本发明涉及由氢气和氧气直接化合制造过氧化氢的方法。 由氢气和氧气直接化合制造过氧化氢的方法已为人们所公知。
Gosser的美国专利US4681751描述了由氢气和氧气制造过氧化氢的一种方法,该方法采用一种碳载带的钯催化剂及超大气压力。反应介质基本上不含有有机组分。
已批准的美国专利申请(申请号为932360,申请日为1986年11月19日)中公开了一种用于生产过氧化氢的直接化合方法。该申请还公开了铂/钯催化剂的制法和用法。
本发明是由氢气和氧气直接化合制造过氧化氢的一种方法,该方法采用铂/钯催化剂,其中铂与(铂+钯)的比率为最佳值,该比率(以重量计)约为0.02-0.2。
附图由4幅图组成。
图1表示用氧化铝作载体时,H2O2对Pt/(Pt+Pd)的重量百分数。
图2表示用碳作载体时,H2O2对Pt/(Pt+Pd)的重量百分数。
图3表示用二氧化硅作载体时,H2O2对Pt/(Pt+Pd)的重量百分数。
图4表示用二氧化硅作载体,由金属盐制得催化剂时,H2O2对Pt/(Pt+Pd)的重量百分数。
已批准的美国专利申请(申请号为932360,申请日为1986年11月19日)描述了由氢气和氧气直接化合生产过氧化氢的方法,该方法采用一种铂/钯有载体的混合催化剂,并用一种溴化物作助催化剂。该专利申请已被列为本申请的参考文献。
现已发现,铂/(铂+钯)的比率是影响该方法结果的一种可变因素,精心控制该比率可使该方法达到最佳效果。已发现Pt/(Pt+Pd)的最佳比率(以重量计)约为0.02-0.2。
因此,本发明是一种直接化合方法,该方法采用(1)一种含水地反应介质,其中所含的有机组分约不超过反应介质重量的2%;(2)一种氢离子源;(3)一种溴离子或氯离子助催化剂;和一种由铂和钯组成的催化剂,其中Pt/(Pt+Pd)的重量比率约为0.02-0.2。可将铂和钯载带在任选的一种载体上。该载体可为氧化铝、二氧化硅、碳及本领域技术人员所熟知的其它载体。
该双金属催化剂可由松散物料、胶体、盐或用本领域技术人员所熟知的其它方法制得。该双金属催化剂的一个优点是它具有实验上可检测的抗反应干扰性。
由下列非限制性的实施例及附图可知道有关本发明最佳催化剂的制法和用法的其它细节。
实施例
由双金属胶体制备有载体的Pt-Pd催化剂(用于实施例1、2和3的催化剂)
用二步法制备用于实施例1、2和3的有载体的Pt-Pd双金属催化剂。第一步是合成含水的双金属胶体(溶胶)。一般,这些胶体含有很小的(小于或等于100A)零价Pt-Pd粒子。该催化剂合成中的第二步是通过吸附或喷雾干燥将这些预先生成的零价双金属粒子沉积在一种载体上。然后将由此生成的有载体的双金属催化剂在氢气中在200℃下进行热处理以形成活性催化剂。实施例1、2和3所用的催化剂的具体制法如下:
Pt-Pd胶体的合成
用于实施例1、2和3的Pt-Pd双金属胶体其制法和Turkevich等人在Proc.of VII Int.Congr.Catal.(Elsevier,New York,1981)第160页中所述方法相似。所有玻璃器皿在使用前均用王水洗净。通过蒸馏纯化水,然后再通过一种水纯化系统进行过滤,这种水纯化系统装有混合床离子交换器及有机/胶体去除塔。以特定的克分子浓度配制PdCl2溶液和铂氯酸溶液。一般,在配制钯氯酸溶液时,每50毫升水中加入1毫升、1N的HCl,然后将适量的上述溶液用于胶体合成中。表1-A、2-A、3-A中列出了每种胶体合成所用的PdCl2溶液和铂氯酸溶液的量,以及水的用量和3、4×10-2M柠檬酸钠溶液的用量。
所有的溶液在使用前均通过0.22微米的微孔过滤器过滤。在一个圆底烧瓶中装入一定量的水,用电加热罩将水加热煮沸,然后加入PdCl2溶液和铂氯酸溶液,所得到的溶液呈黄色,将该溶液加热煮沸,然后加入柠檬酸钠溶液。一般,在15分钟内,该溶液颜色变深,30分钟后则完全变成黑色。将该溶液回流4小时,然后使其冷却,并送入冷藏室贮藏。
同样可制备实施例1、2和3中用的单金属Pt溶胶(胶体),其制法如8th Simposio Iberoamericano de Catalysis,La Rabida Huelva,1982 P27中所述。
同样可制备单金属Pd溶胶,所不同处为回流时间需6小时,以形成胶体Pd粒子,此外,Pd溶胶不需要冷冻贮藏。胶体Pd的制法可参见Science,Vol.160,1970,P873。
沉积到载体上
有载体的催化剂的合成包括使用380毫升用上述方法制得的双金属胶体。表1-A、2-A和3-A中列出了每种胶体具体的合成细节。一般,将380毫升Pt-Pd胶体和2克载体(实施例1中为Sumitomo AKP-50氧化铝,其表面积为12米2/克)搅拌,然后用Buchi实验室用喷雾干燥器将所得到的混合物喷雾干燥。通常,喷雾干燥时的进口温度为220℃,出口温度为110℃。由喷雾干燥过程收集到的物料是一种灰褐色粉末。然后按下述方法使该粉末进行氢气处理。将该粉末放入装有一种介质一多孔烧结盘的石英管中。然后将石英管放入立式Lindberg管式炉中。流量计置于70毫升/分钟处,用氦气清洗试样20分钟,然后改送氢气,先使氢气流动10分钟,在200℃的氢气中加热1小时。然后在氢气气氛中冷却至室温,再用氦气清洗样品20分钟,然后将该物料用作活性催化剂。
实施例1、2、3和4中制备H2O2的方法
这些实验中所用的装置为一个约400毫升的带有玻璃内衬的高压釜。空的高压釜一衬相接合处的自由空间约为350毫升。高压釜安装在一个位于大金属隔板中的振动台上,从而可方便地从隔板外加入和除去气体,并调节金属高压釜的压力和温度。在所有情况下都必须先称重空玻璃内衬,再开始实验。加入一种催化剂和20克0.1N的HCl溶液,称重内衬。将该内衬放入高压釜中,将高压釜放在振动台上的冷却夹套中,通入氩气(约1000磅/英寸2)以用于检漏。将压力降到约5磅/英寸2,然后通入约360磅/英寸2H2和约1650磅/英寸2O2。约15分钟后,通入O2使总压力提高到2000磅/英寸2。开始振动,并持续振动3小时,释放剩余的气体,向容器中通入氩气,使压力达到50磅/英寸2,放气三次以去除剩余的H2/O2混合气。从高压釜中取出内衬并称重。用高锰酸钾溶液滴定一部分反应混合物,由滴定得到的H2O2重量%及重量增量可用来计算H2O2的选择率,即用生成的H2O2的摩尔数除以生成的水和生成的H2O2的摩尔数之和,将该值乘以100,则表示在合成表中的百分数。这些表中还列出了每次实验的其它一些数据,实验结果如相应的附图1-4所示。
表1-A
用于制备实施例1中的催化剂的胶体的制备
制备 PdCl2溶液 3.4×10-2M H2Pt 柠檬酸钠 水(毫升)
Cl6·6H2O溶液
1a 75mL的 - 120mL 945
7.4×10-3M
1b 225mL的 0.9mL的 360mL 2832
7.4×10-3M 4.8×10-3M
1c 75mL的 1.0mL的 120mL 944
7.4×10-3M 4.8×10-3M
1d 675mL的 45mL的 1080mL 8460
7.4×10-3M 5.7×10-3M
1e 65mL的 10mL的 120mL 945
7.4×10-3M 4.8×10-3M
1f 300mL的 60mL的 360mL 2700
3.7×10-3M 4.8×10-3M
表1-A(续)
制备 PdCl2溶液 3.4×10-2MH2Pt 柠檬酸钠 水(毫升)
Cl6·6H2O溶液
1g 150mL的 60mL的 240mL 1830
3.7×10-3M 4.8×10-3M
1h 150mL的 120mL的 360mL 2790
3.7×10-3M 4.8×10-3M
1i - 180mL的 360mL 2880
4.8×10-3M
表1-B
制备 Pt 温度 压差 重量差 H2O2重量 选择率
Pt+Pd (℃) (磅/英寸2) (克) % (%)
1a 0.0 10-13 11 0.4 1.1 40
1b 0.005 16-19 462 4.2 12.2 55
1c 0.016 9-13 298 4.0 11.9 57
1d 0.08 5-8 394 6.0 18.6 69
1e 0.15 10-13 427 6.1 17.7 62
1f 0.3 10-12 401 5.7 15.7 56
1g 0.5 9-12 412 5.5 12.5 42
1h 0.7 9-10 392 4.8 8.4 31
1i 1.0 10-13 349 3.9 3.1 11
实施例2
Pt-Pd/碳
用碳作载体的催化剂的制备包括采用380毫升按上述方法制得的胶体。每种胶体的具体合成细节如表2-A所示。表2-A中除制备2a以外,其余均采用吸附法将双金属粒子沉积到碳载体上。在此情况下,使Pd先和碳形成胶体料浆,然后通过喷雾干燥将其沉积到碳上。喷雾干燥可按实施例1中所述方法进行。
其余的以碳为载体的催化剂可通过将380毫升胶体与2克大孔径(325目)、表面积为560米2/克的碳生成一种料浆而制得,将该料浆搅拌1小时,然后过滤通过0.22微米微孔过滤器,用UV-VIS分光器测定的结果表明在滤液中不存在双金属胶体,留在过滤器上的固体用空气干燥,然后装入石英管中,以进行如实施例1所述的氢气处理工序,氢气处理后收集到的物料即为活性催化剂。
表2-A
用于制备实施例2中的催化剂的胶体的制备
制备 PdCl2H2PtCl6·6H2O 3.4×10-2M 水(毫升)
溶液 溶液 柠檬酸钠
2a 500mL的 - 1000mL 1000
1.86×10-3M
2b 75mL的 1.0mL的 120mL 944
7.4×10-3M 4.8×10-3M
2c 75mL的 5.0mL的 120mL 940
7.4×10-3M 4.8×10-3M
2d 65mL的 10mL的 120mL 945
7.4×10-3M 4.8×10-3M
2e 100mL的 20mL的 120mL 900
7.4×10-3M 3.7×10-3M
2f 150mL的 60mL的 240mL 1830
7.4×10-3M 3.7×10-3M
2g - 60mL的 120mL 960
4.8×10-3M
表2-B
制备 Pt 温度 压差 重量差 H2O2选择率
Pt+Pd (℃) (磅/英寸2) (克) (重量%) (%)
2a 0.0 9-12 0 0.2 0.2 12
2b 0.016 9-10 13 0.4 1.7 77
2c 0.07 11-14 427 6.4 18.4 63
2d 0.15 9-13 397 6.0 17.9 65
2e 0.3 7-92 417 5.7 15 53
2f 0.5 9-11 409 5.1 11.3 40
2g 1.0 9-11 415 4.6 2.4 7
实施例3
Pt-Pd/SiO2
以二氧化硅为载体的催化剂的合成包括使用380毫升按上述方法制备的胶体。每种胶体的具体合成细节如表3-A所示。一般,将380毫升胶体与5克二氧化硅颗粒的含水胶体悬浮液混合,该二氧化硅颗粒可从市场买到(由E.I.du Pont de Nemours and Company生产,注册商标Ludox-HS-40)。搅拌该混合物,并按上述方法喷雾干燥。然后将喷雾干燥后收集到的物料按上述方法在氢气中进行处理,氢气处理后得到的物料即为活性催化剂。
表3-A
用于制备实施例3中的催化剂的胶体的制备
制备 PdCl2H2PtCl6·6H2O 3.4×10-2M 水(毫升)
溶液 溶液 柠檬酸钠
3a 75mL的 - 120mL 945
7.4×10-3M
3b 225mL的 0.9mL的 360mL 2832
7.4×10-3M 4.8×10-3M
3c 75mL的 1.0mL的 120mL 944
7.4×10-3M 4.8×10-3M
3d 75mL的 5.0mL的 120mL 940
7.4×10-3M 4.8×10-3M
3e 65mL的 10mL的 120mL 945
7.4×10-3M 4.8×10-3M
3f 300mL的 60mL的 360mL 2700
3.7×10-3M 4.8×10-3M
3g 150mL的 60mL的 240mL 1830
3h - 180mL的 360mL 2880
4.8×10-3M
表3-B
制备 Pt 温度 压差 重量差 H2O2选择率
Pt+Pd (℃) (磅/英寸2) (克) (重量%) (%)
3a 0.0 10-14 0 0.6 1.7 43
3b 0.005 13-15 399 4.5 12.9 56
3c 0.016 9-13 467 4.8 14.5 61
3d 0.07 9-10 446 6.2 18.6 66
3e 0.16 9-11 502 6.6 19.6 67
表3-B(续)
制备 Pt 温度 压差 重量差 H2O2选择率
Pt+Pd (℃) (磅/英寸2) (克) (重量%) (%)
3f 0.3 8-12 523 5.9 16.8 60
3g 0.5 7-11 370 5.7 13.6 46
3h 1.0 10-11 397 4.6 1.5 4
实施例4
Pt-Pd/SiO2
由金属盐制备以二氧化硅为载体的
Pt-Pd催化剂
用金属盐作金属源可在二氧化硅上制备多种Pt-Pd催化剂。表4-A中表明制备各种催化剂时所用的PdCl2和H2PtCl6·6H2O的相对量。按下述方法制备这些催化剂。如前所述,制备催化剂时所用的水在使用前先纯化,每种催化剂合成时,先称出所要量的H2PtCl6·6H2O,溶于380毫升水中。再称出PdCl2,加入380毫升水,再加入3毫升1N HCl,将如上制得的PdCl2和铂氯酸溶液混合在一起,并搅拌约10分钟,然后加入10克二氧化硅颗粒的含水胶体悬浮液(从市场上可买到,由E.I.du Pont de Nemours and Company生产,注册商标为Ludox-Hs-40)。将该混合物搅拌约5分钟,然后用Buchi实验室用喷雾干燥器进行喷雾干燥。通常喷雾干燥的进口温度为220℃,出口温度为110℃。在制备4a-4g中,由喷雾干燥收集到的物料是一种淡桔黄色的粉末。制备4H中,喷雾干燥后得到的则是一种淡黄色粉末。然后用类似于前述的方法(只是温度采用300℃)对该粉末进行氢气处理,该物料可用作活性催化剂。
表4-A
由金属盐制备表4-B中所用的催化剂Pt-Pd/SiO2
制备 所用的PdCl2(重量) 所用的H2PtCl6·6H2O
(重量)
4a 0.0333g -
4b 0.0667g 0.0018g
4c 0.0632g 0.0052g
4d 0.0567g 0.0159g
4e 0.0500g 0.0265g
4f 0.0320g 0.0468g
4g 0.0200g 0.0743g
4h - 0.0531g
表4-B
制备 Pt 温度 压差 重量差 H2O2选择率
Pt+Pd (℃) (磅/英寸2) (克) (重量%) (%)
4a 0.0 13-15 62 0.9 3.6 73
4b 0.017 13-15 139 2.1 8.0 74
4c 0.05 12-14 360 5.3 16.9 69
4d 0.15 10-13 349 5.4 15.4 58
4e 0.25 10-12 339 5.3 14.5 54
4f 0.5 9-11 334 4.7 10.5 39
4g 0.7 8-12 323 4.5 8.4 31
4h 1.0 13-15 319 3.9 4.6 17