一种异构网络的信号制式识别方法.pdf

上传人:奻奴 文档编号:4075219 上传时间:2018-08-14 格式:PDF 页数:11 大小:2.61MB
返回 下载 相关 举报
摘要
申请专利号:

CN201410725779.3

申请日:

2014.12.03

公开号:

CN104486778A

公开日:

2015.04.01

当前法律状态:

实审

有效性:

审中

法律详情:

实质审查的生效IPC(主分类):H04W 24/00申请日:20141203|||公开

IPC分类号:

H04W24/00(2009.01)I

主分类号:

H04W24/00

申请人:

北京科技大学

发明人:

刘健; 肖瑞林; 张唯炯

地址:

100083北京市海淀区学院路30号

优先权:

专利代理机构:

成都行之专利代理事务所(普通合伙)51220

代理人:

温利平

PDF下载: PDF下载
内容摘要

本发明公开了一种异构网络的信号制式识别方法,首先将各类信号制式的训练样本信号经小波变换和分数傅里叶变换,对得到的变换结果中的峰值对应的频率进行统计,根据统计结果选择频率区间作为对应信号制式的分类判别标准,然后认知终端将接收的信号同样进行小波变换和分数傅里叶变换,得到变换结果中峰值对应的频率,判断该频率位于哪种信号制式的频率区间即可得到识别结果。本发明无需采用先验信息,实现复杂度低并且具有良好的识别效果。

权利要求书

权利要求书1.  一种异构网络的信号制式识别方法,其特征在于,包括以下步骤: S1:构建异构网络中所有信号制式的训练样本信号,每个训练样本包括一 组信号,对于每个信号制式训练样本,对其中的每个信号进行小波变换,然后 再进行分数傅里叶变换,对得到的变换结果中的峰值对应的频率进行统计,根 据统计结果选择频率区间作为对应信号制式的分类判别标准; S2:认知终端将接收的信号进行小波变换和分数傅里叶变换,得到变换结 果中峰值对应的频率,作为判别特征; S3:如果步骤S2得到的频率属于某个信号制式的频率区间,则将该信号制 式作为识别结果。 2.  根据权利要求1所述的信号制式识别方法,其特征在于,所述小波变换 的小波基采用Daubechies5的小波基。

说明书

说明书一种异构网络的信号制式识别方法
技术领域
本发明属于异构网络技术领域,更为具体地讲,涉及一种异构网络的信号制式识别方法。
背景技术
异构网络(Heterogeneous Network)是一种类型的网络,其是由不同制造商生产的计算机,网络设备和系统组成的,大部分情况下运行在不同的协议上支持不同的功能或应用。异构网络的目标是在宏观网络布局基础上部署低功率节点和小覆盖范围节点来实现无线通信的无缝覆盖。LTE网络中,异构网络已经被当作提高网络覆盖率和容量的有效途径,能在相对有效的花费下极大地提高LTE网络容量。Femcell节点、picocell节点、中继节点等低功率和小范围节点部署在覆盖空洞上来增加网络覆盖率与提高频谱利用率。同时,低功率节点的小范围配置可以在不同范围内使用相同的频谱进行同时传输来极大提高复用率,因此也可以提高无线通信的容量。如今的无线频谱环境逐渐向多种网络配置共存的方向发展,网络结构日益复杂,相应的无线频谱研究难度也日趋繁琐。对于认知无线电网络或终端的处理,存在两个主要问题:
(a)认知网络或用户通过其感知能力对无线环境进行感知并利用空闲频谱进行通信。这就要求认知终端必须具备高效与可靠的频谱感知技术;
(b)认知终端在机会式接入频谱策略下,如何解决认知终端不遵守通信规则与不利的“敌对终端”问题。
由于异构网络中分布着的不同类型的网络,会使认知网络和终端进行频谱感知分析的过程变得更为复杂。无线环境中配置的网络由不同的传输速率、传输功率及不同的信号覆盖范围构成,从而使得目前已有的很多频谱感知方法并不适用于这些异构网络环境,特别是面临低功率节点分布的场景时,频谱环境感知效率会更低。在这种情况下,进行频谱感知和信号制式识别更加困难。现有的信号制式识别方法大多要求先验信息,这种方式并不经济,并且很多情况下很难获得准确的先验信息。
发明内容
本发明的目的在于克服现有技术的不足,提供一种异构网络的信号制式识别方法,实现在没有任何先验信息的情况下直接对从异构网络中接收到的信号进行识别。
为实现上述发明目的,本发明异构网络的信号制式识别方法,包括以下步骤:
S1:构建异构网络中所有信号制式的训练样本信号,每个训练样本包括一组信号,对于每个信号制式训练样本,对其中每个信号进行小波变换,然后再进行分数傅里叶变换,对得到的变换结果中的峰值对应的频率进行统计,根据统计结果选择频率区间作为对应信号制式的分类判别标准;
S2:认知终端将接收的信号进行小波变换和分数傅里叶变换,得到变换结果中峰值对应的频率,作为判别特征;
S3:如果步骤S2得到的频率属于某个信号制式的频率区间,则将该信号制式作为识别结果。
本发明异构网络的信号制式识别方法,首先将各类信号制式的训练样本信号经小波变换和分数傅里叶变换,对得到的变换结果中的峰值对应的频率进行统计,根据统计结果选择频率区间作为对应信号制式的分类判别标准,然后认知终端将接收的信号同样进行小波变换和分数傅里叶变换,得到变换结果中峰值对应的频率,判断该频率位于哪种信号制式的频率区间即可得到识别结果。本发明无需采用先验信息,而是通过小波变换和分数傅里叶变换后的信号特征来进行直接识别,实现复杂度低并且具有良好的识别效果。
附图说明
图1是本发明异构网络的信号制式识别方法的具体实施方式流程图;
图2是本实施例中三类信号经小波变换与分数傅里叶变换后的结果示意图;
图3是本实施例中三类信号训练样本在在信噪比为0dB情况下的特征统计示意图;
图4是在AWGN信道下的识别正确概率图;
图5是在AWGN噪声的基础上经过瑞利衰弱后的识别正确概率图;
图6是瑞利衰弱信道下不同路径时延(path delay)的识别效果图;
图7是混合信号情况下的识别正确概率图。
具体实施方式

下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。
实施例
图1是本发明异构网络的信号制式识别方法的具体实施方式流程图。如图1所示,本发明异构网络的信号制式识别方法,包括以下步骤:
S101:获得分类判别标准:
本发明中,分类判别标准是通过训练得到,具体方法为:构建异构网络中所有信号制式的训练样本信号,每个训练样本包括一组信号,对于每个信号制式训练样本,对其中每个信号进行小波变换,然后再进行分数傅里叶变换,对得到的变换结果中的峰值对应的频率进行统计,将统计概率大于预设阈值的频率区间作为对应信号制式的分类判别标准。
本实施例中,以三种信号制式的信号为例来进行说明,包括2FSK、BPSK、16QAM,其表达式分别为:
S FSK ( t ) = AR e [ Σ k e j 2 π f c + f k t g ( t - k T s ) ] - - - ( 1 ) ]]>
式(1)中 f k = [ i - M - 1 2 ] Δf , i = 0,1 , . . . , M - 1 . ]]>
S PSK ( t ) = AR e [ Σ k m k e j 2 π f c + f k t g ( t - k T s ) ] - - - ( 2 ) ]]>
式(2)中 m k = [ e j M - 1 2 ] , i = 0,1 , . . . M - 1 . ]]>
S QAM ( t ) = AR e [ Σ k m k e j 2 π f c + f k t g ( t - k T s ) ] - - - ( 3 ) ]]>
式中mk=ak+jbk,ak,bk=2i-M+1,i=i=0,1,...M-1。
(1)、(2)、(3)中,A表示幅度因子,由接收信号功率决定;fk、mk表示 符号率;fc表示载波频率;Ts表示符号间隔;M表示调制级数,k=1,2,...,M;Δf表示频率间距;Re[·]表示求取实部;g(t)表示Ts时间内的单位脉冲。
由于对非平稳信号进行高阶时频分析能取得比较好的效果,本发明中先对接收信号进行小波变换,利用小波变换提取突变特征的优点,得到接收信号的突变特征。同时又考虑到傅里叶变换对平稳信号良好的处理效果,把经小波变换的结果再经分数傅里叶变换,把原信号的时频特性与突变特征更好的体现出来。
本实施例中,小波变换的小波基采用Daubechies5的小波基,其表达式为:
ψ ( a , b ) ( t ) = 1 | a | ψ ( t - b a ) - - - ( 4 ) ]]>
其中,ψa,b(t)表示小波基,a、b分别为缩放因子和平移因子,R为实数域,ψ(·)表示小波母函数。
其傅里叶变换表示为:
ψ ( a , b ) ( t ) = 1 | a | ∫ - ψ ( t - b a ) e - jωt dt = - a | a | e - jbω ψ ( ) - - ( 5 ) ]]>
向量的离散傅里叶变换为,
d → = W g → - - - ( 6 ) ]]>
其中,W表示正交小波基,
分数傅里叶变换定义为:
( F s α f ) ( x ) = Σ m = 0 + B m λ m ( s ; α ) Φ m ( x ) - - - ( 7 ) ]]>
式中 f ( x ) = Σ m = 0 + B m Φ m ( x ) , ]]>
循环信号x(t)的分数傅里叶变换为:
x a ( u ) = P c x ^ β ( u σ β σ α ) - - - ( 8 ) ]]>
式中 β = tan - 1 ( tan α / σ 2 ) , ]]>
P c = σ β 1 - j cot α 1 - j σ 2 cot α · exp ( j u 2 2 cot α ( 1 - cos 2 β cos 2 α ) ) . ]]>
分数傅里叶变换有两个优势,一是分数傅里叶变换是傅里叶变换的广义化,理论性强并且灵活度高;二是易于实现。
图2是本实施例中三类信号经小波变换与分数傅里叶变换后的结果示意图。如图2所示,经过小波变换和分数傅里叶变换后,2FSK、BPSK、16QAM三类信号中每类信号的特征(幅度峰值在频率上的分布)都不一样,这些特征可以用来进行信号的分类。本发明通过对训练样本信号交换结果的特征统计来得到判别标准。
图3是本实施例中三类信号训练样本在在信噪比为0dB情况下的特征统计示意图。如图3所示,2FSK信号采样点的幅度值分布在50-150及1150-1175处,BPSK信号采样点的幅度峰值分布在整个区间内,16QAM信号采样点幅度峰值分布在小于50或600-650的区间内。依据此图中的幅度峰值在频率上的分布来设置频率区间并对三类信号进行分类,即将统计概率大于预设阈值的频率区间作为分类判别标准。一般采用统计概率大于预设阈值的最小频率区间,即所有统计概率大于预设阈值的频率区间中宽度最小的频率区间。根据异构网络的环境决定,当网络环境好时,频率区间可以设置相对窄一些,网络环境不好时,频率区间设定相对宽一些。
S102:提取信号特征:
认知终端接收信号,进行小波变换和分数傅里叶变换,得到变换结果中峰值对应的频率,作为判别特征。
S103:信号制式识别:
如果步骤S102得到的频率属于某个信号制式的频率区间,则将该信号制式作为识别结果。
为了说明本发明的有益效果,在Matlab环境下进行仿真实验来对本发明信号制式识别方法的性能进行效果验证与评估。对2FSK、BPSK、16QAM三类信号进行仿真结果验证分析,仿真结果与性能分析分为四个方面:AWGN(Additive White Gaussian Noise,加性高斯白噪声)信道下单信号的识别,瑞利衰弱下单信号的识别、瑞利衰弱环境下传输时延对信号识别的影响、AWGN信道下混合信号的识别。仿真验证中,假设信号传输速率为40Kbps,采样频谱为800KHz,载波频率为100KHz,每个信噪比下产生100符号作为待识别信号求识别准确率, 训练样本序列长度为10000。
图4是在AWGN信道下的识别正确概率图。BPSK信号在信噪比为-9dB下正确识别率大于90%。信号的信噪比等于0dB时,三类信号被正确识别的概率都大于96%。
由于混淆矩阵能够清晰的描述一种信号类型与其它信号的识别概率,所以常被当作一种可视化的工具用来表述信号识别问题。表1是在信噪比为-5dB下三类信号的识别概率。从表1中可以看出,算法对BPSK信号与16QAM信号能获得很好的识别效果。

表1
图5是在AWGN噪声的基础上经过瑞利衰弱后的识别正确概率图。该仿真下采样输入间隔是10-5,路径时延是10-6,最大多普勒频移为130Hz。如图5所示,识别准确率较AWGN信道相比有些下降,但总体来说识别正确率还是能够达到良好水平。表2是在信噪比为-5dB时,经瑞利衰弱后信号的识别混淆矩阵。如表2可以看出本发明可以达到不错的识别效果。

表2
图6是瑞利衰弱信道下不同路径时延(path delay)的识别效果图。如图6所示,时延越小,识别效率越高。本发明在时延小于10-5能达到很好的识别效率。
在异构网络的通信环境中,频谱环境中经常存在多种类型的信号。混合信号的识别在现实应用中占据非常重要的地位。因此此处还验证了混合信号在本算法下的识别正确率。本次仿真过程中假设频谱环境中只存在AWGN噪声,并有两个主用户信号(三种信号中的两种)以及一个干扰信号(剩下的一种信号),图7是混合信号情况下的识别正确概率图。如图7所示,当只有两个信号存在时识别效果还不错,信噪比为5dB时信号的识别正确率在80%以上。当三类信号混合后进行识别的效果不佳。
根据以上仿真可知,本发明在进行单信号识别和混合信号识别时,都可以达良好的效果。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。

一种异构网络的信号制式识别方法.pdf_第1页
第1页 / 共11页
一种异构网络的信号制式识别方法.pdf_第2页
第2页 / 共11页
一种异构网络的信号制式识别方法.pdf_第3页
第3页 / 共11页
点击查看更多>>
资源描述

《一种异构网络的信号制式识别方法.pdf》由会员分享,可在线阅读,更多相关《一种异构网络的信号制式识别方法.pdf(11页珍藏版)》请在专利查询网上搜索。

1、(10)申请公布号 (43)申请公布日 (21)申请号 201410725779.3(22)申请日 2014.12.03H04W 24/00(2009.01)(71)申请人 北京科技大学地址 100083 北京市海淀区学院路 30 号(72)发明人 刘健 肖瑞林 张唯炯(74)专利代理机构 成都行之专利代理事务所( 普通合伙 ) 51220代理人 温利平(54) 发明名称一种异构网络的信号制式识别方法(57) 摘要本发明公开了一种异构网络的信号制式识别方法,首先将各类信号制式的训练样本信号经小波变换和分数傅里叶变换,对得到的变换结果中的峰值对应的频率进行统计,根据统计结果选择频率区间作为对应信。

2、号制式的分类判别标准,然后认知终端将接收的信号同样进行小波变换和分数傅里叶变换,得到变换结果中峰值对应的频率,判断该频率位于哪种信号制式的频率区间即可得到识别结果。本发明无需采用先验信息,实现复杂度低并且具有良好的识别效果。(51)Int.Cl.(19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书5页 附图4页(10)申请公布号 CN 104486778 A(43)申请公布日 2015.04.01CN 104486778 A1/1 页21.一种异构网络的信号制式识别方法,其特征在于,包括以下步骤 :S1 :构建异构网络中所有信号制式的训练样本信号,每个训练样本包括一组。

3、信号,对于每个信号制式训练样本,对其中的每个信号进行小波变换,然后再进行分数傅里叶变换,对得到的变换结果中的峰值对应的频率进行统计,根据统计结果选择频率区间作为对应信号制式的分类判别标准 ;S2 :认知终端将接收的信号进行小波变换和分数傅里叶变换,得到变换结果中峰值对应的频率,作为判别特征 ;S3 :如果步骤 S2 得到的频率属于某个信号制式的频率区间,则将该信号制式作为识别结果。2.根据权利要求 1 所述的信号制式识别方法,其特征在于,所述小波变换的小波基采用 Daubechies5 的小波基。权 利 要 求 书CN 104486778 A1/5 页3一种异构网络的信号制式识别方法技术领域0。

4、001 本发明属于异构网络技术领域,更为具体地讲,涉及一种异构网络的信号制式识别方法。背景技术0002 异构网络 (Heterogeneous Network) 是一种类型的网络,其是由不同制造商生产的计算机,网络设备和系统组成的,大部分情况下运行在不同的协议上支持不同的功能或应用。异构网络的目标是在宏观网络布局基础上部署低功率节点和小覆盖范围节点来实现无线通信的无缝覆盖。LTE 网络中,异构网络已经被当作提高网络覆盖率和容量的有效途径,能在相对有效的花费下极大地提高 LTE 网络容量。Femcell 节点、picocell 节点、中继节点等低功率和小范围节点部署在覆盖空洞上来增加网络覆盖率与。

5、提高频谱利用率。同时,低功率节点的小范围配置可以在不同范围内使用相同的频谱进行同时传输来极大提高复用率,因此也可以提高无线通信的容量。如今的无线频谱环境逐渐向多种网络配置共存的方向发展,网络结构日益复杂,相应的无线频谱研究难度也日趋繁琐。对于认知无线电网络或终端的处理,存在两个主要问题 :0003 (a) 认知网络或用户通过其感知能力对无线环境进行感知并利用空闲频谱进行通信。这就要求认知终端必须具备高效与可靠的频谱感知技术 ;0004 (b) 认知终端在机会式接入频谱策略下,如何解决认知终端不遵守通信规则与不利的“敌对终端”问题。0005 由于异构网络中分布着的不同类型的网络,会使认知网络和终。

6、端进行频谱感知分析的过程变得更为复杂。无线环境中配置的网络由不同的传输速率、传输功率及不同的信号覆盖范围构成,从而使得目前已有的很多频谱感知方法并不适用于这些异构网络环境,特别是面临低功率节点分布的场景时,频谱环境感知效率会更低。在这种情况下,进行频谱感知和信号制式识别更加困难。现有的信号制式识别方法大多要求先验信息,这种方式并不经济,并且很多情况下很难获得准确的先验信息。发明内容0006 本发明的目的在于克服现有技术的不足,提供一种异构网络的信号制式识别方法,实现在没有任何先验信息的情况下直接对从异构网络中接收到的信号进行识别。0007 为实现上述发明目的,本发明异构网络的信号制式识别方法,。

7、包括以下步骤 :0008 S1 :构建异构网络中所有信号制式的训练样本信号,每个训练样本包括一组信号,对于每个信号制式训练样本,对其中每个信号进行小波变换,然后再进行分数傅里叶变换,对得到的变换结果中的峰值对应的频率进行统计,根据统计结果选择频率区间作为对应信号制式的分类判别标准 ;0009 S2 :认知终端将接收的信号进行小波变换和分数傅里叶变换,得到变换结果中峰值对应的频率,作为判别特征 ;说 明 书CN 104486778 A2/5 页40010 S3 :如果步骤 S2 得到的频率属于某个信号制式的频率区间,则将该信号制式作为识别结果。0011 本发明异构网络的信号制式识别方法,首先将各。

8、类信号制式的训练样本信号经小波变换和分数傅里叶变换,对得到的变换结果中的峰值对应的频率进行统计,根据统计结果选择频率区间作为对应信号制式的分类判别标准,然后认知终端将接收的信号同样进行小波变换和分数傅里叶变换,得到变换结果中峰值对应的频率,判断该频率位于哪种信号制式的频率区间即可得到识别结果。本发明无需采用先验信息,而是通过小波变换和分数傅里叶变换后的信号特征来进行直接识别,实现复杂度低并且具有良好的识别效果。附图说明0012 图 1 是本发明异构网络的信号制式识别方法的具体实施方式流程图 ;0013 图 2 是本实施例中三类信号经小波变换与分数傅里叶变换后的结果示意图 ;0014 图 3 是。

9、本实施例中三类信号训练样本在在信噪比为 0dB 情况下的特征统计示意图;0015 图 4 是在 AWGN 信道下的识别正确概率图 ;0016 图 5 是在 AWGN 噪声的基础上经过瑞利衰弱后的识别正确概率图 ;0017 图 6 是瑞利衰弱信道下不同路径时延 (path delay) 的识别效果图 ;图 7 是混合信号情况下的识别正确概率图。具体实施方式0018 下面结合附图对本发明的具体实施方式进行描述,以便本领域的技术人员更好地理解本发明。需要特别提醒注意的是,在以下的描述中,当已知功能和设计的详细描述也许会淡化本发明的主要内容时,这些描述在这里将被忽略。0019 实施例0020 图1是本。

10、发明异构网络的信号制式识别方法的具体实施方式流程图。如图1所示,本发明异构网络的信号制式识别方法,包括以下步骤 :0021 S101 :获得分类判别标准 :0022 本发明中,分类判别标准是通过训练得到,具体方法为 :构建异构网络中所有信号制式的训练样本信号,每个训练样本包括一组信号,对于每个信号制式训练样本,对其中每个信号进行小波变换,然后再进行分数傅里叶变换,对得到的变换结果中的峰值对应的频率进行统计,将统计概率大于预设阈值的频率区间作为对应信号制式的分类判别标准。0023 本实施例中,以三种信号制式的信号为例来进行说明,包括 2FSK、BPSK、16QAM,其表达式分别为 :0024 0。

11、025 式 (1) 中说 明 书CN 104486778 A3/5 页50026 0027 式 (2) 中0028 0029 式中 mkak+jbk,ak,bk 2i-M+1,i i 0,1,.M-1。0030 (1)、(2)、(3) 中,A 表示幅度因子,由接收信号功率决定 ;fk、mk表示 符号率 ;fc表示载波频率 ;Ts表示符号间隔 ;M 表示调制级数,k 1,2,.,M ;f 表示频率间距 ;Re表示求取实部 ;g(t) 表示 Ts时间内的单位脉冲。0031 由于对非平稳信号进行高阶时频分析能取得比较好的效果,本发明中先对接收信号进行小波变换,利用小波变换提取突变特征的优点,得到接收。

12、信号的突变特征。同时又考虑到傅里叶变换对平稳信号良好的处理效果,把经小波变换的结果再经分数傅里叶变换,把原信号的时频特性与突变特征更好的体现出来。0032 本实施例中,小波变换的小波基采用 Daubechies5 的小波基,其表达式为 :0033 0034 其中,a,b(t) 表示小波基,a、b 分别为缩放因子和平移因子,R 为实数域,()表示小波母函数。0035 其傅里叶变换表示为 :0036 0037 向量 的离散傅里叶变换为,0038 0039 其中,W 表示正交小波基,0040 分数傅里叶变换定义为 :0041 0042 式中0043 循环信号 x(t) 的分数傅里叶变换为 :0044。

13、 0045 式中说 明 书CN 104486778 A4/5 页60046 0047 分数傅里叶变换有两个优势,一是分数傅里叶变换是傅里叶变换的广义化,理论性强并且灵活度高 ;二是易于实现。0048 图 2 是本实施例中三类信号经小波变换与分数傅里叶变换后的结果示意图。如图2 所示,经过小波变换和分数傅里叶变换后,2FSK、BPSK、16QAM 三类信号中每类信号的特征(幅度峰值在频率上的分布)都不一样,这些特征可以用来进行信号的分类。本发明通过对训练样本信号交换结果的特征统计来得到判别标准。0049 图 3 是本实施例中三类信号训练样本在在信噪比为 0dB 情况下的特征统计示意图。如图 3 。

14、所示,2FSK 信号采样点的幅度值分布在 50-150 及 1150-1175 处,BPSK 信号采样点的幅度峰值分布在整个区间内,16QAM 信号采样点幅度峰值分布在小于 50 或 600-650 的区间内。依据此图中的幅度峰值在频率上的分布来设置频率区间并对三类信号进行分类,即将统计概率大于预设阈值的频率区间作为分类判别标准。一般采用统计概率大于预设阈值的最小频率区间,即所有统计概率大于预设阈值的频率区间中宽度最小的频率区间。根据异构网络的环境决定,当网络环境好时,频率区间可以设置相对窄一些,网络环境不好时,频率区间设定相对宽一些。0050 S102 :提取信号特征 :0051 认知终端接。

15、收信号,进行小波变换和分数傅里叶变换,得到变换结果中峰值对应的频率,作为判别特征。0052 S103 :信号制式识别 :0053 如果步骤 S102 得到的频率属于某个信号制式的频率区间,则将该信号制式作为识别结果。0054 为了说明本发明的有益效果,在 Matlab 环境下进行仿真实验来对本发明信号制式识别方法的性能进行效果验证与评估。对 2FSK、BPSK、16QAM 三类信号进行仿真结果验证分析,仿真结果与性能分析分为四个方面 :AWGN(Additive White Gaussian Noise,加性高斯白噪声 ) 信道下单信号的识别,瑞利衰弱下单信号的识别、瑞利衰弱环境下传输时延对信。

16、号识别的影响、AWGN 信道下混合信号的识别。仿真验证中,假设信号传输速率为 40Kbps,采样频谱为 800KHz,载波频率为 100KHz,每个信噪比下产生 100 符号作为待识别信号求识别准确率, 训练样本序列长度为 10000。0055 图 4 是在 AWGN 信道下的识别正确概率图。BPSK 信号在信噪比为 -9dB 下正确识别率大于 90。信号的信噪比等于 0dB 时,三类信号被正确识别的概率都大于 96。0056 由于混淆矩阵能够清晰的描述一种信号类型与其它信号的识别概率,所以常被当作一种可视化的工具用来表述信号识别问题。表 1 是在信噪比为 -5dB 下三类信号的识别概率。从表。

17、 1 中可以看出,算法对 BPSK 信号与 16QAM 信号能获得很好的识别效果。0057 说 明 书CN 104486778 A5/5 页70058 表10059 图 5 是在 AWGN 噪声的基础上经过瑞利衰弱后的识别正确概率图。该仿真下采样输入间隔是 10-5,路径时延是 10-6,最大多普勒频移为 130Hz。如图 5 所示,识别准确率较AWGN 信道相比有些下降,但总体来说识别正确率还是能够达到良好水平。表 2 是在信噪比为 -5dB 时,经瑞利衰弱后信号的识别混淆矩阵。如表 2 可以看出本发明可以达到不错的识别效果。0060 0061 表20062 图 6 是瑞利衰弱信道下不同路径。

18、时延 (path delay) 的识别效果图。如图 6 所示,时延越小,识别效率越高。本发明在时延小于 10-5能达到很好的识别效率。0063 在异构网络的通信环境中,频谱环境中经常存在多种类型的信号。混合信号的识别在现实应用中占据非常重要的地位。因此此处还验证了混合信号在本算法下的识别正确率。本次仿真过程中假设频谱环境中只存在 AWGN 噪声,并有两个主用户信号 ( 三种信号中的两种 ) 以及一个干扰信号 ( 剩下的一种信号 ),图 7 是混合信号情况下的识别正确概率图。如图 7 所示,当只有两个信号存在时识别效果还不错,信噪比为 5dB 时信号的识别正确率在 80以上。当三类信号混合后进行。

19、识别的效果不佳。0064 根据以上仿真可知,本发明在进行单信号识别和混合信号识别时,都可以达良好的效果。0065 尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,但应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。说 明 书CN 104486778 A1/4 页8图1图2说 明 书 附 图CN 104486778 A2/4 页9图3图4说 明 书 附 图CN 104486778 A3/4 页10图5图6说 明 书 附 图CN 104486778 A。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 电通信技术


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1