本发明涉及一种吸氧片,更具体讲,本发明涉及一种使用方便并可控制其吸氧量的吸氧片。 除氧剂,即吸氧剂在各个领域被广泛地用于除氧以保存不希望有氧气存在的食品和其他产品。例如,在JP-A-62-234544(这里所用的术语“JP-A”意指“日本专利公开”中披露的铁粉便是一种常用的吸氧剂。但是,粉状,特别是细粉状吸氧剂易吸收空气中的氧气。尤其是铁基吸氧剂,由于其自发可燃性难以使用。
JP-B-62-54704(这里所用的术语“JP-B”意指“日本专利公告”)提出了一种用可透空气材料包装粉状吸氧剂的方法。但仍存在一个问题,即除非完全密封否则粉末将泄露出来。而且事实上,吸氧剂从可透空气包装材料的表面吸氧并进行反应,使粉末体的表面部分硬化,因此吸附反应不能预期地进行到粉末体的内部。结果,不能根据装填的吸氧剂的量来定量地确定吸氧能力,因而不能充分地控制吸氧速率。
JP-A-55-116436也提出一种吸氧剂的包装方法。但是该方法不仅极难以准确和快速地包装少量的吸氧剂,而且还需要昂贵的自动装罐机和自动打包机。此外,由于这种包装的吸氧剂在许多情况下与食品包装在一起,还可能发生误食吸氧剂的情况。
模片式吸氧剂包括:由活性氧化铁吸氧剂和热塑性树脂如聚乙烯的混合物组成的片式吸氧剂(如JP-A-55-44344所公开);其孔隙被吸氧剂填满的多孔片或多孔薄膜吸氧剂(如JP-A-55-109428所公开);具有连续微孔、其孔隙被吸氧剂粉末填埋的聚氨基甲酸乙酯泡沫板吸氧剂(如JP-A-60-183373公开)。
但是,包括热塑性树脂和吸氧剂地模片式吸氧剂并不是总具有足够的吸氧能力。而且多孔片或多孔薄膜吸氧剂具有这样的缺点,即装填在多孔基底的孔隙中的吸氧剂在使用时容易解吸,而为防止这种解吸所采取的可透空气薄膜又提高了造价。另外,聚氨基甲酸乙酯泡沫板吸氧剂具有这样的缺点,即难以稳定地以工业规模获得连续的多孔结构,而且这种材料本身在实际应用中过于昂贵。
本发明的目的是提供一种吸氧片,其使用方便,不泄露吸氧剂,可随意控制吸氧量,不需要技术上棘手的填罐和打包步骤,并且可预防误食。
本发明人对使用方便、不泄露吸氧剂并可随意控制吸氧量的吸氧片进行了深入的研究,结果现以发现,本发明上述目的可通过以下步骤实现:混合吸氧剂和热塑性树脂,在熔融状态下模塑该混合物得到一薄膜,并在特定条件下拉伸该薄膜。基于上述发现完成了本发明。
本发明涉及按以下方法获得的吸氧片;将由15~70%(重量)的热塑性树脂和30~85%(重量)的吸氧剂组成的树脂组合物模塑成厚度为10μm~5mm的模片,并以1.5~8.0的拉伸比以至少一个轴方向拉伸该模片。
本发明的吸氧片的特征在于通过拉伸由热塑性树脂组成的薄膜或模片所形成的小孔隙(微孔隙),该热塑性树脂具有在特定拉伸条件下通过熔化捏合而均匀分散其中的吸氧剂。在已拉伸的模片中,由于均匀分散的吸氧剂通过微孔隙与空气接触,所以可有效地吸附空气中的氧气。
本发明吸氧剂最好包括铁粉和铁粉与电解质的混合物,后者最佳。
铁粉通常主要在其表面含有0.1~20%(重量)的铁基第二组份如碳化铁和氧化铁。铁粉的粒径通常为0.1~100μm,最好为1~50μm。粒径过大不仅减小比表面积从而降低吸氧作用,而且也不可能形成薄膜。另一方面,粒径过小会降低其在热塑性树脂中的分散性。而且也不容易以稳定的工业方法得到细铁粉。
铁粉的比表面积通常为1000cm2/g或更大,最好为5000cm2/g或更大。因此最适宜的铁粉形状是多孔或近似多孔形。
本发明采用的电解质其作用是加快铁粉的吸氧速率,包括卤化物,碳酸盐,硫酸盐和氢氧化物。最好是卤化物,以氯化钙,氯化钠和氯化镁为最佳。使用时,宜将电解质粘附或涂复在铁粉表面,但也可简单地与铁状混合。
电解质的使用量最好为0.1~10%(重量)(基于铁粉和电解质总重)。如果将电解质粘附或涂复在铁粉表面使用,则其最实用的用量范围是0.1~5%(重量)。如果电解质用量超过10%(重量),则吸氧片过度吸附水分,从而被水润湿而失去商业价值。
本发明吸氧片的特征是使用方便,因为在低湿度条件下,吸氧片基本不吸氧,而只有在足够高的水分例如空气相对湿度为50%或更高的条件下才吸氧。
本发明吸氧片包括30~85%(重量)的上述吸氧剂。如果吸氧剂含量低于30%(重量),则不足以形成微孔隙,从而导致降低与大气接触的微孔隙数目。结果在大气中的吸氧能力太低而不能实际应用。另一方面,如果吸氧剂含量超过85%(重量),则所得吸氧片太脆而不适于实际应用。
本发明采用的热塑性树脂包括由高压法制备的低密度支链聚乙烯,乙烯和含有4~12个碳原子的α-链烯的共聚物,高密度聚乙烯,乙烯和/或丁烯-1和丙烯的无规共聚物或嵌段共聚物,丙烯均聚物,乙烯和乙酸乙烯酯和/或一种(甲基)丙烯酸酯的共聚物,乙烯和丙烯酸共聚物的金属盐以及上述两种或多种混合物。其中优选的是乙烯和含有4~12个碳原子的α-链烯的共聚物,乙烯和/或丁烯-1和丙烯的无规共聚物或嵌断共聚物。乙烯和乙酸乙烯酯和/或一种(甲基)丙烯酸酯共聚物和乙烯和丙烯酸共聚物的金属盐。更优选的是乙烯和含4~12个碳原子的α-链烯的共聚物,其密度为0.870~0.915g/cm-3并含有18~45%(重量)的其重量平均分子链长范围为1000~9000的二甲苯可提取成份(在25℃)(以下称密度很低的聚乙烯)和至少含有10%(重量)的密度很低聚乙烯的热塑性树脂。含有至少10%(重量)的密度很低聚乙烯的热塑性树脂在与吸氧剂融化捏合时具有令人满意的分散性,从而提供了一种可以大拉伸比拉伸的具有优良拉伸性的模片。
密度很低的聚乙烯可按例如JP-A-56-99209和JP-A-59-230011所述的已知技术制备。
包括热塑性树脂和吸氧剂的未拉伸模片的厚度取决于最终用途,但通常为10μm-5mm。如果厚度小于10μm,则必须使用极大面积的吸氧片以获得所需的吸氧量。在这种情况下,吸氧片将从包装内容物如食品中显著凸出。另一方面,如果厚度超过5mm,则在拉伸时均匀加热模片是困难的,导致不能均匀拉伸或拉伸应力太大以致于不能用普通拉伸设备进行拉伸操作。
包括热塑性树脂和吸氧剂的模片然后以1.5-8.0的拉伸比进行拉伸。如果拉伸比小于1.5,则不能充分形成微孔隙,使均匀分散的吸氧剂不能与空气充分接触,以致于在实际应用中不能获得足够的吸氧量。如果拉伸比超过8.0,则所得拉伸模片的膜强度如撕裂强度严重降低,微小的外力便会使其破碎,因而不适于实际应用。拉伸温度定在至少低于热塑性树脂熔点5℃的温度上。例如,在采用聚烯烃树脂情况下,拉伸操作通常在室温-约70℃温度下进行。
如果需要,用以制备本发明吸氧片的组合物还可以包括添加剂如抗氧剂,分散剂,抗静电剂,除臭剂和杀菌剂,其用量以基本不影响本发明效果为准。
以下叙述本发明吸氧片的制备方法实施例。
按照普通方法,采用滚筒机,Banbury混合机或单螺杆或双螺杆挤塑机将热塑性树脂和吸氧剂混合或捏合制备一种组合物。利用普通方法如薄膜挤吹法,压延法或T模挤塑法模塑该组合物,得到一种薄膜或模片,然后单轴向或双轴向拉伸该薄膜或膜片。单轴向拉伸最好按辊形拉伸方式或管形拉伸方式进行。双轴向拉伸可按照同时双轴向拉伸方式进行或按照顺次双轴向拉伸方式进行,如先纵向拉伸然后横向拉伸。
因此,本发明吸氧片通过以下两个步骤进行制备:将热塑性树脂和吸氧剂组成的树脂组合物模塑成薄膜或模片,然后拉伸该薄膜或模片。这两个步骤可分别进行或连续进行。
以下按照实例更详细地叙述本发明,但应明白,本发明并不局限于这些实例。在这些实例中,除非另有说明,所有的百分数和份数均指重量。
在实例和比较例中,各种物理性能是按下述方法测定的。
1)吸氧速率:
按每升空气3.7g的比例将吸氧片置于一个密封的容器中。通过测定在最初4小时内吸收的氧气量得到平均吸氧速率(cm3/hr)。采用的密封容器是竖立放置在水面上的玻璃量筒,它是按照水面上升的体积相当于吸收的氧气体积设计的。
2)重量平均分子链长度
在下述条件下,利用硅胶渗透色谱(GPC)测定二甲苯可提取成份(在25℃)(以下称作冷的二甲苯可溶成份,简写为CXS)的重量平均分子链长度:
色谱议:“Model 811”,由Tosoh公司制造
色谱柱:GMH 6-HD(两个色谱柱)
测量温度:130℃
标准:聚苯乙烯
3)密度:
按照JIS K6760-1981,在23℃下利用密度梯度管测定树脂的密度。
4)熔体流动速率(MFR):
按JIS K6760-1981测定。
5)比表面积:
将重约0.3g的样品放在一个样品吸收管中,并在200℃下,在由30%(体积)氧气和70%(体积)氦气组成的混合气体流中加热20分钟。冷却后,将样品管放入约-196℃的液氮中,得到的氮气吸收量作为在22℃、1个大气压下的吸收量(V)。将吸收量V代入由逼近BET方程得到的下列方程式中,计算样品的总表面积(St;m2)。
St=2.84×V
总表面积(St)除以样品重(W)[S=St/w]得到比表面积(S;m2/g)。
实施例1
将25%作为直链低密度聚乙烯的乙烯-丁烯-1共聚物(CXS含量:21%;CXS的重量平均分子链长度:3700;密度:0.900g/cm3;MFR:1.8g/10min)(以下称作A-1),75%的包括85%Fe,9%Fe3C,6%FeO和1%氯化钙(作为电解质)的铁粉(平均粒径:40μm;比表面积:90000cm2/g),以及作为分散剂的1.0份(基于每100份树脂组合物,即A-1加铁粉)硬脂酸锌在“Model MT50”(由Morita SeikiK.K.制造)转筒式混合器中预混合。混合物在120-150℃下,在Banbury混合器“Model BR”(神户钢铁株式会社制造)中进一步捏合5分钟。
所得混合物在65mmφ挤塑机(Minami Senju Seisakusho K.K.制造)中捏合并从T-模头(模头宽度:700mm;模唇间隙0.7mm)中挤出,得到1mm厚的模片(挤塑温度:在料筒1处250℃;在料筒2和3,机头和模头处280℃)。
在60℃下,沿机器方向,使用由Japan Steel Works,Ltd.制造的拉伸辊拉伸模片3.2倍,得到吸氧片。
所得吸氧片的吸氧速率为12.0cm3/hr,如表2所示,作为吸氧剂在实际应用中,该数值已足够。在低温度条件下该吸氧片基本不吸氧,而只在足够多的水份存在下才吸氧。因此,不论从形状角度还是从功能可控制角度讲,该吸氧片使用时都方便。而且没有吸氧剂从基片上泄漏的现象。
直链、低密度聚乙烯A-1按如下方法制备:
将与氯化铝一同结晶的三氯化钛(TiCl3·1/3AlCl3)和三氯化钒以1/1的钛/钒原子比加到一个间歇球磨机中并共同粉碎2小时制备催化剂。以2.5g/l浓度将催化剂分散在甲基环己烷中。另外,以4.8g/l的浓度将三乙基铝溶解在甲基环己烷中。
在50℃下,向体积为0.6升的高压釜加入由45.055%(摩尔)乙烯,54.845%(摩尔)丁烯-1和0.1%(摩尔)氢气组成的混合压缩气体,并同时加入上述制备的两种催化剂,在终温度200℃,终压力600kg/cm2下进行连续聚合反应。催化剂在高压釜中平均保留时间约为5分钟。
实施例2-6
按实施例1相同方法制备吸氧片,不同的是,使用如表2所示的每种热塑性树脂组合物,并按表2所示改变拉伸条件。采用的直链、低密度聚乙烯(A)如下表1所示。
所得吸氧片具有优良的性能,如表2所示。与实施例1相似,这些吸氧片使用非常方便并且从基片上没有吸氧剂泄露。
比较例1-比较例4
按实施例1相同方法制备吸氧片,不同的是,使用如表2所示的每种树脂组合物并按表2所示改变拉伸条件。
比较例1-3的吸氧片没有或基本没有吸氧性能,而比较例4的树脂组合物不能提供拉伸模片。
注:
*1:见表1。
*2:直链、低密度聚乙烯;MFR=2.7g/10min;
密度=0.923g/cm2;CXS含量=3%
(按照JP-A-56-99209所述方法制备)
*3:支链、低密度聚乙烯;MFR=1.5g/10min;
密度=0.922g/cm3(“SumikatheneF208-O”,
由住友化学株式会社制造)。
*4:丁烯-1-丙烯无规共聚物;MFR=3g/10min;
丁烯-1 含量=21%
(按JP-A-60-127133所述方法制备)
*5:甲基丙烯酸甲酯-乙烯共聚物;MFR=7g/10min;
甲基丙烯酸甲酯含量=15%(“AcriftWH302”,
由住友化学株式会社制造)。
*6:含有约1%氯化钙(作为电解质)的铁粉
(平均粒径:40μm;比表面积:90000cm2/g)。
*7:由于易脆,该模片不能被拉伸。
如上所述,使用方便、没有吸氧剂泄露、不需要填罐和打包步骤、不易被误食并可随意控制其吸氧量的吸氧片,可通过以特定拉伸比拉伸由特定比例的特定热塑性树脂和吸氧剂组成的组合物而得到。本发明一个尤其显著特点是,只要使用特定的吸氧剂,就可以随意在大气中使用吸氧片而不必担心由吸氧片在应用中进行加工而带来的不期望的氧气吸收量。
这些效果归因于特定的吸氧剂均匀分散在特定的热塑性树脂中并通过以特定的拉伸比拉伸,在吸氧剂与热塑性树脂基质的中间面形成大量的微孔隙与大气接触,从而大大增加了吸氧剂与大气接触的表面积。
本发明吸氧片的这些功效可用于加工食品的包装,包括含水量高的食品和普通食品,如水果,蔬菜,花卉,机器零部件,药品等的包装。根据应用,本发明吸氧片还可以与其他基体材料联合使用。
尽管参考具体实施例已详细叙述了本发明,但是很明显,在不违背本发明实质和范围的前提下,本领域熟悉的人可做各种改动和修改。