一种锂离子电池正极材料及其制备方法.pdf

上传人:e1 文档编号:4070070 上传时间:2018-08-13 格式:PDF 页数:11 大小:1.42MB
返回 下载 相关 举报
摘要
申请专利号:

CN201510016316.4

申请日:

2015.01.13

公开号:

CN104577094A

公开日:

2015.04.29

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||实质审查的生效IPC(主分类):H01M 4/485申请日:20150113|||公开

IPC分类号:

H01M4/485(2010.01)I; H01M4/62

主分类号:

H01M4/485

申请人:

上海交通大学

发明人:

王开学; 王宗凯; 陈接胜

地址:

200240上海市闵行区东川路800号

优先权:

专利代理机构:

上海科盛知识产权代理有限公司31225

代理人:

林君如

PDF下载: PDF下载
内容摘要

本发明涉及一种锂离子电池正极材料的制备方法,由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是65~90wt%,石墨烯含量为10~35wt%,制备时结合水热合成法、溶胶-凝胶法、表面改性包覆的方法,合成得到具有优良电化学性能的电池材料。与现有技术相比,本发明既保留了LiV3O8片层本身的晶体结构稳定性,同时又以石墨烯作为载体,形成了比表面积更大、导电性更好、锂离子传输效率更高、化学稳定性更强的一种新型的锂离子电池正极材料。该方法工艺简单,可操作性强。

权利要求书

权利要求书1.  一种锂离子电池正极材料,其特征在于,该材料由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是65~90wt%,石墨烯含量为10~35wt%。2.  如权利要求1所述的锂离子电池正极材料的制备方法,其特征在于,该方法采用以下步骤:(1)利用表面活性剂将钒源和有机酸或者过氧化氢均匀分散在水溶液中,通过水热法合成前驱体,再利用溶胶-凝胶及高温焙烧制备得到LiV3O8纳米片;(2)对步骤(1)制备得到的LiV3O8纳米片超声分散,然后通过LiV3O8表面电荷修饰、氧化石墨烯包覆、氧化石墨烯还原以及冷冻干燥,得到石墨烯包覆的LiV3O8片层锂离子电池正极材料。3.  根据权利要求2所述的锂离子电池正极材料的制备方法,其特征在于,步骤(1)中的水热法是将有机酸和钒源均匀混合在水溶液中,然后在70~200℃温度下反应3~20h,合成得到前驱体。4.  根据权利要求3所述的锂离子电池正极材料的制备方法,其特征在于,所述的钒源选自VO、VO2、V2O5、V2O3或NH4VO3中的一种或几种,所述的有机酸选自柠檬酸、酒石酸、草酸、苹果酸或枸椽酸中的一种或几种。5.  根据权利要求2所述的锂离子电池正极材料的制备方法,其特征在于,步骤(1)中,溶胶-凝胶是将前驱体和一水合氢氧化锂按照钒元素和锂元素的摩尔比按1:10~10:1混合,加入表面活性剂作为分散剂,分散剂与前驱体的质量比为1:10~10:1,室温搅拌1~10h,之后在40~120℃温度下油浴加热并干燥,高温焙烧是在300~1000℃环境下在氧气气氛或者空气气氛下焙烧。6.  根据权利要求5所述的锂离子电池正极材料的制备方法,其特征在于,表面活性剂选自聚乙二醇、聚乙烯吡咯烷酮、聚氧乙烯或聚氧乙烯-聚氧丙烯共聚物中的一种或几种。7.  根据权利要求2所述的锂离子电池正极材料的制备方法,其特征在于,步骤(2)中,超声分散是将LiV3O8纳米片在甲苯溶液中,100~500w功率下超声10~100 min。8.  根据权利要求7所述的锂离子电池正极材料的制备方法,其特征在于,步骤(2)中,表面电荷修饰是向超声分散后的溶液中加入3-氨丙基三甲氧基硅烷,3-氨丙基三甲氧基硅烷与甲苯溶液的体积比为1:50~1:1,在20~100℃环境下,氮气气氛或者氩气气氛下回流5~40h。9.  根据权利要求2所述的锂离子电池正极材料的制备方法,其特征在于,步骤(2)中,氧化石墨烯包覆是指将经表面电荷修饰的LiV3O8悬浮液滴加进氧化石墨烯中并搅拌1~5h,LiV3O8与氧化石墨烯的质量比为2:1~30:1;氧化石墨烯还原是滴加水合肼并在室温下搅拌2~20h,氧化石墨烯与水合肼的质量比为1:10~10:1。10.  根据权利要求2所述的锂离子电池正极材料的制备方法,其特征在于,步骤(2)中,冷冻干燥时在-80~-20℃条件下进行的真空干燥。

说明书

说明书一种锂离子电池正极材料及其制备方法
技术领域
本发明属于锂离子电池领域,尤其是涉及一种锂离子电池正极材料的制备方法。
背景技术
作为一种新型储能装置,锂离子电池和锂离子电池储能系统的开发必将推动可再生能源的有效利用和新能源汽车的发展,对于解决能源短缺和减少环境污染具有重要意义。在过去十几年的,对锂离子电池正极材料的研究主要集中在尖晶石结构的LiCoO2,LiMn2O4和橄榄石结构的LiFePO4以及他们的衍生物。LiCoO2是第一个商业化的正极材料,但是其可用容量低于150mAh/g,而且Li1-xCoO2结构不稳定,LiCoO2易与电解液发生氧化还原反应,造成不可逆容量损失和安全问题;另外,钴资源有限、价格昂贵。LiFePO4是现在研究最热的正极材料,其理论容量只有170mAh/g,也不能满足储能系统对锂电池的需要。所以,开发一种高容量、长寿命、高安全性、低成本的锂离子电极材料成为现在突破能源发展瓶颈的关键。
层状化合物LiV3O8具有比较好的晶体结构稳定性,因而具有优良的嵌锂能力,表现在电池比容量高和循环寿命长等优势,是极具研究价值的锂离子电池正极材料之一。LiV3O8是由八面体和三角双锥组成,位于八面体位置的Li+离子与邻近层紧紧相连,在LiV3O8层间有3个以上的锂离子可以进行可逆的嵌入/脱出。但是LiV3O8的倍率性能会受到Li+离子扩散和电子传输的制约。现阶段大多采用材料纳米化的方式来改进材料的电化学性能,溶胶-凝胶法、水热法、冷冻-干燥法等方法可以合成形貌、尺寸、结晶度和电化学性能各不相同的LiV3O8。但是材料纳米化的改性方式在提高材料的稳定性方面的效果并不显著。因此,寻求一种低成本和高效率的LiV3O8改性正极材料的制备方法是亟待解决的难题。
石墨烯是一种单原子层厚度的石墨材料,具有独特的二维结构和优异的电学、力学以及热学性能,因此石墨烯复合的正极材料被认为是解决锂离子电池材料电化 学稳定性的有效途径。如何利用石墨烯获得具有特殊形貌和微观结构的电极材料,才是有效改善材料的电化学性能的关键。Runwei Mo(Chem.Commun,10.1039)发明了一种利用石墨烯原位水热复合的方法,合成出一种在石墨烯表面原位生长的LiV3O8纳米棒,该正极材料表现出较为优异的电化学性能。Xinliang Feng(Chem.Commun,10.1002)发明了一种利用石墨烯包覆金属氧化物做负极材料的方法,包覆后的负极材料在电化学性能的各项测试中都有了较明显的提高。但是目前为止,石墨烯与正极材料的复合仍然是研究的难点,电化学性能方面有待有质的提升。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种在大电流密度下,材料性能的提升更加明显的锂离子电池正极材料及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种锂离子电池正极材料,由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是65~90wt%,石墨烯含量为10~35wt%。
锂离子电池正极材料的制备方法,采用以下步骤:
(1)利用表面活性剂将钒源和有机酸或者过氧化氢均匀分散在水溶液中,通过水热法合成前驱体,再利用溶胶-凝胶及高温焙烧制备得到LiV3O8纳米片;
(2)对步骤(1)制备得到的LiV3O8纳米片超声分散,然后通过LiV3O8表面电荷修饰、氧化石墨烯包覆、氧化石墨烯还原以及冷冻干燥,得到石墨烯包覆的LiV3O8片层锂离子电池正极材料。
步骤(1)中:
水热法是将有机酸和钒源均匀混合在水溶液中,然后在70-200℃温度下反应3-20h,合成得到前驱体。其中,钒源选自VO、VO2、V2O5、V2O3或NH4VO3中的一种或几种,有机酸选自柠檬酸、酒石酸、草酸、苹果酸或枸椽酸中的一种或几种。
溶胶-凝胶是将前驱体和一水合氢氧化锂按照钒元素和锂元素的摩尔比按1:10~10:1混合,加入表面活性剂作为分散剂,分散剂与前驱体的质量比为1:10~10:1,室温搅拌1~10h,之后在40~120℃温度下油浴加热并干燥,其中,表 面活性剂选自聚乙二醇、聚乙烯吡咯烷酮、聚氧乙烯或聚氧乙烯-聚氧丙烯共聚物中的一种或几种。
高温焙烧是在300~1000℃环境下在氧气气氛或者空气气氛下焙烧。
步骤(2)中:
超声分散是将LiV3O8纳米片在甲苯溶液中,100~500w功率下超声10~100min。
表面电荷修饰是向超声分散后的溶液中加入3-氨丙基三甲氧基硅烷,3-氨丙基三甲氧基硅烷与甲苯溶液的1:50~1:1,在20~100℃环境下,氮气气氛或者氩气气氛下回流5~40h。
氧化石墨烯包覆是指将经表面电荷修饰的LiV3O8悬浮液滴加进氧化石墨烯中并搅拌1~5h,LiV3O8与氧化石墨烯的质量比为2:1~30:1;
氧化石墨烯还原是滴加水合肼并在室温下搅拌2~20h,氧化石墨烯与水合肼的质量比为1:10~10:1。
冷冻干燥时在-80~-20℃条件下进行的真空干燥。
与负极材料包覆相比,包覆后的LiV3O8正极材料在电化学性能的提升的幅度更大,尤其是在大电流密度下,材料性能的提升更加明显。相对于未包覆LiV3O8,石墨烯包覆LiV3O8纳米片有很好的包覆效果,分散性好,同时石墨烯与LiV3O8形成了紧致的界面层,这些是电池的电阻变得更小,锂离子传输速率更快。这为解决锂离子电池存在的瓶颈问题提供了一个方案,而且这种方法没有副产物,反应条件也相对温和,有利于商业化。
附图说明
图1为为本发明的正极活性物质石墨烯包覆LiV3O8纳米片的X-射线衍射谱图。
图2为本发明的正极活性物质石墨烯包覆LiV3O8纳米片的扫描电镜谱图。
图3为本发明的正极活性物质石墨烯包覆LiV3O8纳米片的透射电镜谱图。
图4为本发明的正极活性物质石墨烯包覆LiV3O8纳米片的高分辨透射电镜谱图。
图5为本发明的正极活性物质石墨烯包覆LiV3O8纳米片层作为正极材料在5A/g电流密度下的电化学性能测试放电数据图。
图6为本发明的正极活性物质石墨烯包覆LiV3O8纳米片层和LiV3O8纳米片的阻抗图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1:
第一步、将2.28g草酸加入到70mL分散有2.55g偏钒酸铵的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体((NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进50mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例2
第一步、将2.28g草酸加入到70mL分散有2.55g偏钒酸铵的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体(NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙烯吡咯烷酮作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基 硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进100mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例3
第一步、将2.28g草酸加入到70mL分散有2.55g偏钒酸铵的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体(NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进25mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例4
第一步、将2.28g柠檬酸加入到70mL分散有2.55g偏钒酸铵的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体(NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基 硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进50mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例5
第一步、将2.28g草酸加入到70mL分散有2.55g五氧化二钒的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体(NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进50mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例6
第一步、将2.55g五氧化二钒加入到70mL 30%的过氧化氢水溶液中,搅拌,然后加入2.28g草酸,继续搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体(NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在450℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基 硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进50mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
实施例7
第一步、将2.28g草酸加入到70mL分散有2.55g偏钒酸铵的水溶液中,搅拌至溶液呈棕黄色,将棕黄色的溶液转移至100mL的高压反应釜中,置于烘箱内,180℃反应12h,抽滤后将样品置于80℃的烘箱内干燥12h,前驱体(NH4)5V2O5。将1g的前驱体((NH4)5V2O5溶解在300mL水溶液中,向溶液中加入0.17g一水合氢氧化锂,然后加入0.2g聚乙二醇4000作为分散剂,先室温搅拌2h,之后80℃环境下油浴加热至溶剂全部蒸干。所得到的样品在550℃空气气氛下焙烧8h得到晶化的LiV3O8纳米片。
第二步、称取0.5g LiV3O8,溶解在50mL的甲苯溶液中,300w功率下超声30min,LiV3O8纳米片分散性更好,然后向溶液中加入1mL的3-氨丙基三甲氧基硅烷,在30℃氩气气氛下回流24h。水洗离心三次后得到APS表面改性的LiV3O8纳米片悬浮液。之后将悬浮液滴加进50mg的氧化石墨烯中,室温搅拌2h后,将16.7mL的水合肼滴加进上述体系中,室温下搅拌12h,将包覆后的氧化石墨烯还原,最后经过离心,水洗,-50℃真空条件下冷冻干燥3天得到石墨烯包覆LiV3O8纳米片目标产物。
图1-4分别为实施例7制备得到的石墨烯包覆LiV3O8纳米片的X-射线衍射谱图、扫描电镜谱图、透射电镜谱图以及高分辨透射电镜谱图。从X-射线衍射谱图可以看出,制备得到的石墨烯包覆LiV3O8纳米片的衍射峰与PDF#72-1193卡片一致;图4中的高分辨电镜图谱中显示的LiV3O8晶格间距d=0.310nm与LiV3O8的(-111)晶面符合;图2扫描电镜谱图、图3透射电镜谱图、图4高分辨透射电镜谱图可是看出LiV3O8纳米片被石墨烯均匀包覆,形貌均一,分散性好,同时石墨烯层非常紧密地与LiV3O8纳米片形成包覆界面,这有利于降低电阻,同时有利于锂离子的传输。
下面的实施例说明采用本发明提供的正极活性物质石墨烯包覆LiV3O8纳米片制备成电池后对电池进行性能测试。
实施例8
电化学性能测试:
(1)电池的制备
样品的电化学性能测试前需制成纽扣型锂电池,样品充当锂电池中电极的正极材料,锂片作为负极。制作流程分为预处理、浆料制作、电极制作、电池组装四个过程。将合成样品石墨烯包覆LiV3O8纳米片(80%)与导电剂super-p(10%)、粘合剂聚偏氟乙烯(10%)混合(质量比)充分搅拌,均匀涂布在铝箔上置于真空干燥箱中,90℃真空干燥12h,烘干后裁剪成扣式电池的正极片,压片,压力大约用4-6个大气压。称量涂有活性物质的电极片重量,根据涂片前空白铝箔的重量和活性物质的比例,计算得出每个电极片中所含活性物质的重量后放入手套箱。
采用金属锂片作负极,l mol/L的LiPF6-EC+DMC(体积比l:l)溶液作电解液。扣式电池的组装在充满氩气的无水无氧的手套箱内进行.电池组装过程1)将电极片放在电池壳正中间,滴加1滴电解液;2)将隔膜轻轻的平整地铺在电极片上;3)用滴管吸取少量电解液,从隔膜边缘的一个方向滴加1到2滴电解液直至隔膜全部润湿;4)将金属锂片放在隔膜的中央,不能直接接触电池壳;5)再将泡沫镍置于锂片的中央;6)盖上电池盖,用力按紧,用封口机密封电池即组装完毕,静置一段时间后待测。
(2)电化学性能测试
样品的恒电流充放电循环测试在LAND-201A电池测试系统上进行,测试电压范围为1.8-4.0V;电化学阻抗在C小时I600B型电化学工作站(上海辰华仪器公司)上进行。图5为电化学性能测试放电数据图,图6为石墨烯包覆LiV3O8纳米片层和LiV3O8纳米片层的阻抗图。从图5电化学性能测试放电数据图可以看出,在5A/g的电流密度下,锂离子电池放电第1圈的电容量为230.9mAh/g,第100圈的电容量为225.5mAh/g,电池放电容量为第1圈的98%,200圈之后放电容量仍然保持214.2mAh/g,这样的电池性能是非常可观的。从图6石墨烯包覆LiV3O8纳米片层和LiV3O8纳米片层的阻抗图可以看出,石墨烯包覆后的LiV3O8纳米片层相比于包覆之前的LiV3O8纳米片层,电阻变得更小,锂离子传输速率更快,这些可以进一步解释石墨烯包覆后的LiV3O8纳米片层拥有如此好的电化学性能的原因。在大电流密度下,材料的电池稳定性更加明显。
实施例9
一种锂离子电池正极材料,由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是65wt%,石墨烯含量为35wt%。其制备方法采用以下步骤:
(1)利用表面活性剂将VO2和柠檬酸均匀分散在水溶液中,在70℃温度下反应20h,合成得到前驱体,再将前驱体和一水合氢氧化锂按照钒元素和锂元素的摩尔比按1:10混合,加入表面活性剂聚乙二醇作为分散剂,分散剂与前驱体的质量比为1:10,室温搅拌1h,之后在40℃温度下油浴加热并干燥,,最后在300℃的氧气气氛下高温焙烧制备得到LiV3O8纳米片;
(2)对步骤(1)制备得到的LiV3O8纳米片超声分散,具体来说,是将LiV3O8纳米片在甲苯溶液中,100w功率下超声100min,然后向超声分散后的溶液中加入3-氨丙基三甲氧基硅烷,3-氨丙基三甲氧基硅烷与甲苯溶液的1:50,在20℃环境下,氮气气氛下回流40h,从而实现LiV3O8表面电荷修饰,经表面电荷修饰的LiV3O8悬浮液滴加进氧化石墨烯中并搅拌1h,LiV3O8与氧化石墨烯的质量比为2:1,滴加水合肼并在室温下搅拌2h,氧化石墨烯与水合肼的质量比为1:10,最后在-80℃条件下进行的真空冷冻干燥,得到石墨烯包覆的LiV3O8片层锂离子电池正极材料。
实施例10
一种锂离子电池正极材料,由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是90wt%,石墨烯含量为10wt%。其制备方法采用以下步骤:
(1)利用表面活性剂将V2O5和过氧化氢均匀分散在水溶液中,在200℃温度下反应3h,合成得到前驱体,再将前驱体和一水合氢氧化锂按照钒元素和锂元素的摩尔比按10:1混合,加入表面活性剂聚氧乙烯-聚氧丙烯共聚物作为分散剂,分散剂与前驱体的质量比为10:1,室温搅拌10h,之后在120℃温度下油浴加热并干燥,最后在1000℃的氧气气氛下高温焙烧制备得到LiV3O8纳米片;
(2)对步骤(1)制备得到的LiV3O8纳米片超声分散,具体来说,是将LiV3O8纳米片在甲苯溶液中,500w功率下超声10min,然后向超声分散后的溶液中加入3-氨丙基三甲氧基硅烷,3-氨丙基三甲氧基硅烷与甲苯溶液的1:1,在100℃环境下,氩气气氛下回流5h,从而实现LiV3O8表面电荷修饰,经表面电荷修饰的LiV3O8悬浮液滴加进氧化石墨烯中并搅拌5h,LiV3O8与氧化石墨烯的质量比为30:1,滴 加水合肼并在室温下搅拌20h,氧化石墨烯与水合肼的质量比为10:1,最后在-20℃条件下进行的真空冷冻干燥,得到石墨烯包覆的LiV3O8片层锂离子电池正极材料。

一种锂离子电池正极材料及其制备方法.pdf_第1页
第1页 / 共11页
一种锂离子电池正极材料及其制备方法.pdf_第2页
第2页 / 共11页
一种锂离子电池正极材料及其制备方法.pdf_第3页
第3页 / 共11页
点击查看更多>>
资源描述

《一种锂离子电池正极材料及其制备方法.pdf》由会员分享,可在线阅读,更多相关《一种锂离子电池正极材料及其制备方法.pdf(11页珍藏版)》请在专利查询网上搜索。

本发明涉及一种锂离子电池正极材料的制备方法,由LiV3O8纳米片层,以及在LiV3O8表面包覆的石墨烯层复合得到,其中,LiV3O8纳米片的含量是6590wt,石墨烯含量为1035wt,制备时结合水热合成法、溶胶-凝胶法、表面改性包覆的方法,合成得到具有优良电化学性能的电池材料。与现有技术相比,本发明既保留了LiV3O8片层本身的晶体结构稳定性,同时又以石墨烯作为载体,形成了比表面积更大、导电性更。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 电学 > 基本电气元件


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1