CN201410822497.5
2009.08.25
CN104600757A
2015.05.06
实审
审中
实质审查的生效IPC(主分类):H02J 5/00申请日:20090825|||公开
H02J5/00; H01Q1/22; H01Q7/00
H02J5/00
高通股份有限公司
奈杰尔·P·库克; 卢卡斯·西贝尔; 汉斯彼得·威德默
美国加利福尼亚州
61/091,684 2008.08.25 US; 61/117,937 2008.11.25 US; 61/161,306 2009.03.18 US; 61/161,291 2009.03.18 US; 61/175,337 2009.05.04 US; 61/218,838 2009.06.19 US; 12/546,613 2009.08.24 US
北京律盟知识产权代理有限责任公司11287
宋献涛
本发明涉及用于无线功率发射的无源接收器。示范性实施例是针对无线功率传送。无线功率发射接收器包含接收天线,所述接收天线包含经配置以响应于磁近场而谐振并耦合来自磁近场的无线功率的并联谐振器。所述接收器进一步包含耦合到所述并联谐振器的无源整流器电路。所述无源整流器电路经配置以变换对所述并联谐振器的负载阻抗。
权利要求书1. 一种无线功率发射接收器,其包括: 天线,其包含谐振器,所述谐振器经配置以接收来自电磁场的功率来为负载充电, 所述谐振器具有输出;以及 整流器电路,其耦合于所述谐振器的所述输出和所述负载之间,所述整流器电路 经配置以向所述天线提供大于所述负载的固有充电阻抗的阻抗,所述整流器电路进 一步经配置以抑制所述整流器电路的端子处的谐波信号。 2. 根据权利要求1所述的接收器,其中所述整流器电路包含第一二极管、第二二极管 以及电容器,所述第一二极管和所述第二二极管串联耦合,所述第一和第二二极管 与所述电容器并联耦合。 3. 根据权利要求2所述的接收器,其中所述电容器包括大电容器和第二电容器,其中 所述大电容器包括比所述第二电容器的电容大的电容,且其中所述大电容器和所述 第二电容器并联耦合。 4. 根据权利要求2所述的接收器,其中所述整流器电路进一步包含分别与所述第一和 第二二极管串联耦合的第一和第二高频扼流器。 5. 根据权利要求2所述的接收器,其中所述第一和第二二极管包括未经封装的二极管, 其中所述电容器包括微芯片电容器,且其中所述未经封装的二极管和所述微芯片电 容器安装在共用衬底上。 6. 根据权利要求1所述的接收器,其中所述整流器电路包含经配置以抑制由所述整流 器电路生成的谐波信号的屏蔽,其中所述屏蔽位于所述整流器电路的所述端子处, 且其中所述屏蔽包括高频HF屏蔽、超高频UHF铁氧体磁珠或馈通电容器中的至 少一个。 7. 根据权利要求6所述的接收器,其中所述屏蔽经配置以在所述接收器的操作频率下 是透明的。 8. 一种电子装置,其包括无线功率发射接收器,所述无线功率发射接收器包含: 天线,其包含谐振器,所述谐振器经配置以接收来自电磁场的功率来为负载充电, 所述谐振器具有输出;以及 整流器电路,其耦合于所述谐振器的所述输出和所述负载之间,所述整流器电路 经配置以向所述天线提供大于所述负载的固有充电阻抗的阻抗,所述整流器电路进 一步经配置以抑制所述整流器电路的端子处的谐波信号。 9. 根据权利要求8所述的装置,其中所述整流器电路包含第一二极管、第二二极管以 及电容器,所述第一二极管和所述第二二极管串联耦合,所述第一和第二二极管与 所述电容器并联耦合。 10. 根据权利要求9所述的装置,其中所述电容器包含大电容器和第二电容器,其中所 述大电容器包含比所述第二电容器的电容大的电容,且其中所述大电容器和所述第 二电容器并联耦合。 11. 根据权利要求9所述的装置,其中所述整流器电路进一步包含分别与所述第一和第 二二极管串联耦合的第一和第二高频扼流器。 12. 根据权利要求9所述的装置,其中所述第一和第二二极管包含未经封装的二极管, 其中所述电容器包括微芯片电容器,且其中所述未经封装的二极管和所述微芯片电 容器安装在共用衬底上。 13. 根据权利要求8所述的装置,其中所述整流器电路包含经配置以抑制由所述整流器 电路生成的谐波信号的屏蔽,其中所述屏蔽位于所述整流器电路的所述端子处,且 其中所述屏蔽包括高频HF屏蔽、超高频UHF铁氧体磁珠或馈通电容器中的至少 一个。 14. 根据权利要求13所述的装置,其中所述屏蔽经配置以在所述装置的操作频率下是 透明的。 15. 一种用于接收无线功率的方法,其包括: 由谐振器接收来自电磁场的功率来为负载充电,所述谐振器具有输出; 由耦合于所述谐振器的所述输出和所述负载之间的整流器电路整流由所述谐振 器接收的功率,所述整流器电路向所述谐振器提供大于所述负载的固有充电阻抗的 阻抗;以及 抑制所述整流器电路的端子处由整流所述功率而产生的谐波信号。 16. 根据权利要求15所述的方法,其中抑制所述整流器电路的端子处的谐波信号包括 使用高频HF屏蔽、超高频UHF铁氧体磁珠或馈通电容器中的至少一个来抑制所 述整流器电路的所述端子处的谐波信号。 17. 根据权利要求15所述的方法,其中所述整流器电路包含第一二极管、第二二极管 以及电容器,所述第一二极管和所述第二二极管串联耦合,所述第一和第二二极管 与所述电容器并联耦合。 18. 根据权利要求17所述的方法,其中所述电容器包括大电容器和第二电容器,其中 所述大电容器包括比所述第二电容器的电容大的电容,且其中所述大电容器和所述 第二电容器并联耦合。 19. 根据权利要求17所述的方法,其中所述整流器电路进一步包含分别与所述第一和 第二二极管串联耦合的第一和第二高频扼流器。 20. 根据权利要求17所述的方法,其中所述第一和第二二极管包括未经封装的二极管, 其中所述电容器包括微芯片电容器,且其中所述未经封装的二极管和所述微芯片电 容器安装在共用衬底上。 21. 一种无线功率发射接收器,其包括: 用于接收来自电磁场的功率来为负载充电的装置,所述用于接收功率的装置具有 输出;以及 用于整流由所述用于接收功率的装置接收的功率的装置,所述用于整流的装置耦 合于所述用于接收功率的装置的所述输出和所述负载之间,所述用于整流的装置经 配置以向所述用于接收功率的装置提供大于所述负载的固有充电阻抗的阻抗,所述 用于整流的装置进一步经配置以抑制所述用于整流的装置的端子处的谐波信号。 22. 根据权利要求21所述的接收器,其中所述用于整流的装置包含第一二极管、第二 二极管以及电容器,所述第一二极管和所述第二二极管串联耦合,所述第一和第二 二极管与所述电容器并联耦合。 23. 根据权利要求22所述的接收器,其中所述电容器包括大电容器和第二电容器,其 中所述大电容器包括比所述第二电容器的电容大的电容,且其中所述大电容器和所 述第二电容器并联耦合。 24. 根据权利要求22所述的接收器,其中所述用于整流的装置进一步包含分别与所述 第一和第二二极管串联耦合的第一和第二高频扼流器。 25. 根据权利要求22所述的接收器,其中所述第一和第二二极管包括未经封装的二极 管,其中所述电容器包括微芯片电容器,且其中所述未经封装的二极管和所述微芯 片电容器安装在共用衬底上。 26. 根据权利要求21所述的接收器,其中所述用于整流的装置包含经配置以抑制由所 述用于整流的装置生成的谐波信号的屏蔽,所述屏蔽位于所述用于整流的装置的端 子处。 27. 根据权利要求26所述的接收器,其中所述屏蔽包含高频HF屏蔽、超高频UHF铁 氧体磁珠或馈通电容器中的至少一个。 28. 根据权利要求26所述的接收器,其中所述屏蔽经配置以在所述接收器的操作频率 下是透明的。 29. 根据权利要求21所述的接收器,其中所述用于接收功率的装置包括包含谐振器的 天线,且其中所述用于整流功率的装置包括整流器电路。
说明书用于无线功率发射的无源接收器 分案申请的相关信息 本案是分案申请。该分案的母案是申请日为2009年08月25日、申请号为 200980132967.2、发明名称为“用于无线功率发射的无源接收器”的发明专利申请案。 根据35 U.S.C.§119主张优先权 本申请案根据35U.S.C.§119(e)主张以下申请案的优先权: 2008年8月25日申请的标题为“用于电子装置的无线供电和充电的无源二极管整 流器接收器(PASSIVE DIODE RECTIFIER RECEIVERS FOR WIRELESS POWERING AND CHARGING OF ELECTRONIC DEVICES)”的第61/091,684号美国临时专利申请 案,其揭示内容特此以全文引用的方式并入本文中。 2008年11月25日申请的标题为“用于电子装置的无线供电和充电的无源二极管整 流器接收器(PASSIVE DIODE RECTIFIER RECEIVERS FOR WIRELESS POWERING AND CHARGING OF ELECTRONIC DEVICES)”的第61/117,937号美国临时专利申请 案,其揭示内容特此以全文引用的方式并入本文中。 2009年3月18日申请的标题为“用于电子装置的无线供电和充电的无源二极管整 流器接收器(PASSIVE DIODE RECTIFIER RECEIVERS FOR WIRELESS POWERING AND CHARGING OF ELECTRONIC DEVICES)”的第61/161,291号美国临时专利申请 案,其揭示内容特此以全文引用的方式并入本文中。 2009年3月18日申请的标题为“将无线充电集成到迷你装置中(INTEGRATION OF WIRELESS CHARGING INTO MINI-DEVICES)”的第61/161,306号美国临时专利申请 案,其揭示内容特此以全文引用的方式并入本文中。 2009年5月4日申请的标题为“使用固有负载自适应进行无线供电的无源二极管整 流器接收器(PASSIVE DIODE RECTIFIER RECEIVERS FOR WIRELESS POWERING WITH INHERENT LOAD ADAPTATION)”的第61/175,337号美国临时专利申请案,其 揭示内容特此以全文引用的方式并入本文中。 2009年6月19日申请的标题为“HF功率转换电子器件的开发(DEVELOPMENT OF HF POWER CONVERSION ELECTRONICS)”的第61/218,838号美国临时专利申请案, 其揭示内容特此以全文引用的方式并入本文中。 技术领域 本发明大体上涉及无线充电,且更具体地说,涉及与便携式无线充电系统有关的装 置、系统和方法。 背景技术 通常,例如无线电子装置等每种被供电的装置均需要其自身的有线充电器和电源, 所述电源通常为交流电(AC)电源插座。当许多装置需要充电时,此有线配置变得不便 操作。正在开发使用发射器与耦合到待充电电子装置的接收器之间的空中或无线功率发 射的方法。接收天线收集辐射的功率,并将其调整为用于为所述装置供电或为所述装置 的电池充电的可用功率。无线能量发射可基于发射天线、接收天线以及嵌入待供电或充 电的主机电子装置中的整流电路之间的耦合。当主机电子装置中的无线功率接收器电路 所经历的负载电阻因(例如)展现较低充电电阻的电池技术或几何形状而较小时,会出 现不足之处。此低充电电阻会降低充电效率。因此,需要改进对展现低充电电阻的电子 装置的无线功率传送的充电效率。 附图说明 图1说明无线功率发射系统的简化框图。 图2说明无线功率发射系统的简化示意图。 图3说明根据示范性实施例的环形天线的示意图。 图4说明根据示范性实施例的无线功率发射系统的功能框图。 图5说明根据示范性实施例的无线功率接收器的整流器电路变体的电路图。 图6说明根据示范性实施例的图5的接收器变体的天线部分的布局实现。 图7说明根据示范性实施例的无线功率接收器的另一整流器电路变体的电路图。 图8为根据示范性实施例的图7的接收器变体的天线部分的布局实现。 图9为根据示范性实施例的图7的接收器变体的天线部分的另一布局实现。 图10为根据示范性实施例的图7的接收器变体的天线部分的又一布局实现。 图11说明根据示范性实施例的无线功率接收器的又一整流器电路变体的电路图。 图12为根据示范性实施例的图11的接收器变体的天线部分的布局实现。 图13为根据示范性实施例的图11的接收器变体的天线部分的又一布局实现。 图14说明根据示范性实施例的使用具有一对一阻抗变换比率的整流器电路以集成 到迷你装置中的接收器的天线部分的布局实现。 图15A说明根据示范性实施例的经配置以阻塞整流器电路的端子处的谐波的整流 器电路的实施方案的布局。 图15B说明根据示范性实施例的配置有屏蔽以提供对谐波的抑制的经封装整流器 电路的透视图。 图16说明根据示范性实施例的用于接收无线功率的方法的流程图。 具体实施方式 词语“示范性的”在本文中意味着“充当实例、例子或说明”。本文中被描述为“示 范性的”任何实施例不一定要被理解为比其它实施例优选或有利。 希望下文结合附图阐述的详细描述是对本发明的示范性实施例的描述,且并不希望 表示可实践本发明的仅有实施例。贯穿此描述所使用的术语“示范性”意味着“充当实 例、例子或说明”,且应不一定将其解释为比其它示范性实施例优选或有利。出于提供 对本发明的示范性实施例的透彻理解的目的,详细描述包括特定细节。所属领域的技术 人员将显而易见,可在无这些特定细节的情况下实践本发明的示范性实施例。在一些情 况下,以框图形式展示众所周知的结构及装置以避免使本文中所呈现的示范性实施例的 新颖性模糊不清。 本文使用术语“无线功率”来表示在不使用物理电磁导体的情况下从发射器发射到 接收器的与电场、磁场、电磁场或其它相关联的任何形式的能量。本文中描述系统中的 功率转换以用无线方式为包含(例如)移动电话、无绳电话、iPod、MP3播放器、头戴 耳机等的装置充电。一般来说,无线能量传送的一个基本原理包含使用例如30MHz以 下的频率的磁性耦合谐振(即,谐振电感)。然而,可采用各种频率,包含准许相对高 辐射电平下的免许可(license-exempt)操作的频率,例如135kHz(LF)以下或13.56MHz (HF)。在通常由射频识别(RFID)系统使用的这些频率下,系统必须遵守例如欧洲EN 300330或美国FCC第15部分规范等干扰和安全标准。作为说明而非限制,本文使用缩 写词LF和HF,其中“LF”指代f0=135kHz且“HF”指代f0=13.56MHz。 图1说明根据各种示范性实施例的无线功率发射系统100。将输入功率102提供到 发射器104,以用于产生磁场106,用于提供能量传送。接收器108耦合到磁场106并 产生输出功率110供耦合到输出功率110的装置(未图示)储存或消耗。发射器104与 接收器108两者分开距离112。在一个示范性实施例中,发射器104和接收器108根据 相互谐振关系而配置,且当接收器108的谐振频率与发射器104的谐振频率匹配时,当 接收器108位于磁场106的“近场”时,发射器104与接收器108之间的发射损耗极小。 发射器104进一步包含用于提供用于能量发射的装置的发射天线114,且接收器108 进一步包含用于提供用于能量接收或耦合的装置的接收天线118。发射天线和接收天线 的大小根据应用和待与之相关联的装置来确定。如所陈述,通过将发射天线的近场中的 能量的大部分耦合到接收天线而不是将电磁波中的大部分能量传播到远场而发生有效 能量传送。在此近场中,可在发射天线114与接收天线118之间建立耦合。天线114和 118周围的可能发生此近场耦合的区域在本文中称为耦合模式区。 图2展示无线功率发射系统的简化示意图。由输入功率102驱动的发射器104包含 振荡器122、功率放大器或功率级124和滤波器及匹配电路126。振荡器经配置以产生 所需频率,所述所需频率可响应于调节信号123来调节。振荡器信号可由功率放大器124 用响应于控制信号125的放大量放大。可包含滤波器及匹配电路126以滤除谐波或其它 不想要的频率,且使发射器104的阻抗与发射天线114匹配。 电子装置120包含接收器108,接收器108可包含匹配电路132和整流器及开关电 路134以产生DC功率输出,用来为如图2所示的电池136充电或为耦合到接收器的装 置(未图示)供电。可包含匹配电路132以使接收器108的阻抗与接收天线118匹配。 如图3中说明,示范性实施例中使用的天线可配置为“环形”天线150,其在本文 中也可称为“磁性”、“谐振”或“磁谐振”天线。环形天线可经配置以包含空气磁心或 例如铁氧体磁心等物理磁心。此外,空气磁心环形天线允许将其它组件放置在磁心区域 内。另外,空气磁心环可容易实现将接收天线118(图2)放置在发射天线114(图2) 的耦合模式区可更有效的发射天线114(图2)的平面内。 如所陈述,发射器104与接收器108之间的能量的有效传送在发射器104与接收器 108之间的匹配或近乎匹配的谐振期间发生。然而,即使当发射器104与接收器108之 间的谐振不匹配时,能量也可在较低效率下传送。通过将来自发射天线的近场的能量耦 合到驻留在建立此近场的短距离处的接收天线而不是将来自发射天线的能量传播到自 由空间中而发生能量的传送。 环形天线的谐振频率是基于电感和电容。环形天线中的电感通常为环所形成的电 感,而电容通常被添加到环形天线的电感以在所需谐振频率下形成谐振结构。作为一非 限制性实例,可将电容器152和电容器154添加到天线以形成产生正弦或准正弦信号156 的谐振电路。因此,对于较大直径的环形天线,引发谐振所需的电容大小随环的直径或 电感的增加而减小。此外,随着环形天线的直径增加,近场的有效能量传送区域针对“短 距离”耦合装置增加。当然,其它谐振电路也是可能的。作为另一非限制性实例,电容 器可并联放置在环形天线的两个端子之间。另外,所属领域的一般技术人员将认识到, 对于发射天线,谐振信号156可为对环形天线150的输入。 本发明的示范性实施例包含处于彼此的近场的两个天线之间的耦合功率。如所陈 述,近场是天线周围存在电磁场但电磁场可能不会从天线传播或辐射出去的区域。其通 常限于接近天线的物理体积的体积。在本发明的示范性实施例中,例如单匝或多匝环形 天线等天线用于发射(Tx)和接收(Rx)天线系统两者,因为可能围绕天线的环境大部 分为电介质且因此对磁场的影响比对电场小。此外,还预期主要配置为“电”天线(例 如,偶极和单极)或磁性天线与电天线的组合的天线。 Tx天线可在足够低的频率下操作,且其天线大小足够大以实现在比早先提及的远场 和电感方法所允许的显著更大的距离处到小Rx天线的良好耦合效率(例如,>10%)。 如果正确地确定了Tx天线的大小,则可在主机装置上的Rx天线放置在被驱动的Tx环 形天线的耦合模式区(即,在近场或强耦合体系中)内时实现高耦合效率(例如,30%)。 本文揭示的各种示范性实施例指明基于不同功率转换方法以及包含装置定位灵活 性的发射范围的不同耦合变体(例如,用于在几乎零距离处的充电垫解决方案的接近“超 短距离”耦合,或用于短程无线功率解决方案的“短距离”耦合)。接近超短距离耦合 应用(即,强耦合体系,耦合因数通常为k>0.1)依据天线大小提供通常大约数毫米或 数厘米的短或极短距离上的能量传送。短距离耦合应用(即,松散耦合体系,耦合因数 通常为k<0.1)依据天线大小提供通常10cm到2m范围内的距离上的相对低效率的能 量传送。 如本文所描述,“超短距离”耦合和“短距离”耦合可能需要不同的匹配方法,以 使电源/功率吸收器(power sink)适应天线/耦合网络。此外,各种示范性实施例提供针 对LF和HF应用两者以及针对发射器和接收器的系统参数、设计目标、实施方案变体 和规范。这些参数和规范中的一些可例如视需要变化以较好地与特定功率转换方法匹 配。系统设计参数可包含各种优先考虑和折衷。特定来说,发射器和接收器子系统考虑 因素可包含电路的高发射效率、低复杂性,从而产生低成本实施方案。 图4说明根据示范性实施例的经配置以用于发射器与接收器之间的直接场耦合的无 线功率发射系统的功能框图。无线功率发射系统200包含发射器204和接收器208。将 输入功率PTXin提供给发射器204,用于产生具有直接场耦合k的主要非辐射的场206, 以用于提供能量传送。接收器208直接耦合到非辐射场206,且产生输出功率PRXout,用 于供耦合到输出端口210的电池或负载236储存或消耗。发射器204和接收器208两者 隔开某一距离。在一个示范性实施例中,发射器204和接收器208根据相互谐振关系而 配置,且当接收器208的谐振频率f0与发射器204的谐振频率匹配时,在接收器208位 于发射器204所产生的辐射场的“近场”中时,发射器204与接收器208之间的发射损 耗极小。 发射器204进一步包含发射天线214,用于提供用于能量发射的装置,且接收器208 进一步包含接收天线218,用于提供用于能量接收的装置。发射器204进一步包含发射 功率转换单元220,其至少部分地充当AC/AC转换器。接收器208进一步包含接收功率 转换单元222,其至少部分地充当AC/DC转换器。 本文描述各种接收天线配置,其使用形成谐振结构的电容性负载的线环或多匝线 圈,所述谐振结构能够在发射天线214和接收天线218两者均调谐到共用谐振频率的情 况下,经由磁场将来自发射天线214的能量高效地耦合到接收天线218。因此,描述在 强耦合体系中对电子装置(例如移动电话)的高效无线充电,其中发射天线214和接收 天线218非常靠近,从而产生通常高于30%的耦合因数。因此,本文描述由线环/线圈天 线以及充分匹配的无源二极管整流器电路组成的各种接收器概念。 许多以Li离子电池供电的电子装置(例如移动电话)在3.7V下操作,且以至多达 1A(例如移动电话)的电流充电。在最大充电电流下,电池因此可向接收器呈现大约4 欧姆的负载电阻。这通常使与强耦合谐振电感系统的匹配非常困难,因为在这些状况下 通常需要较高的负载电阻来实现最大效率。 最佳负载电阻为次级装置的L-C比率(天线电感与电容的比率)的函数。然而,可 显示,通常在依据频率、所要天线形状因数和Q因数选择L-C比率方面存在限制。因此, 可能并不总是能设计与如装置的电池所呈现的负载电阻充分匹配的谐振接收天线。 有源或无源变换网络(例如接收功率转换单元222)可用于负载阻抗调节,然而, 有源变换网络可能会消耗功率或增加无线功率接收器的损耗和复杂性,且因此被视为不 当的解决方案。在本文所描述的各种示范性实施例中,接收功率转换单元222包含二极 管整流器电路,其展现出大于负载236的负载阻抗RL的基频下的输入阻抗。此些整流 器电路结合低L-C谐振接收天线218可提供合乎需要的(即,接近最佳的)解决方案。 通常,在较高操作频率(例如高于1MHz,且明确地说在13.56MHz)下,因二极 管恢复时间(即,二极管电容)而导致的损耗效应变得显著。因此,包含展现具有低dv/dt 的二极管电压波形的二极管的电路是合乎需要的。举例来说,这些电路通常在输入端处 需要分路电容器,其充当补偿天线电感因此使传送效率最大化所需的抗反应器。因此, 包含并联谐振接收天线的接收器拓扑是合适的。 使传送效率最大化所需的分路电容是耦合因数和电池负载电阻两者的函数,且倘若 这些参数中的一者改变则将需要自动适应(重新调谐)。假定强耦合体系的耦合因数在 受限范围内改变且仅在最高功率下具有最大效率,然而,可找到合理的折衷,而无需自 动调谐。 基于磁电感原理的无线功率发射的另一设计因数是整流器电路所产生的谐波。接收 天线电流中且因此接收天线周围的磁场中的谐波含量可能超过可容许的等级。因此,接 收器/整流器电路理想地对所感应的接收天线电流产生最小失真。 图5到图14说明包含各种电路实现的各种接收器配置,所述电路实现包含各种二 极管和接收天线配置,用于向接收天线提供大于负载336的固有充电阻抗RL的阻抗。 对于所描述的接收器配置,假定串联配置的发射天线314(包含电感环L1 302和电容器 C1 304)具有额外的谐波滤波,使得发射天线电流本质上为正弦的。举例来说,假定耦 合因数>50%,发射天线314和接收天线318的空载Q因数分别为80和60,这些电路在 13.56MHz下可提供接近90%的传送效率(发射天线输入对接收器输出)。 图5说明根据示范性实施例的基于无源双二极管半波整流器电路300的无线功率接 收器308的变体A的电路图,所述变体A包含谐振接收天线318,其包含电感环L2332 和电容器C2 334。整流器电路300包含二极管D21 328和二极管D22 330。整流器电路300 进一步包含高频(HF)扼流器LHFC 324和高频(HF)阻塞电容器(block capacitor)CHFB 326。DC路径经由天线环而闭合。HF扼流器324充当电流吸收器,且具有50%的二极 管导电周期D,变换因数M为0.5。此外,在基频下端子A2、A2’处所经历的输入阻抗 大约为负载电阻RL的4倍。 图6说明经配置以(例如)用于使用单匝环形接收天线318的13.56MHz示范性实 施例的接收器308的变体A的低L/C实现。根据接收器308的变体A的所述实现,接 收天线318仅需要到整流器电路300的单点连接。此外,鉴于负载336的低充电阻抗 RL,可使用单匝环形接收天线318来实施谐振接收天线318的电感环L2 332。 图7说明根据示范性实施例的基于无源双二极管半波整流器电路350的无线功率接 收器358的变体B的电路图,所述变体B包含谐振接收天线368,其包含电感环L2 382 和电容器C2 384。将整流器电路350实施为图5和图6的整流器电路300的对称版本。 整流器电路350包含二极管D21 378和二极管D21’ 380。整流器电路350进一步包含高频 (HF)扼流器LHFC 374和高频(HF)阻塞电容器CHFB 376。HF扼流器374充当电流吸 收器,且其尺寸经最佳设计以使HF与DC损耗折衷。在二极管导电周期D为50%的情 况下,整流器的输出/输入电压变换因数M为0.5。此外,在基频下端子A2、A2’处所经 历的输入阻抗大约为负载电阻RL的4倍。 通过电感环L2 382在点390处的DC分接以闭合经过二极管D21 378和二极管D22 380的DC环来实施整流器电路350。如图7所示,点390处的此分接头可接地。处于对 称原因,可选择电感环L2 382对称点390用于DC分接。或者,也可使用HF扼流器392 (图8)在沿电感环L2 382的任一点处执行此DC分接。 图8说明经配置以(例如)用于使用单匝环形接收天线368的13.56MHz示范性实 施例的接收器358的变体B的低L/C实现。根据接收器358的变体B的图8实现,鉴于 负载336的低充电阻抗RL,可使用单匝环形接收天线368来实施接收天线368的电感环 L2 382。如上文关于图7所陈述,可通过电感环L2 382在点390处的DC分接来实施整 流器电路350。然而,如果HF扼流器(LHFC22)392连接于电感环L2 382的对称点390 处,那么预期从非理想HF扼流器(LHFC22)392的最小Q因数降级或去谐(即使存在非 对称模式也如此)。此外,由于HF扼流器374和392两者载运相同的DC电流,因此可 将负载336移动到电感环L2 382的DC接地连接中,且将二极管直接连接到接地。 图9说明经配置以(例如)用于使用单匝环形接收天线368的13.56MHz示范性实 施例的接收器358的变体B的另一低L/C实现。根据接收器358的变体B的图9实现, 鉴于负载336的低充电阻抗RL,可使用单匝环形接收天线368来实施接收天线368的电 感环L2382。使用单个HF扼流器374以及直接接地的二极管378和380来实施图9的 实现变体。 图10说明经配置以(例如)用于使用单匝环形接收天线368的13.56MHz示范性 实施例的接收器358的变体B的另一低L/C实现。根据接收器358的变体B的图10实 现,鉴于负载336的低充电阻抗RL,可使用单匝环形接收天线368来实施接收天线368 的电感环L2 382。使用一对对称的HF扼流器374和375以及直接接地的二极管378和 380来实施图10的实现变体。 图11说明根据示范性实施例的基于无源四二极管全波整流器电路400的无线功率 接收器408的变体C的电路图,所述变体C包含接收天线418,其包含电感环L2 432 和电容器C2 434。整流器电路400被实施为用以进一步增加接收天线418所经历的整流 器400的输入。整流器电路400通过将负载电流IDCL分为两个相等部分来增加输入阻抗。 整流器电路400包含二极管D21 428、二极管D21’ 429、二极管D22 430和二极管D22’ 431。 整流器电路400进一步包含一对对称的HF扼流器(LHFC21)424和(LHFC21’)425,以及 高频(HF)阻塞电容器CHFB 426。通过电感环L2 432在点490处的DC分接以闭合穿过 二极管D21 428、二极管D21’ 429、二极管D22 430和二极管D22’ 431的DC环来实施整 流器电路400。如图11所示,点490处的此分接头可接地。HF扼流器424和425充当 电流吸收器,且变换因数M为0.25。此外,在基频下端子A2、A2’处所经历的输入阻抗 大约为负载电阻RL的16倍。因此,电路与具有实际的较高L-C比率的谐振天线匹配, 或所述电路可用于在需要时使低L-C比率天线与更加低的负载电阻匹配。 图12说明经配置以(例如)用于使用单匝环形接收天线418的13.56MHz示范性 实施例的接收器408的变体C的低L/C实现。根据接收器408的变体C的图11实现, 鉴于负载336的低充电阻抗RL,可使用单匝环形接收天线408来实施接收天线418的电 感环L2 432。如上文关于图11所陈述,可通过电感环L2 432在点490处的DC分接来 实施整流器电路400。然而,如果HF扼流器(LHFC22)492连接在电感环L2 432的对称 点490处,那么从非理想HF扼流器(LHFC22)492发生最小Q因数降级或去谐(即使存 在非对称模式也如此)。此外,由于HF扼流器424、425(组合)和492载运相同的DC 电流,因此可省略HF扼流器492,而是在存在零电压电位的对称点处使电感环接地。 图13说明经配置以(例如)用于使用双匝环形接收天线418’的13.56MHz示范性 实施例的接收器408’的变体C的另一低L/C实现。根据接收器408的变体C的图13实 现,鉴于负载336的低充电阻抗RL,可使用双匝环形接收天线418’来实施接收天线418 的电感环L2 432’。使用双HF扼流器424和425以及在存在零电压电位的对称点处接地 的电感环来实施图13的实现变体。 图14说明具有提供一对一变换比率的整流器500的接收器508的另一低L/C实现。 根据示范性实施例,经配置以(例如)用于使用单匝环形接收天线518的13.56MHz示 范性实施例的此电路可能适合集成到充电电阻通常较高的较小装置中。在本示范性实施 例中,本文描述例如MP3播放器和音频头戴耳机等小型装置的无线充电。接收器508 经配置以用于超短距离充电(例如,在尺寸经设计以用于移动电话的单装置充电垫 (SDCP)上)。举例来说,发射天线(图15中未图示)与接收天线518(包含电感环L2 532和电容器C2 534)之间的耦合因数可通常为约10%或低于10%,其可通常被视为中 等耦合(例如短距离)体系。举例来说,例如音频头戴耳机等一些“迷你装置”使用3.7 V Li聚合物可再充电电池,且以范围从0.1A到0.2A的电流充电。在最大充电电流下, 电池可呈现在20欧姆与40欧姆之间的负载电阻。 简化的接收天线实施方案使用(例如)由镀银铜线或铜带(例如,沿装置壳的内周 长缠绕)合适形成的单匝线环。环大小可通常为约30mm x 15mm或小于30mm x 15 mm,但理想的是尽量大。HF下(例如,13.56MHz下)的谐振借助芯片电容器或提供 总电容(例如,在从2nF到3nF的范围内)的芯片电容器与低等效串联电阻(ESR)(高 Q因数)的组合来实现,且可(例如)为NP0或迈卡(Mica)电容器。头戴耳机集成谐 振单匝环上的实际测量结果已显示:在13.56MHz下可实现高于80的空载Q因数。 如所陈述,合意的接收器拓扑包含并联谐振接收天线518和整流器电路500,其在 并联连接到谐振电感环L2 532的电容器C2 534时呈现最佳等效负载电阻。整流器电路 500包含二极管D21 528和二极管D21’ 530。整流器电路500进一步包含高频(HF)扼流 器LHFC 524和高频(HF)阻塞电容器CHFB 526。依据电感环L2 532的实际大小和耦合 因数(即,互感),最佳天线负载可在从40欧姆到100欧姆的范围内。 如果负载(例如电池)336的阻抗RL相对较低,那么近似执行2∶1电压变换(4∶1 阻抗)的(例如)图10的步减整流器电路可为合适选择。对于较高的电阻阻抗RL,图 15的1∶1变换示范性实施例可提供改进的性能。 举例来说,如果最佳并联负载电阻高于100欧姆,那么谐振环形接收天线518可借 助第二非谐振线环结构(未图示)(即,所谓的耦合环)以电感方式耦合。此方法在集 成到头戴耳机中方面可为有利的,因为整流器电路与接收天线之间不再存在流电连接。 因此,耦合环L2 532和整流器电路可集成在印刷电路板上,而谐振电感环L2 532可为 头戴耳机壳的一体式部分。 作为例如蓝牙头戴耳机等并入有RF模块的迷你装置中的实施方案,根据还考虑无 线功率发射(即充电)期间可发生的高HF电流的特殊设计来组合RF天线(例如2.4GHz) 与13.56MHz谐振电感环L2 532理论上是可能的。 图15A和图15B说明根据本文所描述的各种示范性实施例的各种实际实施技术。根 据本文所描述的各种示范性实施例,无线功率发射接收天线使用形成谐振结构的电容性 负载的(C2)线环或多匝线圈(L2),所述谐振结构能够在发射天线和接收天线两者调 谐到共用谐振频率的情况下,经由磁场高效地将来自发射天线314的能量耦合到接收天 线318、368、418。 作为实例而非限制,参考图15A和图15B而参照谐振器电路(图7的谐振器电路 350,且更具体地说图10的实现)的变体B,以描述如本文参考各种示范性实施例而描 述的无源低dV/dt二极管整流器电路的实施和布局。无源低dV/dt二极管整流器电路展现 近似矩形的电流波形,因此有时被称为方波整流器。 图15A说明根据示范性实施例的经配置以阻塞整流器电路的端子处的谐波的整流 器电路450的实施方案的布局。作为实施方案,通过硬电流切换且还通过二极管的前向 恢复效应产生的振铃和谐波是方波整流器在高频下的实际问题。可在二极管电压和电流 波形上观察到因寄生谐振在谐波频率下的激励而导致的这些振铃效应。 参看图10,由电容器C2 384、二极管D21 378和二极管D21’ 380形成的电路中的寄 生反应元件形成具有相对较高Q且通常较高谐振频率的串联谐振电路。HF等效电路由 若干寄生电感以及二极管的结电容组成。反向偏压的二极管主要决定有效串联电容。二 极管电容(在反向偏压模式下)和寄生电感越低,振铃频率越高。较快的低电容肖特基 二极管(例如1A电流类)通常在远在UHF(几百兆赫)中的频率下显示振铃,这也取 决于电路布局以及分路电容器C2 384的特性。只要电压振铃不迫使二极管在前向和反向 偏压之间交换,振铃就对整流器电路的效率不具有不利影响。尽管如此,一些振荡能量 被吸收在二极管和HF扼流器中。 举例来说,可通过电路布局和组件C2、D21’、D21的放置来控制振铃振幅和频率。 作为实施方案,低电感布局以及低电感电容器的选择可提供改进的实施结果。举例来说, 在HF(例如,13.56MHz)下,电容器C2 384可通常在毫微法拉范围内,且展现相当大 的自电感。 可用最小尺寸布局来实现低电感电路,其中组件紧密压缩,且通过(例如)展现非 常低电感的两个并联芯片电容器(例如在毫微法拉范围内的大电容器,以及在100pF 范围内的另一较小电容器)来实现电容器C2。还可通过建构混合电路来实现另一实施解 决方案,其中未经封装的二极管与微芯片电容器一起安装在提供具有最小寄生电感的电 路的共用衬底上。使用在UHF下相当良好工作的宽带HF扼流器,还可有助于提高整流 器电路的效率。 与实施方案有关的另一问题涉及不需要的谐波,其可在敏感RF功能(例如在移动 电话的情况下)中导致干扰,在高频下操作的整流器电路尤其是这样。二极管寄生谐振 可另外放大谐振频率周围的谐波含量。为防止谐波传播到装置RF电路中且导致干扰, 应充分地对包含环形天线和DC/接地连接的所有整流器电路端子进行滤波。 图15B说明根据示范性实施例的配置有屏蔽以提供对谐波的抑制的经封装整流器 电路450的透视图。对电路的额外屏蔽可使此滤波变得更有效。阻塞电路端子处的谐波 含量的合适方法可使用HF屏蔽、UHF铁氧体磁珠和馈通电容器(例如在皮法拉范围内)。 为阻塞环形天线端子处的谐波,滤波器组件的尺寸应经设计以使得环形天线的性能不明 显地降级,这意味着额外使用的组件在基础操作频率下为透明。 已描述了强耦合(即超短距离)发射器到接收器配置的各种示范性实施例。本文所 揭示的技术针对其中发射器和接收器非常靠近(耦合因数通常高于10%)的强耦合(即 超短距离)体系中的电子装置(例如移动电话)的高效无线充电而优化。已描述了所揭 示的示范性实施例,其取消了接收器中的作为用于阻抗变换的装置的DC/DC转换器, 而是揭示了利用使得复杂性和组件计数减少的整流器电路的各种示范性实施例。 已揭示了接收器中的合适整流器电路,其(1)平滑电压变化(低dV/dt)以减少因 二极管电容的充电/放电而导致的损耗,(2)通过一次仅有一个二极管导电以减少因前向 偏压降而导致的损耗来使电压降损耗最小化,以及(3)低负载电阻(例如电池充电电 阻,例如4V/0.8A=5欧姆)到显著较高电阻(例如高4倍)的阻抗变换。在其中发射 器和接收器(例如)未对准的较弱(例如短距离)耦合系统中,耦合因数减小,因为充 电电流下降导致负载阻抗RL增加。在假定并联谐振电路的情况下,增加的负载阻抗在 较弱耦合条件下又将增加传送效率。此结果被称为“固有负载自适应”。 作为实例且返回参看图10,接收器358提供满足上述要求的示范性接收器。接收器 358包含:并联谐振接收天线368,其由低电感磁环天线(例如单匝)电感器L2382和 在所要频率下使接收天线368谐振的电容器C2 384(抗反应器)组成;以及整流器电路 350’,其将分路负载强加于电容器C2 384,使得整流器电路350’中的二极管结电容可被 视为合并到抗反应器中,从而产生较低的二极管切换损耗。 此外,接收器358(例如)趋向于在耦合因数因系统未试图通过增加发射功率来补 偿充电电流的减小的情况下充电电流下降(固有负载自适应)时的装置未对准而减小时, 维持高效率。保守或“绿色”未对准方法试图维持高效率而不是恒定充电电流。然而, 如果要以最大速度执行充电,那么此策略需要在充电区域中正确放置装置的接收器(在 一些容限内)。 如所陈述,充电电流在负载(例如电池)处的下降导致增加的充电(负载)电阻或 阻抗RL。增加的负载电阻RL又对传送效率施加积极影响,因为并联负载的Q增加,其 在较弱耦合条件下是有益的。可使用电路分析来显示和量化此效率增加。 举例来说,在串联负载的谐振接收天线(未图示)中,负载电阻RL在耦合变弱时 增加会适得其反。因此,如果目标是最大链路效率,那么应减小负载电阻RL。在弱耦合 条件(例如约10%的耦合因数)下,并联谐振接收天线显得比串联谐振接收天线更合适, 链路效率增加多达10%。因此,串联谐振接收天线被视为对接近超短距离耦合系统来说 不大合适。 作为实施方案,在存在给定负载阻抗RL的情况下,确定接收天线(包含电感环L2 382 和电容器C2 384)的所要或最佳参数以使无线功率发射效率最大化。可使用根据各种发 射条件选择的整流器电路和本文所描述的电路以及因发射器与接收器之间的未对准而 导致的任何耦合因数变化来变换负载阻抗RL。 一般来说,近似大小为装置的周长的单匝矩形环在集成到装置中时提供合适的电 感。单匝环是最简单的天线结构,且可能制造成本最低。各种实现是可能的,例如铜线、 铜带(从铜片中切出)、PCB等。根据各种示范性实施例的接收器包含与整流器电路的 各种二极管并联的谐振接收天线,所述整流器电路大体上与接收天线的电容(抗反应器) 并联,使得二极管结电容可被视为合并到抗反应器电容中。 如所陈述,根据本文所述的各种示范性实施例的接收器还趋向于在发射器到接收器 耦合因数因(例如)导致负载(例如电池)阻抗RL增加的未对准而减小时维持高效率。 增加的负载(例如电池)阻抗RL施加积极影响,因为并联负载的Q增加,其在弱耦合 条件下维持高效率。如所陈述,可将此效应描述为“固有负载自适应”。 如果电池管理切断充电开关(完全空载的情况),那么存在并联槽电路的去谐效应, 其降低对整流器二极管以及保护电池充电输入且保持在装置电荷控制器所接受的电压 窗中所需的电路过电压保护(齐纳二极管)的开路电压松弛要求。此固有去谐效应是使 用并联谐振天线电路的另一优点。 图16说明根据示范性实施例的用于接收无线功率的方法的流程图。用于接收无线 功率的方法600由本文所描述的各种结构和电路支持。方法600包含步骤602,用于变 换对无线功率接收器谐振器的负载阻抗,以改进无线功率发射的效率。方法600进一步 包含步骤604,用于响应于磁近场在接收器谐振器处谐振。方法600更进一步包含步骤 606,用于对从谐振的接收器谐振器提取的功率进行整流。 所属领域的技术人员将理解,可使用多种不同技术和技法中的任一者来表示控制信 息和信号。举例来说,可由电压、电流、电磁波、磁场或磁粒子、光场或光粒子或其任 何组合来表示贯穿以上描述而参考的数据、指令、命令、信息、信号、位、符号和码片。 所属领域的技术人员将进一步了解,结合本文中所揭示的实施例而描述的各种说明 性逻辑块、模块、电路和算法步骤可实施为电子硬件,且由计算机软件控制,或上述两 者的组合。为清楚说明硬件与软件的这种可互换性,上文已大致关于其功能性而描述了 各种说明性组件、块、模块、电路和步骤。将此功能性作为硬件还是软件来实施和控制 取决于特定应用以及强加于整个系统的设计约束。所属领域的技术人员可针对每一特定 应用以不同方式实施所描述的功能性,但此些实施决策不应被解释为会导致脱离本发明 的示范性实施例的范围。 结合本文所揭示的实施例而描述的各种说明性逻辑块、模块和电路可用经设计以执 行本文所描述的功能的通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、 现场可编程门阵列(FPGA)或其它可编程逻辑装置、离散门或晶体管逻辑、离散硬件 组件或其任何组合来控制。通用处理器可为微处理器,但在替代方案中,处理器可为任 何常规的处理器、控制器、微控制器或状态机。处理器还可实施为计算装置的组合,例 如,DSP与微处理器的组合、多个微处理器、一个或一个以上微处理器与DSP核心的联 合,或任何其它此配置。 结合本文中所揭示的实施例而描述的方法或算法的控制步骤可直接体现于硬件中、 由处理器执行的软件模块中或所述两者的组合中。软件模块可驻存在随机存取存储器 (RAM)、快闪存储器、只读存储器(ROM)、电可编程ROM(EPROM)、电可擦除可编 程ROM(EEPROM)、寄存器、硬磁盘、可装卸磁盘、CD-ROM或此项技术中已知的任 何其它形式的存储媒体中。将示范性存储媒体耦合到处理器,使得所述处理器可从存储 媒体读取信息和将信息写入到存储媒体。在替代方案中,存储媒体可与处理器成一体式。 处理器和存储媒体可驻存在ASIC中。ASIC可驻存在用户终端中。在替代方案中,处理 器和存储媒体可作为离散组件驻存在用户终端中。 在一个或一个以上示范性实施例中,所描述的控制功能可实施于硬件、软件、固件 或其任一组合中。如果实施于软件中,那么可将功能作为一个或一个以上指令或代码而 在计算机可读媒体上存储或经由计算机可读媒体传输。计算机可读媒体包括计算机存储 媒体与包括促进计算机程序从一处传递到另一处的任何媒体的通信媒体两者。存储媒体 可为可由计算机存取的任何可用媒体。以实例方式(且并非限制),所述计算机可读媒 体可包括RAM、ROM、EEPROM、CD-ROM或其它光盘存储装置、磁盘存储装置或其 它磁性存储装置,或可用于载送或存储呈指令或数据结构的形式的所要程序代码且可由 计算机存取的任何其它媒体。同样,可恰当地将任何连接称作计算机可读媒体。举例来 说,如果使用同轴电缆、光纤电缆、双绞线、数字订户线(DSL)或例如红外线、无线 电和微波等无线技术从网站、服务器或其它远程源传输软件,那么同轴电缆、光纤电缆、 双绞线、DSL或例如红外线、无线电及微波等无线技术包括于媒体的定义中。本文中所 使用的磁盘和光盘包括压缩光盘(CD)、激光光盘、光学光盘、数字多功能光盘(DVD)、 软磁盘和蓝光光盘,其中磁盘通常以磁性方式再现数据,而光盘使用激光以光学方式再 现数据。上述的组合也应包括在计算机可读媒体的范围内。 提供对所揭示的示范性实施例的先前描述是为了使所属领域的技术人员能够制作 或使用本发明。所属领域的技术人员将易于了解对这些示范性实施例的各种修改,且在 不脱离本发明的精神或范围的情况下,本文中界定的一般原理可应用于其它实施例。因 此,本发明无意限于本文中所展示的实施例,而是将被赋予与本文所揭示的原理和新颖 特征一致的最广范围。
《用于无线功率发射的无源接收器.pdf》由会员分享,可在线阅读,更多相关《用于无线功率发射的无源接收器.pdf(24页珍藏版)》请在专利查询网上搜索。
本发明涉及用于无线功率发射的无源接收器。示范性实施例是针对无线功率传送。无线功率发射接收器包含接收天线,所述接收天线包含经配置以响应于磁近场而谐振并耦合来自磁近场的无线功率的并联谐振器。所述接收器进一步包含耦合到所述并联谐振器的无源整流器电路。所述无源整流器电路经配置以变换对所述并联谐振器的负载阻抗。。
copyright@ 2017-2020 zhuanlichaxun.net网站版权所有经营许可证编号:粤ICP备2021068784号-1