结合分离装置、结合分离系统及结合分离方法技术领域
本发明涉及结合分离装置(coupling and separating device)、结合分离系
统及结合分离方法。更具体地,本发明涉及使结构与发射载具结合并且与
发射载具分离的结合分离装置、结合分离系统及结合分离方法。
背景技术
使发射载具(例如火箭)和结构(例如人造卫星)结合并且分离的结合分离
系统是已知的。在火箭的结合分离系统中,结合是由金属形成的夹带通过
使人造卫星和火箭的结合扣紧来完成的。图1是示意性地示出了常规的结
合分离系统的构造的平面图。图2是示意性地示出了结合分离系统沿着图1
中的线A-A的截面构造的截面图。结合分离系统设置有结合分离装置101
和PAF(有效载荷附加配件)结构120。PAF结构120安装在火箭中并且是圆
柱形机架,人造卫星安装在该圆柱形机架上。结合分离装置101使PAF结
构120以及安装在PAF结构120上的卫星侧面结构130结合并且分离。然
而,卫星侧面结构130是在卫星侧面具有圆柱外形的元件。PAF结构120
的直径和卫星侧面结构130的直径几乎是彼此相等的。当这两个结构应当
结合时,结合分离装置101使PAF结构120和卫星侧面结构130扣紧,以
使它们收缩至比原来直径小的直径。因此,PAF结构120和卫星侧面结构
130中产生了应力。结合分离装置101设置有夹带106以及结合部分104。
夹带106沿着PAF结构120上的卫星侧面结构130的装配部分的圆周
设置。夹带106设置有束带件102和多个块状件103。多个块状件103沿着
PAF结构120上的卫星侧面结构130的装配部分的圆周设置。块状件103
具有凹部103a(例如V形槽,下文中也称V槽),该凹部与PAF结构120的
侧边部分120a以及卫星侧面结构130的侧边部分130a的装配部分接合。
PAF结构120和卫星侧面结构130通过使侧边部分120a和侧边部分130a
装配而在凹部103a中彼此配合。束带件102与多个块状件103中每一块
的、与凹部103a相对的表面结合。束带件102和多个块状件103制成为一
体。通过扣紧束带件102,将多个块状件103推入到从与凹部103a相对的
表面至装配部分的方向上。
结合部分104使束带件102的两个端部102a结合并保持夹带106的扣
紧。通过为束带件102的一个端部102a设置的栓状元件(没有示出)以及为
另一个端部102a设置的螺母状元件(没有示出),举例说明了结合部分
104。通过将栓状元件拧入螺母状元件,结合部分104使束带件102的两个
端部102a结合。朝向外的方向的力通过附接于结构外面的、火箭体内的弹
簧105而施加给夹带106。
结合分离装置101通过使用烟火使卫星和火箭的结合释放(使卫星和火
箭分离)。在结合部分104中的切断栓状元件的操作的情况中,烟火高速移
动切断架。通过切断栓状元件,束带件102的两个端部102a分离。因此,
夹带106由于夹带106的张力以及弹簧105的力被高速向外拉。结果,多
个块状件103也高速向外移动,而且卫星和火箭的结合得以释放。
作为相关技术,结构结合设备在JP S60-61400A中公开。该结构结合设
备使形状记忆合金元件在特定的温度变形以使结构彼此结合。通过使结合
部分从上述特定温度加热或冷却到超过马氏体相变温度,形状记忆合金元
件变回变形之前的形状。因此,结合得以释放。
此外,空间结构的分离机构在日本专利No.2,671,794中公开。这种空
间结构的分离机构设置有栓、外壳、分离螺母、形状记忆合金线圈、推栓
弹簧以及弹簧。栓使一对结构结合。为其中一个结构设置外壳。分离螺母
设置在这个外壳里面,并且沿着拧有栓的孔的半径的方向分开。形状记忆
合金线圈以线圈状方式绕着分离螺母的外圆周缠绕,并且它的端部中的每
一个都通过外壳与加热器结合。推栓弹簧设置在栓的尖部和外壳壁之间并
且将栓推到结构一侧。弹簧设置在分离螺母和外壳壁之间并且将分离螺母
拉至直径的方向。
此外,金属丝保持释放装置(holding and releasing device)在JP H09-
315399a中公开。该金属丝保持释放装置设置有金属丝元件、外壳及端件,
第一和第二保持释放元件,以及热控部分。金属丝元件使人造空间结构定
位并将该人造空间结构保持成可释放的。金属丝元件的一端附接于外壳,
并且设置一对彼此相对的球以沿着几乎与金属丝元件成直角的方向自由进
出。端件可拆卸地附接于外壳,并且附接于金属丝元件的另一端,并且放
在外壳中两个球之间以定位在外壳中。第一和第二保持释放元件由外壳支
撑以给球提供力,并且在加热变形中得以自由以通过球使端件定位。热控
部分控制第一和第二保持释放元件的温度以控制对球的力,并使端件定位
至外壳或者消除端件的定位以将端件从外壳上释放,并且控制金属丝元件
的保持或释放操作。
此外,分离机构在JP H06-32296A中公开。该分离机构安装在人造卫
星等的空间发射载具中,并且在发射时通过金属丝约束附加物,并且在切
换到操作状态的操作时通过金属丝释放附加物的约束状态。该分离机构设
置有第一形状记忆合金元件、金属丝制动器、制动器、第二形状记忆合金
元件、以及第一和第二加热器。第一形状记忆合金元件夹入在金属丝中。
金属丝制动器包含第一形状记忆合金元件并使金属丝的一端保持,金属丝
的另一端固定。制动器使金属丝制动器保持约束状态。第二形状记忆合金
元件使制动器保持约束状态。第一和第二加热器加热第一和第二形状记忆
合金元件并使之拉伸,以致金属丝从约束状态释放,从而确保附加物的操
作安全。
引用列表
[专利文献1]JP S60-61400A
[专利文献2]JP专利No.2,671,794
[专利文献3]JP H09-315399A
[专利文献4]JP H06-32296A
发明内容
在图1和图2所示的结合分离装置101中,当人造卫星和火箭应当分
离时,结合部分104的栓状元件被切断并且夹带随着夹带106的张力和弹
簧105的力被高速朝着向外的方向拉。结果,从PAF结构120和卫星侧面
结构130的中心指向外面方向的力释放,该PAF结构120和卫星侧面结构
130借助夹带106的扣紧力受压通过块状件103。图3是示意性地示出了
PAF结构120以及卫星侧面结构130的应力释放的状态的简图。图3示出
了图2中相同的部分。PAF结构120和卫星侧面结构130在应力聚集的状
态下以结合的状态处于P0的位置。然而,在切断结合部分104的栓状元件
并且放出块状件103之后,PAF结构120和卫星侧面结构130能够自由移
动。因此,PAF结构120和卫星侧面结构130以非常快的速度释放应力并
且试图移动到没有应力的位置PA。结果,PAF结构120和卫星侧面结构
130相对于作为中心的位置PA剧烈振动。就是说,除了烟火的冲击之外,
通过张力的瞬间释放对卫星侧面结构130产生了冲击。当这样的分离冲击
比较大时,就有必要使卫星侧面装备的设计条件严格些,而这将会引起成
本和重量的问题。
本发明的目的是提供这样的结合分离装置、结合分离系统及结合分离
方法,其中当发射载具(例如火箭)和结构(例如人造卫星)应当分离时,分离
的冲击可以降低。此外,本发明的另一个目的是提供这样的结合分离装
置、结合分离系统及结合分离方法,其中当发射载具和结构应当分离时,
卫星侧面结构的应变能瞬间释放所产生的冲击可以降低。
通过如下的描述和附图,可以容易地证实本发明的这些目的、除了上
面目的之外的目的和效果。
本发明的结合分离装置包括夹带和结合部分,该夹带具有块状件和束
带件。块状件接合发射载具的安装元件与安装在该安装元件上的结构。束
带件从外部保持块状件。结合部分使束带件的端部结合或分离。束带件由
形状记忆合金形成并且包括通过加热而伸长的伸长部分。
本发明中,束带件设置有由形状记忆合金形成的通过加热伸长的伸长
部分,并且与块状件制成一体。通过扣紧安装元件与结构,安装元件与结
构接合。当消除结合时,在切断束带件之前形状记忆合金元件通过加热而
伸长,以使束带件伸长。由于束带件伸长并且松开且块状件移动到外面,
安装元件和结构能够移动到外面。结果,一部分通过扣紧束带件和块状件
而在结构中聚集的应力(应变能)能够在切断束带件之前释放。因此,与瞬间
切断束带件的情况相比,切断束带件时所释放的应变能能够进一步减小。
结果,切断束带件时的分离冲击能够降低。
在上述结合分离装置中,理想的是束带件设置有多个伸长部分。
在这种情况下,本发明具有多个通过加热伸长的伸长部分(多个形状记
忆合金元件)。如果多个伸长部分逐一伸长,已经聚集在结构中的一部分应
力(应变能)能够在分离束带件之前以逐步的方式释放。因此,与瞬间切断束
带件的情况相比,当分离束带件时,应变能可以更平缓地释放。结果,束
带件分离时的分离冲击能够降低。
在上述结合分离装置中,理想的是形状记忆合金元件含有TiNi。
理想的是,作为形状记忆合金在强度方面优异的TiNi用于伸长部分,
因为结合分离装置需要承受本发明中束带件的扣紧力。
在上述结合分离装置中,理想的是,束带件的端部分别具有开口。理
想的是,结合部分设置有销以及将销插入开口并从开口中拔出的驱动单
元。理想的是,结合部分通过将销插入开口使束带件的端部结合。理想的
是,结合部分通过将销从开口中拔出使束带件的端部分离。
在这种情况下,在本发明中,由于结合部分通过将销插入和拔出而进
行结合分离,与使用烟火的情况相比,束带件的端部分离时的分离冲击能
够进一步降低。
理想的是,进一步设置加热装置,以加热上述结合分离装置中的伸长
部分。
在这种情况下,在本发明中,由于加热部分是为了加热而设置的,所
以没有必要在发射载具的侧面设置加热单元。
理想的是,本发明的结合分离系统设置有安装元件、结合分离装置以
及加热单元。理想的是,安装元件安装在发射载具中,而结构安装在安装
元件中。该结合分离装置使安装元件和结构结合和分离并且在上面描述
过。理想的是,加热单元加热该结合分离装置的伸长部分。
在本发明中,由于上面所描述的结合分离系统具有结合分离装置,有
可能降低在束带件的端部分离中的分离冲击。
理想的是,上述结合分离系统进一步设置有检测伸长部分的温度的第
一传感器。理想的是,加热系统基于第一传感器的检测结果使加热停止。
在这种情况下,在本发明中,加热单元的停止是基于第一传感器所检
测到的形状记忆合金元件的温度而决定的。由此,在确认温度达到高于伸
长部分中的形状记忆合金的形状恢复温度的一温度之后,加热单元能够停
止。因此,形状记忆合金能够必然伸长到之前记忆的长度。作为第一传感
器,举例说明了电阻温度计以及热电偶。
理想的是,上述结合分离系统进一步设置有检测伸长部分的长度的第
二传感器。理想的是,加热单元基于第二传感器的检测结果使加热停止。
在这种情况下,在本发明中,基于第二传感器所检测到的形状记忆合
金的长度来确定加热单元的停止。由此,在确认伸长部分中的形状记忆合
金已经伸长到之前记忆的长度后,加热单元能够停止。因此,形状记忆合
金元件必然能够伸长到之前记忆的长度。作为第二传感器,举例说明了应
变传感器。
本发明的结合分离方法使用了使结构结合至发射载具或从发射载具上
分离的结合分离系统。该结合分离系统包括:安装在发射载具中的、有结
构安装在其中的安装元件;使结构与安装元件结合或从安装元件上分离的
结合分离装置;以及加热单元。该结合分离装置包括:接合发射载具的安
装元件以及安装在该安装元件中的结构的块状件;从外部保持块状件的束
带件;以及使束带件的端部结合或分离的结合部分。束带件由形状记忆合
金形成并且包括通过加热而伸长的伸长部分。结合分离方法包括:通过加
热单元加热束带件的伸长部分从而使伸长部分伸长,以及在伸长之后使在
结合部分中结合的端部分离。
在本发明中,束带件设置有由形状记忆合金形成的、通过加热而伸长
的伸长部分并且与块状件制成一体。通过使安装元件和结构扣紧,安装元
件和结构接合并且结合。当消除结合时,在束带件分离之前形状记忆合金
通过加热伸长,并且束带件也因此伸长。因为束带件伸长并且松开而且块
状件向外移动,安装元件以及结构能够移动。结果,一部分通过扣紧块状
件而在结构中聚集的应力(应变能)能够在分离束带件之前释放。因此,与瞬
间切断束带件的情况相比,分离束带件时所释放的应变能能够进一步降
低。结果,束带件分离时的分离冲击能够降低。
在上述结合分离方法中,理想的是,束带件设置有多个包含伸长部分
的伸长部分。理想的是,加热步骤包括通过加热单元在不同时间加热多个
伸长部分。
在这种情况下,本发明具有多个通过加热而伸长的伸长部分(多块形状
记忆合金)。一部分在分离束带件的端部之前聚集在结构中的应力(应变能)
能够通过使伸长部分逐一伸长以逐步的方式释放。因此,与瞬间切断束带
件的情况相比,分离束带件时的应变能可以更平缓地释放。结果,束带件
端部分离时的分离冲击能够进一步降低。
在上述结合分离方法中,理想的是,通过加热单元逐一加热多个伸长
部分包括:通过加热单元加热多个伸长部分中的一个;以及结束加热之
后,加热多个伸长部分中还没有加热的一个伸长部分。
在本发明中,在这种情况下,由于在一个伸长部分中的形状记忆合金
的加热结束之后才加热下一个伸长部分,加热所必须的能量能够受到限
制。需要注意的是,如果形状记忆合金一旦恢复形状,即使加热停止,由
于形状得以保持,也不会产生问题。
根据本发明,当发射载具和结构分离时,分离的冲击能够降低。此
外,当消除结合时,卫星侧边结构的应变能瞬间释放时的冲击能够降低。
附图说明
图1是示意性地示出了常规结合分离系统的构造的平面图;
图2是示意性地示出了常规结合分离系统的构造的截面图;
图3是示意性地示出了当PAF结构和卫星侧面结构的应力释放后的状
态的截面图;
图4是示意性地示出了根据本发明实施例的结合分离系统的构造的平
面图;
图5是示意性地示出了结合分离系统沿着图4中的线A-A的构造的截
面图;
图6是示意性地示出了图4中的结合部分的构造的平面图;
图7是示出了根据本发明实施例的结合分离系统操作的流程图;
图8A是示意性地示出了在图7的步骤S01中沿着图4中的线A-A的
结合分离系统的截面图;
图8B是示意性地示出了在图7的步骤S02中沿着图4中的线A-A的
结合分离系统的截面图;
图8C是示意性地示出了在图7的步骤S03中沿着图4中的线A-A的
结合分离系统的截面图;
图8D是示意性地示出了在图7的步骤S04中沿着图4中的线A-A的
结合分离系统的截面图;并且
图9是示出了图7的每一个步骤中夹带拉伸应力的例子的曲线图。
具体实施方式
在下文中,将参考附图描述根据本发明的结合分离装置、结合分离系
统以及结合分离方法。这里,将描述的例子是:其中安装了结合分离系统
的发射载具是火箭,并且结合至发射载具并从发射载具上分离的结构是人
造卫星。
将描述根据本发明实施例的结合分离装置和结合分离系统的构造。图4
是示意性地示出了根据本发明实施例的结合分离系统的构造的平面图。图5
是示意性地示出了沿着图4中的线A-A的结合分离系统的截面构造的截面
图。结合分离系统设置有结合分离装置1、PAF(有效载荷附加配件)结构20
以及加热器(加热单元)12。
PAF结构20(安装元件)是安装在火箭中的、并且卫星安装在其上的圆
柱形机架。结合分离装置1使PAF结构20和安装在PAF结构20上的卫星
侧面结构30结合并且分离。然而,卫星侧面结构30是在卫星侧面的具有
圆柱形状的元件。PAF结构20和卫星侧面结构30的直径几乎彼此相等。
当两者都装配之后,PAF结构20和卫星侧面结构30通过结合分离装置1
扣紧使得它们的直径收缩到比原来的直径小。因此,在PAF结构20和卫星
侧面结构30中会产生应力。加热器12使随后将描述的结合分离装置1的
形状记忆合金元件11加热到高于形状恢复温度(马氏体相变温度)的温度。
结合分离装置1设置有夹带6以及结合部分4。
夹带6沿着卫星侧面结构30和PAF结构20的装配部分的圆周设置。
通过扣紧夹带6,使卫星侧面结构30以及PAF结构20变形收缩。就是
说,卫星侧面结构30和PAF结构20受到接合时伴随变形的应力(应变
能)。夹带6设置有束带件2和多个块状件3。
多个块状件3沿着卫星侧面结构30和PAF结构20的装配部分的圆周
设置。块状件3具有凹部3a,该凹部与PAF结构20的侧边部分20a的装
配部分以及卫星侧面结构30的侧边部分30a的装配部分接合。凹部3a具
有近似V形的槽。PAF结构20的侧边部20a和卫星侧面结构30的侧边部
分30a装配形成了山形的凸部并且与凹部3a接合。例如,块状件3是由钢
形成的。
束带件2具有环形形状,其中端部2a通过结合部分4而结合。束带件
2结合至块状件的位于与多个块状件3的凹部3a相对的一侧的表面。束带
件2和多个块状件3制成一体。通过扣紧束带件2,多个块状件3在从块状
件的与凹部3a相对的表面一侧到装配部分一侧的方向上被推动。
通过指向PAF结构20和卫星结构30的中心的扣紧力,将多个块状件
3推至中心方向。PAF结构20和卫星侧面结构30的从中心指向外部方向的
力由凹部3a中的扣紧力抵消。通过扣紧力与PAF结构20以及卫星侧面结
构30中的应力的平衡,PAF结构20、卫星侧面结构30以及夹带6的接合
能够保持。朝外面方向的力通过附接至火箭主体(没有示出)的弹簧5而施加
给夹带6。
这里,由钢形成的束带件2的环形形状的至少一个部分是由形状记忆
合金形成的形状记忆合金元件(延伸部分)11制成的。在图4的情况中,设
置了四个形状记忆合金元件11。在卫星侧面结构30已经如图4所示安装的
情况下,形状记忆合金元件11已经记忆了比长度D1长的长度。形状记忆
合金元件11利用焊接或者一套栓及螺母通过在记忆后压缩至长度D1而附
接于束带件2的预设位置。
加热器12设置于每个形状记忆合金元件11并且加热形状记忆合金元
件11。加热器12固定在PAF结构20上。从加热效率方面,理想的是使加
热器12与形状记忆合金元件11形成接触。加热器12也可以包含于形状记
忆合金元件11之内。例如,通过将加热丝缠绕在形状记忆合金元件11周
围以及将其粘结至合金元件的方法,加热丝可以与形状记忆合金元件11一
起形成为整体。
控制单元13控制加热器12。例如,当控制单元13是定时器时,控制
单元13输出加热控制信号以在预定时刻控制加热器12一段预定的时间。
加热器12使形状记忆合金元件11加热至预定的温度一段时间,在此期间
接收加热控制信号。或者,当控制单元13是微型计算机时,加热器12的
加热温度、加热定时以及加热时间可以基于程序受到控制。此外,附接于
形状记忆合金元件11的传感器15(例如应变传感器或者温度传感器)的数据
可以用于控制。例如,通过使用应变传感器,当形状记忆合金元件11伸长
到预定长度时,加热可以基于应变传感器的输出而终止。例如,当使用温
度传感器时,控制单元13基于温度传感器的输出来控制加热器,使得形状
记忆合金元件11达到期望的温度。安装在火箭中的另一个控制单元可以用
作控制单元13。
结合部分4使束带件2的端部2a结合,结合的状态是PAF结构20和
卫星结构30通过束带件2与多个块状件3一起扣紧,以通过夹带6保持扣
紧。或者,端部2a分离并且通过夹带6的扣紧而释放。
将描述形状记忆合金元件11。形状记忆合金得以使用的原因在于由加
热产生的合金延伸率比其它材料大得非常多。就是说,形状记忆合金在很
小的温度变化中伸长极大(例如,形状记忆合金伸长大约百分之几)。结果,
所产生的效果是:有可能抑制单元和能量以导致温度变化量较小,并且几
乎没有材料的消耗量。不仅如此,如果一旦形状记忆合金回到所记忆的形
状(伸长的形状),即使温度降低形状记忆合金也不会收缩。由此,这样对在
其中能量是有限的物体中的安装是有益的,如同用于加热的能量几乎不能
受到抑制的发射载具那样。需要注意的是,如果某种材料具有这些特征,
该材料就可以代替形状记忆合金元件11而使用。
形状记忆合金元件11的形状恢复温度(马氏体相变温度)比火箭中PAF
结构20附近的最高温度高,这是必须的。这是因为当形状恢复温度比最高
温度低时,形状记忆合金元件11的长度控制会变得困难。例如,当火箭中
PAF结构20附近的最高温度为80°C时,将形状记忆合金元件11的形状
恢复温度设置为超过80°C的温度。形状恢复温度在基于某种材料以及形
状记忆合金的合金成分的预定范围内能够随意设定。
此外,作为束带件2的一部分的形状记忆合金元件11必须使PAF结构
20和卫星侧面结构30与块状件3一起扣紧并且保持扣紧的状态。由此,必
须具有足以承受使PAF结构20和卫星侧面结构30扣紧的载荷并且保持扣
紧状态的强度。在图4的例子中,束带件2扣紧时的载荷大约是20-
30KN。
作为具有这些特点的形状记忆合金元件11的理想材料,举例说明了基
于Ti-Ni合金的材料。该材料包括其中其它元素添加到基于Ti-Ni合金的材
料中以改善温度特性和强度特性的材料。需要注意的是,如果形状记忆合
金具有高于火箭中PAF结构20附近的最高温度的变形温度并且具有足以承
受扣紧载荷的强度,材料则不限于上面的例子。
形状记忆合金元件11具有与束带件2的形状相对应的长方体形状。例
如,在图4的情况中,当PAF结构20的直径φ0为1000mm时,形状记忆
合金元件11具有大约D1×D2×D3=100mm×35mm×10mm的尺寸。这
里,像束带件2那样,形状记忆合金元件11沿着PAF结构20的圆周具有
弯曲的形状。需要注意的是,如果形状记忆合金元件11能够与束带件2的
另一个部件结合并具有预定强度,那么形状记忆合金元件11的形状不限于
上述形状。例如,形状记忆合金元件11可以是柱形的,并且在这样的情况
中,块状件3可以保持在除形状记忆合金元件之外的部分。
当形状记忆合金元件11比长度D1长的情况被记忆并且形状记忆合金
元件11压缩至长度D1并插入之后,有可能通过加热器12加热形状记忆合
金元件11到等于或高于形状恢复温度的温度而使形状记忆合金元件11变
回比长度D1长的长度。因此,在束带件2的端部2a结合的情况下,束带
件2的周长能够伸长。结果,在束带件2的端部2a结合的情况下,夹带
6(束带件2)的扣紧力能够减弱。理想的是,形状记忆合金元件11设置在多
个部分。在这样的情况中,扣紧力能够以逐步的方式逐渐释放。
图6是示意性地示出了图4中结合部分4及其附近区域的构造的平面
图。结合部分4设置有销4a以及驱动部分4b。为束带件2的端部2a中的
一个端部2a1设置的开口2b1和为另一个端部2a2设置的开口2b2重叠定
位,并且驱动部分4b将销4a插入到重叠的开口2b1和2b2中。因此,结
合部分4使束带件2的端部2a结合。此外,通过驱动部分4b从重叠的开
口2b1和2b2中拔出销4a,结合部分4使束带件2的端部2a分离。借助采
用形状记忆合金的针式插塞,举例说明了结合部分4。在这种情况下,因为
没有必要使用烟火来分离,能够防止由于烟火产生的冲击。
需要注意的是,当减小卫星侧面结构30的振动是特别重要的时候,常
规的烟火可以用于所述结合部分4,该振动是在卫星侧面结构30的分离中
伴随夹带6的扣紧力的释放而产生的。如后面所提到的,这是因为当使用
具有本发明的形状记忆合金元件11的束带件2并且释放扣紧力时,振动能
够极大地减小。
随后,将描述根据本发明(结合分离方法)的实施例的结合分离装置和结
合分离系统的操作。图7是示出了根据本发明实施例的结合分离系统的操
作的流程图。图8A至图8D是示意性地示出了在图7中的每个步骤中沿着
图4中的线A-A的夹带的构造的截面图。图9是示出了在图7的每个步骤
中夹带的拉伸应力的例子的曲线图。这里,将描述如图4所示的包含设置
有四个形状记忆合金元件11的束带件2的夹带6。
卫星侧面结构30事先安装到结合分离系统中。就是说,夹带6使卫星
侧面结构30和PAF结构20结合(图4和图5)。比长度D1长的长度事先记
忆在束带件2的每个形状记忆合金元件11中。结合部分4通过使用销
4a(图6)使束带件2的端部2a结合。将卫星侧面结构30安装在PAF结构20
上,扣紧束带件2,并在端部2a1和2a2的开口2b1和2b2重叠时将销4a
插入到结合部分4中的开口2b1和2b2内,在这之后,这个安装方法是通
过使与束带件2制成一体的块状件3与卫星侧面结构30以及PAF结构20
接合实现的。此时,夹带6(束带件2)伸长得比自然长度长,并且拉伸张力
为例如大约30kN(图9中t0时刻的拉伸张力)。
执行下面的分离工序以分离以这种方式安装在PAF结构20中的卫星侧
面结构30。
首先,当卫星侧面结构30应该分离时,控制单元13打开第一形状记
忆合金元件11的加热器12(步骤S01)。然而,选择形状记忆合金元件11中
的哪个作为第一个是可选的。通过打开第一形状记忆合金元件11的加热器
12,加热第一形状记忆合金元件11到高于形状恢复温度的一温度。结果,
束带件2中的形状记忆合金元件11的周长从安装中的长度D1伸长到之前
记忆的长度。
结果,如图9中t1时刻所示,拉伸应力略有减小(大约23kN)。此时,
束带件2的长度伸长了第一形状记忆合金元件11已经伸长的长度。就是
说,束带件2的直径略有伸长。由此,夹带6的扣紧力有所减弱。结果,
因为几个块状件3能够如图8A所示略微地向外移动,卫星侧面结构30和
PAF结构20能够从位置P0移动到位置P1。因此,卫星侧面结构30的应
力能够释放。
何时关闭加热器12是可选的。这是因为如果一旦将形状记忆合金元件
11加热到高于形状恢复温度的一温度使得它伸长到之前记忆的长度,即使
加热停止,形状记忆合金元件11也决不会缩短。然而,像在火箭中那样,
在能源供给能力有限的环境中,理想的是防止不必要的加热(能量消耗)。由
此,当确定了形状记忆合金元件11已经伸长到预定长度时,理想的是,加
热器尽可能早地关闭。
例如,对于这种控制,可以设想在加热器打开后经过预设时间,控制
单元13关闭加热器。在这种情况下,用实验方法检验一直到形状记忆合金
元件11伸长的时间,并且这个时间用作上述预设时间。或者,当温度传感
器设置为传感器15时,当经过预定的时间后在温度达到形状恢复温度以上
之后加热器可以关闭。在这种情况下,有可能认为形状记忆合金元件11确
实已经伸长了。而且,当应变传感器设置为传感器15时,当检测到的应变
超过预定值时(也就是当元件11已经伸长到之前记忆的长度时)加热器12可
以关闭。在这种情况下,有可能认为形状记忆合金元件11确实已经伸长
了。第二形状记忆合金元件11的加热器12至第四形状记忆合金元件11的
加热器12关闭的时间与第一形状记忆合金元件11相同。由此,省略描
述。
随后,当第一形状记忆合金元件11已经伸长到预定长度时,控制单元
13打开第二形状记忆合金元件11的加热器12(步骤S02)。然而,选择形状
记忆合金元件11中的哪个作为第二个是可选的。例如,可以选择在对面位
置的形状记忆合金元件11作为第二形状记忆合金元件11,或者可以选择按
顺时针方向或按逆时针方向在附近的形状记忆合金元件11。当第二形状记
忆合金元件11的加热器12打开时,加热第二形状记忆合金元件11到高于
形状恢复温度的一温度。结果,束带件2中的第二形状记忆合金元件11的
周长从安装中的长度D1伸长到之前记忆的长度。
结果,如图9中在时刻t2所示,拉伸应力略有减小(大约16kN)。此
时,束带件2的长度进一步伸长了第二形状记忆合金元件11已经伸长的长
度。就是说,束带件2的直径略有伸长。由此,夹带6的扣紧力进一步减
弱。结果,因为块状件3能够如图8B所示向外移动,卫星侧面结构30和
PAF结构20能够沿着远离中心的方向从位置P1进一步伸展到位置P2。因
此,卫星侧面结构30的拉伸应力能够进一步释放。
随后,当第二形状记忆合金元件11已经伸长到预定长度时,控制单元
13打开第三形状记忆合金元件11的加热器12(步骤S03)。通过打开第三形
状记忆合金元件11的加热器12,加热第三形状记忆合金元件11到高于形
状恢复温度的一温度。结果,束带件2中的第三形状记忆合金元件11的周
长从安装中的长度D1伸长到之前记忆的长度。
结果,如图9中在t3时刻所示,张力略有减小(大约9kN)。此时,束
带件2的长度伸长了第三形状记忆合金元件11已经伸长的长度。就是说,
束带件2的直径略有伸展。由此,夹带6的扣紧力进一步减弱。结果,因
为块状件3能够如图8C所示向外移动,卫星侧面结构30和PAF结构20
能够进一步沿着远离中心的方向从位置P2伸展到位置P3。因此,卫星侧
面结构30的应力能够进一步释放。
随后,当第三形状记忆合金元件11已经伸长了预定的长度时,控制单
元13打开第四形状记忆合金元件11的加热器12(步骤S04)。通过打开第四
形状记忆合金元件11的加热器12,加热第四形状记忆合金元件11到高于
形状恢复温度的一温度。结果,束带件2中的第四形状记忆合金元件11的
周长从安装中的长度D1伸长到之前记忆的长度。
结果,如图9中在t4时刻所示,拉伸应力略有减小(大约为1kN)。此
时,束带件2伸长了第四形状记忆合金元件11已经伸长的长度。就是说,
束带件2的直径略有伸展。由此,夹带6的扣紧力进一步减弱。结果,因
为块状件3能够如图8D所示向外移动,卫星侧面结构30和PAF结构20
能够进一步沿着远离中心的方向从位置P3扩展到位置P4。因此,卫星侧
面结构30的应力能够进一步释放。例如,从时刻t0到时刻t4的时间段是
几十秒到几百秒。
在这个步骤,束带件2的拉伸应力减小至例如初值的1/10或者更小。
就是说,卫星侧面结构30的应力(应变能)也以相同的方式减小至初值的
1/10或者更少。随后,控制单元13打开结合部分4。结合部分4从束带件
2的端部2a的开口2b中拔出销4a(步骤S05)。因此,束带件2的端部2a
分离,并且如图9中在t5时刻所示,拉伸应力消失了(大约为0KN),并且
夹带6由弹簧5向外拉。结果,束带件2和块状件3离开了卫星侧面结构
30和PAF结构20的装配部分。用这种方式,卫星侧面结构30和PAF结构
20分离。然后,控制单元13关闭结合部分4。
通过上述结合分离系统的操作,卫星分离。然而,上述分离过程仅仅
是举例说明。扣紧力(拉伸应力)的值和减小量、松开的次数(形状记忆合金
元件的数量)、以及松开扣紧力的时间(为了卫星的分离)可能根据将要安装
的卫星以及火箭等适当地设计。
需要注意的是,拉伸形状记忆合金元件11的顺序能够随意选择。例
如,如同用多个栓固定圆形凸缘那样以框格方式选择,或者从相关位置按
顺时针方向或逆时针方向选择。而且,拉伸应力的减小率能够基于形状记
忆合金元件11的数量和它们的长度而随意调整。例如,如果将形状记忆合
金元件11的长度做得长些,则形状记忆合金元件11的拉伸应力的减小率
就能够大些。此外,如果形状记忆合金元件11的数量增加,则拉伸应力能
够通过分成几个小阶梯而不断地降低。
在本实施例中,提供了一种通过夹带6使施加给装配部分的扣紧力以
逐步的方式放松的机构。就是说,形状记忆合金元件11设置在束带件2的
整个圆周的至少一个位置(最好是多个位置)中,并且加热每个位置的形状记
忆合金元件以增加形状记忆合金元件沿着圆周方向的长度。当形状记忆合
金元件11设置在多个位置时,它们在不同的时间受热以使周长伸长。因
此,由于束带件2(夹带6)能够以逐步的方式伸长,扣紧力能够以逐步的方
式放松。与每次所释放的拉伸应力相比,在形状记忆合金元件11伸长的情
况下夹带的拉伸应力的减小被降低到形状记忆合金元件11的数量的反数(图
9)。因此,所述冲击也成比例地降低。结果,通过以逐步的方式放松扣紧
力,极大降低了扣紧力释放产生的冲击。
此外,在本实施例中,烟火未用于结合部分4,并且在不使用火药的情
况下使用了一种通过销4a的插入和拔出而进行结合分离的机构。因此,由
于烟火所造成的冲击能够降低。由于不使用烟火,操作限制消失了。此
外,由于反复使用是可能的,可以在实际使用前检查实际物品。
而且,在本实施例中,卫星侧面结构30和PAF结构20的结构,也就
是卫星和火箭之间的接触面能够做得像常规的接触面一样。由此,通过从
卫星来看,可以保持与其它火箭的兼容性。
本发明并不限于上述实施例,并且在本发明的技术范围内的这些实施
例的各种改进是适当可行的,这对于本领域的技术人员是显而易见的。