硫醚与氧化剂 按照以上比例(即100.0千克的2-氯乙基苯硫醚+30千克乙酸:14.4千克30的双氧水 这个比例进料),在设定的温度为85下混合反应;(3)通过调节泵的流量来控制反应物料 的停留时间为8秒,两股物料在反应模。

39、块内混合反应;(4)反应通道上通过截止阀5和6来 防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中, 产物经过LC分析。 0063 3、反应产物中原料2-氯乙基苯硫醚无残余,亚砜纯度为98.0,砜纯度为0.1 (LC分析结果)。收率93。 0064 实施例6 0065 0066 1、原料配制:称取10.0千克4-氯茴香硫醚,将其倒入装有60.0千克乙酸的容器 中,搅拌使其混合均匀后密封。再称取15.7千克质量百分比为30的双氧水(所述的质量 百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。 0067 2、利用图2本发明的装置图,按照下。

40、属步骤:(1)原料罐1中含有4-氯茴香硫醚 的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30双氧水通过泵4进入 微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料4-氯茴香硫醚与氧化剂按 照以上比例(即10.0千克的4-氯茴香硫醚+30千克乙酸:15.7千克30的双氧水这个比 例进料),在设定的温度为90下混合反应;(3)通过调节泵的流量来控制反应物料的停留 时间为8秒,两股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物 料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经 过LC分析。 0068 3、反应产物中原料4-氯。

41、茴香硫醚无残余,亚砜纯度为99.1,砜纯度为0.2(LC 分析结果)。收率95。 0069 实施例7 0070 0071 1、原料配制:称取10.0千克2-甲氧基茴香硫醚,将其倒入装有30.0千克乙酸的 容器中,搅拌使其混合均匀后密封。再称取16.2千克质量百分比为30的双氧水(所述的 质量百分比是指过氧化氢的质量占双氧水总质量的百分比),将其置于另一容器中,密封。 0072 2、利用图2本发明的装置图,按照下属步骤:(1)原料罐1中含有2-甲氧基茴香硫 说 明 书CN 104058911 A 12 8/14页 13 醚的乙酸溶液通过泵3进入微通道反应器7,原料罐2中的氧化剂30双氧水通过泵4。

42、进 入微通道反应器7;(2)反应过程中采用连续流微通道反应器,原料2-甲氧基茴香硫醚与氧 化剂按照以上比例(即10.0千克的2-甲氧基茴香硫醚+30.0千克乙酸的溶液:16.2千克 30的双氧水这个比例进料),在设定的温度为80下混合反应;(3)通过调节泵的流量来 控制反应物料的停留时间为6秒,两股物料在反应模块内混合反应;(4)反应通道上通过截 止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到 取样瓶8中,产物经过LC分析。 0073 3、反应产物中原料2-甲氧基茴香硫醚无残余,亚砜纯度为98.7,砜纯度为 0.1(LC分析结果)。收率96。 0074 实施。

43、例8 0075 0076 1、原料配制:称取100.0克2-(异丙硫醚基)硝基苯,将其倒入装有150.0克乙 酸的容器中,再在室温下滴加20.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取 248.3克质量百分比为50的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总 质量的百分比),将其置于另一容器中,密封。 0077 2、利用图3本发明的装置图,按照下属步骤:(1)原料罐1中含有2-(异丙硫醚基) 硝基苯、浓硫酸的乙酸溶液通过泵3进入微通道反应器7。原料罐2中的氧化剂质量百分比 为50的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比)分2 股进入微通道反应器7,前。

44、一股通过泵4,截止阀6进入反应器7,用量为2.0当量,后一股 通过泵10,截止阀11进入反应器7,用量为2.4当量;(2)反应过程中采用连续流微通道反 应器,原料2-(异丙硫醚基)硝基苯、浓硫酸的乙酸溶液与氧化剂按照以上比例(即100.0 克的2-(异丙硫醚基)硝基苯+150.0克乙酸的溶液+10.0克浓硫酸:248.3克50的双氧 水这个比例进料),经计量泵打入微通道反应器7,在设定的温度为110下混合反应;(3) 通过调节泵的流量来控制反应物料的停留时间为10秒,三股物料在反应模块内混合反应; (4)反应通道上通过截止阀5和6来防止物料的倒流;(5)在经过微通道7混合反应后,氧 化产物连续。

45、出料收集到取样瓶8中,产物经过LC分析。 0078 3、反应产物中原料2-(异丙硫醚基)硝基苯无残余,亚砜纯度为0.6,砜纯度为 94.7(LC分析结果)。收率92。 0079 实施例9 0080 0081 1、原料配制:称取100.0克二甲基硫醚,将其倒入装有300.0克乙酸的容器中,再 在室温下滴加10.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取394.1克质量 百分比为50的双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分 说 明 书CN 104058911 A 13 9/14页 14 比),将其置于另一容器中,密封。 0082 2、利用图3本发明的装置图,按照下属。

46、步骤:(1)原料罐1中含有二甲基硫醚、浓 硫酸的乙酸溶液通过泵3进入微通道反应器7。原料罐2中的氧化剂质量百分比为50的 双氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比)分2股进入微 通道反应器7,前一股通过泵4,截止阀6进入反应器7,用量为2.0当量,后一股通过泵10, 截止阀11进入反应器7,用量为1.6当量;(2)反应过程中采用连续流微通道反应器,原料 二甲基硫醚、浓硫酸的乙酸溶液与氧化剂按照以上比例(即100.0克的2-甲硫醚+300.0 克乙酸的溶液+10.0克浓硫酸:394.1克50的双氧水这个比例进料),经计量泵打入微通 道反应器7,在设定的温度为100下混合反。

47、应;(3)通过调节泵的流量来控制反应物料的 停留时间为10秒,三股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来 防止物料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中, 产物经过GC分析。 0083 3、反应产物中原料二甲基硫醚无残余,亚砜纯度为0.4,砜纯度为94.7(GC分 析结果)。收率94。 0084 实施例10 0085 0086 1、原料配制:称取100.0克二苯硫醚,将其倒入装有600.0克乙酸的容器中,再在 室温下滴加15.0克浓硫酸至容器中,搅拌使其混合均匀后密封。再称取262.9克质量百分 比为50的双氧水(所述的质量百分比是指过氧。

48、化氢的质量占双氧水总质量的百分比), 将其置于另一容器中,密封。 0087 2、利用图3本发明的装置图,按照下属步骤:(1)原料罐1中含有二苯硫醚、浓硫 酸的乙酸溶液通过泵3进入微通道反应器7。原料罐2中的氧化剂质量百分比为50的双 氧水(所述的质量百分比是指过氧化氢的质量占双氧水总质量的百分比)分2股进入微通 道反应器7,前一股通过泵4,截止阀6进入反应器7,用量为5.0当量,后一股通过泵10,截 止阀11进入反应器7,用量为2.2当量;(2)反应过程中采用连续流微通道反应器,原料二 苯硫醚、浓硫酸的乙酸溶液与氧化剂按照以上比例(即100.0克的2-苯硫醚+300.0克乙 酸的溶液+15克浓硫酸:262.9克50的双氧水这个比例进料),经计量泵打入微通道反应 器7,在设定的温度为130下混合反应;(3)通过调节泵的流量来控制反应物料的停留时 间为10秒,三股物料在反应模块内混合反应;(4)反应通道上通过截止阀5和6来防止物 料的倒流;(5)在经过微通道7混合反应后,氧化产物连续出料收集到取样瓶8中,产物经 过LC分析。 0088 3、反应产物中原料二苯硫醚无残余,亚砜纯度为0.1,砜纯度为9。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 有机化学〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1