多层缓冲隔离垫及包括其的车辆技术领域
本发明涉及一种具有优异的成形性及吸声性能的多层缓冲隔离垫
(multilayer dash isolation pad)。多层缓冲隔离垫可包括使用八叶形横截面
纤维制造的压缩毡,该八叶形横截面纤维相比较常规纤维具有增加的比表
面积并且具有2.0至2.7的形状因子,由此在不增加阻尼器以及吸声与隔
声层的重量和厚度的情况下,提供了增强的N.V.H(噪声、振动和平顺性)
及成形性。
背景技术
车辆缓冲隔离垫基于弹簧质量结构作为用于最大化声音传播损耗的
结构,并且基本上包括用作弹簧功能的阻尼器(decoupler,去耦器)、以
及用作质量(mass)的吸声与隔声层,如图1所示。
通常,阻尼器是从聚氨酯泡沫或柔软毡制造的,并且吸声与隔声层是
由从诸如TPE或EVA的热塑性树脂制造的厚层或压缩毡、或在现有技术
中已知为“针刺无纺布(needle punched nonwoven fabric)”的厚层与压缩
毡的复合层压制成的。在一些小型车辆中,使用柔软毡代替聚氨酯泡沫以
减轻组件的重量。
常规地,阻尼器及吸声与隔声层的密度和厚度已被增加以增强缓冲隔
离垫的声音传播损耗性能。然而,当密度在给定的恒定体积中不断增加时,
细胞和孔隙的结构会变得不稳定,由此降低了吸声和阻尼性能。此外,由
于组件与其它组件之间的干扰关系,组件的厚度增加受到限制,并且多层
材料的密度和厚度的增加导致组件的重量增加,由此导致车辆燃料效率的
降低。因此,通过优化构成多层垫的材料来增强声音传播损耗性能是重要
的。
在现有技术中,韩国专利第10-2011-0034522报告了一种使用改进的
横截面纤维的吸声材料及其制造方法。如图2所示,通过增加表面区域,
利用改进的横截面纤维来增强吸音性能,在该表面区域中,声波可相对于
圆形横截面纤维消失。
然而,由于该技术限于用于纤维横截面形状的技术,并且板型毡及板
型毡的形状简单,所以板型毡可适于被切为预定尺寸而未进行模制处理的
结构材料。
然而,由于在以约180℃至约200℃的温度加热之后,应该通过冷却
按压将毡模制为复杂的三维形状以用作车辆组件的吸声材料,当使用该毡
时,由于毡的过热及表面塌陷,可能出现诸如毡收缩的组件成形性问题。
此外,由于这种收缩现象,仍然存在诸如声音传播损耗性能的效率降低的
缺陷。
在缓冲隔离垫中,不单独使用毡,并且通过毡与阻尼器、厚层等的复
合层压,毡被用作复合材料。因此,由于不同材料之间的不同热收缩百分
比,会引起诸如毡厚度降低、不均匀毡表面、以及压缩弹性降低的成形性
差的问题。
因此,需要一种具有优异吸声性能同时解决由于不同材料之间的不同
热收缩百分比所引起的问题(例如,诸如毡厚度改变、不均匀毡表面、以
及压缩弹性降低的成形性问题)的缓冲隔离垫。
在本背景技术部分中所公开的上述信息仅用于增强对本发明的背景
技术的理解,并且因此该背景技术部分可包含并不形成在该国中为本领域
的普通技术人员所知的现有技术的信息。
发明内容
本发明已致力于解决与现有技术相关联的上述问题。
本发明人已对具有优异吸音性能并且同时增强成形性的多层缓冲隔
离垫进行了研究。当从具有2.0至2.7的形状因子的八叶形横截面纤维制
造的压缩毡包括在多层缓冲隔离垫中时,吸声与隔声效率可提高,并且可
解决诸如由不同材料等所造成的成形性问题,由此完成本发明。
在一个方面中,本发明提供了一种多层缓冲隔离垫,其可包括:阻尼
器以及吸声与隔声层。阻尼器可以是从聚氨酯泡沫或八叶形横截面纤维制
造的毡,并且吸声与隔声层可包括从具有2.0至2.7的形状因子(α)的
八叶形横截面纤维制造的压缩毡。
如在本文中使用的术语“压缩毡”是指通过压缩或按压单个或多个无
纺布制造的毡或包括毡的材料,使得相比较“非压缩毡”,压缩毡可具有
减小的总体厚度或增加的密度。例如,压缩毡可由大量的或具有显著厚度
的针刺无纺布制造。
阻尼器的毡可以是包括八叶形横截面纤维的“柔软”毡。柔软毡可包
括通过例如常规梳理或气流成网系统方法制造(a conventional carding or
airlaid system method)的非压缩毡。
如在本文中使用的术语“八叶形”指的是具有八个叶子的形状。
形状因子(α)可通过以下公式1表示,
[公式1]
形状因子
其中,在公式1中,纤维的横截面圆周长度(P)为约200μm至约250
μm,并且纤维的横截面面积(A)为约700μm2至约800μm2。
优选地,八叶形横截面纤维的宽度可为约30μm至约50μm,并且八叶
形横截面纤维的长度可为约20μm至约30μm。此外,八叶形横截面纤维的
厚度可为约6旦尼尔至约7旦尼尔。此外,八叶形横截面纤维可包括约9
卷曲数至约15卷曲数。
优选地,八叶形横截面纤维的材料可以是选自由聚对苯二甲酸乙二醇
酯、聚丙烯、丙烯酸、粘胶人造丝、以及芳族聚酰胺纤维组成的组中的一
种或多种。
压缩毡可具有约20cm3/(cm2·s)至约35cm3/(cm2·s)的透气性。优选地,
基于压缩毡的总重量,压缩毡可包括按重量计为约50%至约70%的量的八
叶形横截面纤维、以及按重量计为约30%至约50%的量的双组分PET纤
维。
吸声与隔声层可进一步包括从选自由热塑性弹性体(TPE)和乙烯醋
酸乙烯酯(EVA)组成的组中的一种或多种热塑树脂制造的附加层(例如,
厚层)。
在另一方面中,本发明还提供如在本文中描述的包括多层缓冲隔离垫
的车辆。
本发明的其它方面和优选实施方式在下文中进行讨论。
附图说明
将参考附图示出的本发明的某些示例性实施方式详细描述本发明的
以上和其它的特征,下文给出这些附图仅用于说明,并且因此并不限制本
发明,并且其中:
图1示出了根据现有技术的示例性缓冲隔离垫的横截面图,
图2示出了示例性横截面形状,诸如圆形、星形、哑铃形、中空形、
根据本发明的示例性实施方式的示例性改进的横截面纤维的八叶形,
图3是示出根据本发明的示例性实施方式的示例性多层垫的曲线图,
该示例性多层垫相比较常规单层垫包括具有更高的声音传播损耗效率的
示例性阻尼器,
图4示出了根据本发明的示例性实施方式的示例性八叶形横截面纤维
的宽度和长度,
图5示出了根据本发明的示例性实施方式的示例性多层缓冲隔离垫的
示例性横截面图,
图6示出了根据本发明的示例性实施方式的从八叶形横截面纤维制造
的示例性压缩毡的SEM图像,以及
图7是来自根据本发明的示例性实施方式的实施例以及比较实施例的
缓冲隔离垫的吸声系数的曲线图。
具体实施方式
本文中所使用的术语仅用于描述具体实施方式的目的,并非旨在限制
本发明。除非上下文另有清楚说明,否则如本文所使用的单数形式“一
(a)”、“一个(an)”以及“该(the)”旨在也包括复数形式。还将理解的
是,当在本说明书中使用术语“包括(comprises)”和/或“包含
(comprising)”、或者“包括(includes)”和/或“包含(including)”时,
规定指定特征、区域、整数、步骤、操作、元件、和/或组件的存在,但是
不排除一个或多个其它特征、区域、整数、步骤、操作、元件、组件、和
/或其组合的存在或添加。
除非特别说明或从上下文明显可见,否则如本文所使用的术语“约”
被理解为在本领域的正常公差的范围内,例如在平均值的两个标准差内。
“约”可被理解为在所述值的10%、9%、8%、7%、6%、5%、4%、3%、
2%、1%、0.5%、0.1%、0.05%、或0.01%内。除非从上下文另外明确,否
则由术语“约”修饰本文中所提供的所有数值。
应当理解,如本文中所使用的术语“车辆(vehicle)”或“用车辆运
载的(vehicular)”或其它类似术语包括广义的机动车辆,诸如包括运动型
多用途车辆(SUV)、公共汽车、卡车、各种商用车辆的载客车辆;包括
各种船只和舰船的船舶;航天器等;并且包括混合动力车辆、电动车辆、
插电式混合动力车辆、氢动力车辆、以及其它替代燃料车辆(例如,来源
于除石油以外的能源的燃料)。如本文中提及,混合车辆是具有两个或更
多个动力源的车辆,例如,汽油动力和电动式车辆。
在下文中,现在将详细参考本发明的各个示例性实施方式,在附图中
说明并且在下面描述这些实施方式的实例。虽然将结合示例性实施方式来
描述本发明,但应当理解的是,本描述并非旨在将本发明限于那些示例性
实施方式。相反,本发明不仅涵盖了示例性实施方式,而且涵盖可包括在
如由所附权利要求限定的本发明的精神和范围内的各种变化、修改、等同
物、及其它实施方式。
本发明提供一种多层缓冲隔离垫,其可包括:阻尼器以及吸声与隔声
层。具体地,阻尼器可以是从聚氨酯泡沫或八叶形横截面纤维制造的柔软
毡,吸声与隔声层可包括从八叶形横截面纤维制造的压缩毡,并且八叶形
横截面纤维的形状因子(α)可约为2.0至约2.7。
如图1所示,为了最大化声音传播损耗,缓冲隔离垫通常由阻尼器制
成,该阻尼器是从具有单独厚层或具有单独压缩毡的柔软毡或聚氨酯泡沫
制造的。可替代地,缓冲隔离垫由通过厚层与压缩毡的复合层压形成的吸
声与隔声层的组合制成,其被制造为两层或三层结构。如图3所示的声音
传播损耗曲线图,在多层结构中,声音传播损耗每倍频程增加12dB;而
在单层结构中,声音传播损耗每倍频程增加6dB。
声音传播损耗通过以下关系公式表示,该关系公式示出了当阻尼器或
吸声与隔声层的重量增加时,声音传播损耗成比例增加。
[关系公式1]
TL=20log10m·f-10
然而,组件重量增加导致车辆燃料效率降低。此外,阻尼器或压缩毡
的重量的大幅增加破坏内部孔(腔体)结构的稳定,由此降低中低频带的
吸声与隔声性能。
此外,声音传播损耗可通过关于噪声源和拾取声源的以下关系公式2
表示。在具体噪声源声压(L1)、拾取声源声压(L2)、以及吸声材料的表
面积(S)的某些条件下,吸声材料(A)的等效吸声面积增加以增强声音
传播损耗。
[关系公式2]
因此,为了增加毡的等效吸声面积,本发明的毡可使用在图4中示出
的八叶形横截面纤维制造。此外,所制造的毡可层压为图5所示的多层结
构。因此,声音传播损耗可增加,并且因此发动机的渗透噪声可有效降低。
根据本发明的示例性实施方式的八叶形横截面纤维(下文中,八叶形
纱线)可以是相比较常规的圆形横截面或中空横截面纤维具有每单位重量
增加约2.4倍的比表面积的改进的横截面纤维。具体地,在八叶形横截面
纤维中,由于与纤维表面的摩擦,声波的衰减效率(extinction efficiency)
可提高。
然而,对于车辆缓冲隔离垫,当使用包括不同材料的多层结构模制第
三型(tertiary-shape)车辆组件时,会出现由于热收缩的厚度降低以及由
于弯曲压缩的性能效率降低。因此,这种纤维可设计成横截面形状,并且
可考虑组件的性能来设计纤维条件。
根据本发明的示例性实施方式的八叶形横截面纤维可具有约2.0至约
2.7的形状因子(α),并且还具有约200μm至约250μm的横截面圆周长度
(P)以及约700μm2至约800μm2的横截面面积(A)。形状因子(α)通
过以下公式1表示。在公式1中,P指的是纤维横截面圆周长度(μm),
并且A指的是纤维横截面面积(μm2)。
[公式1]
形状因子
当纤维横截面圆周长度(P)小于约200μm时,纤维的比表面积会降
低,因此吸声与隔声性能增强效果会不充分,并且在热成型时由于纤维厚
度降低可能出现过度收缩。当纤维横截面圆周长度(P)大于约250μm时,
纤维的旦尼尔或线性密度会增加。这意味着特定区域密度的无纺布中的纤
维数目会降低,使得在热成型之后由于纤维之间的过量孔,吸声与隔声性
能增强效果会降低,并且刚性会降低。因此,纤维横截面圆周长度(P)
可在该范围内。
此外,当纤维的横截面面积(A)小于约700μm2时,可能难以使用
现有的常规技术制造具有八叶形横截面形状的喷丝板(spinneret),并且在
纺织之后,可能不能适当获得纤维的八叶形横截面结构。当纤维的横截面
面积(A)大于约800μm2时,由于纤维旦尼尔增加及纺织速度降低,经
济可行性会降低,并且,如上所述,在热成型时由于毡的纤维之间的过量
孔,会出现过度收缩和刚性降低。因此,纤维的横截面面积(A)可在该
范围内。
此外,当形状因子(α)的值小于约2.0时,纤维比表面积会降低,并
且因此吸声与隔声效率会降低,使得相比较常规纤维,性能可能无法充分
提高。当形状因子(α)的值大于约2.7时,在制造喷丝板以及在纺织之后
获得具有八叶形结构的纤维时存在限制。因此,形状因子(α)的值可在
该范围内。
此外,在图4中示出了八叶形横截面纤维的示例性主链结构。为了便
于喷丝头设计以及稳定的纤维性能,宽度可优选地为约30μm至约50μm,
并且长度可优选地为约20μm至约30μm,但是宽度和长度可被控制用于形
状因子的控制。
宽度方向与长度方向的比值(宽度/长度)可为约1.0至约2.5。当比
值小于约1.0时,由于在纤维纺织时从长度方向出现的杆(stem)之间的
粘附,横截面形状会变得不均匀。此外,当比值大于约2.5时,在纺织时
由于熔化纺织(melt spinning)的特性,从长度方向延伸的杆可能不能恰
当地具备其形状和长度,并且发展成为半月形状。因此,可能不能够完成
预期的形状因子。
此外,八叶形横截面纤维的厚度可优选地是6旦尼尔至7旦尼尔。当
厚度小于约6旦尼尔时,难以形成具有2.0或更大的形状因子的改进的横
截面结构。当厚度大于约7旦尼尔时,每单位体积的纤维的数目可降低,
并且因此吸声与隔声性能可降低。因此,可使用在该范围内的厚度。
此外,卷曲的数目(即,八叶形横截面纤维的每单位长度的卷曲的数
目)可优选地为约9至约15。当卷曲的数目小于约9时,毡的压缩稳定性
会降低,并且因此在预加热毡之后当压模时,设计厚度会降低,使得吸声
与隔声性能会降低。当卷曲的数目大于约15时,毡的蓬松性可能会过度,
并且因此在制造无纺布时以及压模时,可加工性会降低。因此,卷曲的数
目可在该范围内。
八叶形横截面纤维的材料可以是从由聚对苯二甲酸乙二醇酯、聚丙
烯、丙烯酸、粘胶人造丝、以及芳族聚酰胺纤维组成的组中选取的可以是
熔纺(melt-spun,熔融纺丝)的一种或多种材料。
具体地,由于当聚对苯二甲酸乙二醇酯用作与其它材料的复合材料
时,在预加热之后,可适当进行压模,所以聚对苯二甲酸乙二醇酯可更优
选地作为车辆缓冲隔离垫。
优选地,从八叶形横截面纤维制造的压缩毡可具有约20cm3/(cm2·s)至
约35cm3/(cm3·s)的透气度。当透气度小于约20cm3/(cm2·s)时,空气流或声
波至毡的渗透会降低,并且因此吸声系数会降低。当透气度大于约35cm3
/(cm2·s)时,声波的渗透会过高,并且因此声音传播损耗会降低。因此,
透气度可在该范围内。
基于压缩毡的总重量,压缩毡可包括按重量计为约50%至约70%的量
的八叶形横截面纤维、以及按重量计为约30%至约50%的量的双组分PET
纤维。当八叶形横截面纤维的量按重量计小于约50%时,八叶形横截面纤
维每单位体积的数目会降低,并且因此吸声与隔声效率会降低。当八叶形
横截面纤维的量按重量计大于约70%时,双组分PET纤维的含量会降低,
并且因此在压模之后,组件形状可能不充分。因此,八叶形横截面纤维的
的量可在该范围内。然而,可根据应用的组件以及不同材料的类型来控制
八叶形横截面纤维的量。
图6示出了根据本发明的示例性实施方式的从八叶形横截面纤维制造
的示例性压缩毡的SEM图像,并且可确定八叶形横截面纤维可在毡中均
匀分布。以供参考,本发明的压缩毡可以是现有技术中的‘针刺无纺布
(needle punched nonwoven fabric)’。
图5示出了根据本发明的示例性实施方式的示例性多层缓冲隔离垫的
示例性横截面图。在图中,阻尼器可以是从聚氨酯泡沫或八叶形横截面纤
维制造的柔软毡。吸声与隔声层可仅从(1)从如上所述的八叶形横截面
纤维单独制造的压缩毡制成,或(2)仅从选自由热塑性弹性体(TPE)和
乙烯醋酸乙烯酯(EVA)组成的组中的一种或多种热塑性树脂单独制造的
厚层制成。可替代地,通过复合层压压缩毡与厚层,吸声与隔声层可以是
(1)压缩毡和(2)厚层的组合。
从阻尼器的八叶形横截面纤维制造的柔软毡可通过诸如常规梳理或
气流成网系统方法的常规无纺布制造方法来制造,并且使用的八叶形横截
面纤维的条件优选地与在制造压缩毡时使用的八叶形横截面纤维的条件
相同。
基于毡的总重量,柔软毡可包括按重量计为约60%至70%的量的八叶
形横截面纤维、以及按重量计为约30%至40%的量的双组分PET纤维。
当八叶形横截面纤维的含量按重量计小于约60%时,每单位体积的八叶形
横截面纤维的数目会降低,并且吸声与隔声效率会降低。此外,双组分
PET纤维的含量会增加,并且因此柔软毡的阻尼性能会降低。此外,当八
叶形横截面纤维的含量按重量计大于约70%时,双组分PET纤维的含量
会降低,并且因此在模制之后组件形状会变差。因此,八叶形横截面纤维
的含量可在该范围内。然而,可根据应用的组件及不同材料的种类来控制
八叶形横截面纤维的含量。
与包括使用常规纤维(例如,圆形横截面纤维)制造的毡的缓冲隔离
垫相比,根据本发明的示例性实施方式的多层缓冲隔离垫在不增加阻尼器
以及吸声与隔声层的重量和厚度的情况下,可将吸声系数提高约28%或更
多。
此外,由于在预加热毡之后,当热压模时,不会出现厚度降低或收缩,
所以可保持组件的成形性增强性能以及垫的吸声与隔声性能,并且与常规
的改进的横截面纤维(例如,星形、哑铃形、或者中空形的改进的横截面
纤维)相比,形状因子可增强,由此降低了毡的重量并且降低了生产成本。
因此,本发明可提供一种优异的多层缓冲隔离垫,该多层缓冲隔离垫
增强垫的成形性并且提供吸声性能。
实施例
制造实施例1和比较制造实施例1-1至1-4:制造压缩毡
压缩毡使用具有在以下表1中概括的条件的横截面纤维通过常规针刺
系统制造。基于毡组合物的总重量,每个毡组合物包括按重量计为70%的
横截面纤维以及按重量计为30%的双组分PET纤维。
【表1】
横截面纤维和压缩毡的条件
测试实施例1:根据纤维横截面结构的吸声系数测量
基于ISO 354来评估根据制造实施例1和比较制造实施例1-1至1-4
制造的压缩毡的阿尔法舱(Alpha cabin)吸声系数。结果汇总在以下表2
中。
【表2】
平均吸声系数的结果
如表2所示,可确定与从具有不同横截面结构的纤维制造的压缩毡(比
较制造实施例)相比,根据本发明的示例性实施方式的从八叶形横截面纤
维制造的压缩毡(制造实施例1)可获得增强了7.4%至17.5%的平均吸声
系数。
测试实施例2:耐热性压缩弹性测量
在120℃的温度下,将1kg重量施加至根据制造实施例1和比较制造
实施例1-1至1-4制造的压缩毡24小时,并且随后基于JIS 1096测量压缩
弹性。结果汇总在以下表3中。
【表3】
压缩弹性的结果
如表3所示,可确定于从具有其它横截面结构的纤维制造的压缩毡(比
较制造实施例)相比,根据本发明的示例性实施方式的从八叶形横截面纤
维制造的压缩毡(制造实施例1)可获得增强了8.9%至16.8%的压缩弹性。
制造实施例2和比较制造实施例2-1至2-5:制造压缩毡
压缩毡通过使用具有在以下表4中概括的条件的横截面纤维的一般针
刺系统制造。本文中,基于毡组合物的总重量,每个毡组合物包括按重量
计为70%的横截面纤维以及按重量计为30%的双组分PET纤维。
【表4】
横截面纤维和压缩毡的条件
测试实施例3:测量热模制时的收缩率
根据制造实施例2和比较制造实施例2-1至2-5制造的压缩毡在180℃
的温度下热风加热240秒,并且随后按压,接着冷冻。随后测量厚度降低
率,并且以与测试实施例1相同的方式另外测量吸声系数。结果汇总在以
下表5中。
【表5】
厚度降低率及平均吸声系数的结果
如表5所示,可确定与从具有不同横截面结构的纤维制造的压缩毡(比
较制造实施例)相比,根据本发明的示例性实施方式的从八叶形横截面纤
维制造的压缩毡(制造实施例2)可获得低厚度降低率,并且因此,可获
得优异的吸声效率。
实施例和比较实施例:制造缓冲隔离垫(PAD)
实施例
根据制造实施例2制造的压缩毡与具有1.7的比重和2.0mm的厚度的
EVA片通过热压工艺被层压和接合。随后,常用的聚氨酯泡沫以80㎏/
m3密度在其背面上发泡,由此制造缓冲隔离垫(PAD)。
比较实施例
除了使用根据比较制造实施例2-2制造的压缩毡以外,以与实施例相
同的方式制造缓冲隔离垫(PAD)。
测试实施例4:测量缓冲隔离垫(PAD)的吸声系数
基于ISO 354来评估根据实施例和比较实施例制造的缓冲隔离垫
(PAD)的阿尔法舱吸声系数,并且在图7中使用曲线图示出结果。
如图7所示,可确定与比较实施例的缓冲隔离垫相比,实施例的缓冲
隔离垫的吸声性能在1,600Hz以上是优异的。具体地,可确定实施例的吸
声系数在2KHz以上(其是发动机渗透声音的主要区域的声频)远大于比
较例的吸声系数,并且实施例中的吸声系数增加了28%。
通常,比较实施例的缓冲隔离垫的重量应增至最小200g/㎡或更大以
将比较实施例的缓冲隔离垫的吸声系数增加至实施例的缓冲隔离垫的吸
声系数状态。相反,相比较常规的缓冲隔离垫,根据本发明的示例性实施
方式的多层缓冲隔离垫可在不增加阻尼器以及吸声与隔声层的重量和厚
度的情况下,提供优异的吸声系数,并且因此,可最终实现组件重量降低。
根据本发明的各个示例性实施方式的多层缓冲隔离垫通过解决由于
不同材料之间的不同热收缩百分比所造成的诸如毡厚度变化、不均匀毡表
面、以及挤压弹性会降低的成形性问题,可根据组件形状制造为各种类型。
此外,由于根据本发明的缓冲隔离垫包括从具有约2.0至约2.7的形
状因子的八叶形横截面纤维制造的压缩毡,因此形状因子相对于常规改进
横截面纤维可增强,由此降低毡的使用量以及生产成本,并且垫的吸声系
数提高约28%以上。
已参考本发明的优选示例性实施方式对本发明进行了详细描述。但
是,本领域的技术人员将理解,在不脱离本发明的原则和精神的情况下,
可对这些实施方式进行任何改变,在所附权利要求及其等同物中限定本发
明的范围。