基于贝叶斯网络模型的泥石流灾害危险性评价方法技术领域
本发明属于自然灾害危险性评价技术领域,具体涉及一种基于贝叶斯网
络模型的泥石流灾害危险性评价方法。
背景技术
泥石流是常见的地质次生灾害。泥石流可以在很短的时间内聚集,然后
滑体很快从势能转化成动能。泥石流灾害会对人民的生命财产带来巨大的灾
害,并对社会经济发展造成很大的威胁。因此区域泥石流灾害危险性评价对
区域经济的健康、快速和可持续发展具有重要意义。泥石流灾害的危险性是
一个地区在一定时期内泥石流灾害活动程度的综合反映,即一个地区在某一时
期内可能发生的某种泥石流灾害的密度、规模、频次,以及可能产生的危害范
围与危害强度的综合概括。为此,需要对泥石流灾害的危险性进行评价。泥
石流灾害的危险性评价主要是根据待评价区域内的地形、地质、降雨、植被
覆盖情况等参数,或采用遥感、GIS、计算机、灾害评价模型等辅助技术,确
定待评价区域内发生泥石流灾害的危险性的高低。
现有的泥石流灾害的危险性评价方法主要有定性评价方法、统计分析方
法以及人工智能评价方法等。但是现有的这些泥石流灾害的危险性评价方法
得到的评价结果精确度不高,无法对待评价区域内的泥石流灾害的危险性做
出准确的评价。
发明内容
有鉴于此,本发明的目的在于提供一种精确度更高的泥石流灾害的危险
性评价方法,以对待评价区域内的泥石流灾害的危险性做出更为准确的评价。
为实现上述目的,本发明提供一种基于贝叶斯网络模型的泥石流灾害危
险性评价方法,其特征在于,包括:确定评价单元;对所述评价单元的泥石
流灾害评价参数进行处理得到所述评价单元的泥石流灾害评价指标;依据所
述评价单元内泥石流灾害发生的历史数据以及所述评价指标构建训练样本
集,所述历史数据表示所述评价单元内是否发生过泥石流灾害;依据所述训
练样本集构建贝叶斯网络模型;采用所述贝叶斯网络模型对待评价区域内的
泥石流灾害的危险性进行评价。
优选地,所述确定评价单元包括:
利用数字高程模型数据提取出小流域,将所述小流域确定为所述评价单
元。
优选地,所述对所述评价单元的泥石流灾害评价参数进行处理得到所述
评价单元的泥石流灾害评价指标,包括:
对所述评价单元的泥石流灾害评价参数进行预处理;
对经过预处理的所述泥石流灾害评价参数进行归一化、离散化和整数化
处理得到所述评价单元的泥石流灾害评价指标。
优选地,所述依据所述训练样本集构建贝叶斯网络模型,包括:
利用所述训练样本集对所述贝叶斯网络模型进行训练;
以及对所述贝叶斯网络模型进行参数学习。
优选地,采用所述贝叶斯网络模型对待评价区域内的泥石流灾害的危险
性进行评价前,还包括:
判断所述贝叶斯网络模型是否满足预定要求,如果否,则执行依据所述
评价单元内泥石流灾害发生的历史数据以及所述评价指标构建训练样本集的
步骤。
本发明实施例提供的泥石流灾害的危险性评价方法,结合评价单元内泥
石流灾害发生的历史数据以及评价单元的泥石流灾害评价参数等构建贝叶斯
网络模型,并采用该贝叶斯网络模型对待评价区域内泥石流灾害的危险性进
行评价;与现有技术中的其他泥石流灾害的评价方法相比,该方法通过评价
单元内泥石流灾害发生的历史数据以及评价单元的泥石流灾害评价参数的结
合建立贝叶斯网络模型,采用该模型对待评价区域内的泥石流灾害的危险性
进行评价,极大地提高了泥石流灾害评价结果的准确度,采用该评价方法,
能够对待评价区域内的泥石流灾害的危险性做出较为准确的评价。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实
施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面
描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不
付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明基于贝叶斯网模型的泥石流灾害危险性评价方法的流程图;
图2是本发明实施例一基于贝叶斯网模型的泥石流灾害危险性评价方法
的流程图;
图3是本发明实施例一机器学习得到的贝叶斯网络模型的结构图;
图4是本发明实施例一调整后的贝叶斯网络模型的结构图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发
明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,
显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于
本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获
得的所有其他实施例,都属于本发明保护的范围。
现有技术中,泥石流灾害的危险性评价方法主要有定性评价方法、统计
分析方法以及人工智能评价方法等。定性评价方法又叫专家打分法,一般情
况下,地貌或地质方面的专家到实地通过对当地的地形、地质、水文、降雨、
植被覆盖等条件进行考察,然后根据自己的知识和以往的经验,当场给出泥
石流灾害的危险程度。该方法主要根据专家自身的知识和经验,没有结合历
史数据和评价单元的数据参数,评价的精确度很低。
统计分析方法主要是利用统计学方法对泥石流灾害的危险性进行评价,
主要有二元统计分析方法和多元统计分析方法。首先,收集足够多的泥石流
发生的历史数据和发生地的地形、地质、水文、降雨、植被覆盖等参数的完
整数据;第二,根据收集来的数据,提取发生地的泥石流灾害发生的评价指
标;第三,利用统计分析的方法和相关统计软件,建立泥石流灾害发生的危
险性高低与评价指标之间的统计模型;最后,用取得的统计模型对未知的地
区进行评价,得到泥石流灾害发生的危险性高低。统计分析的方法需要大量
完整的数据来进行统计分析,在实际应用中获取大量完整的数据是很困难的,
因此,一般情况下,采用该方法得到的泥石流灾害的危险性评价结果的准确
度也较低。
人工智能方法主要是利用人工智能的理论和算法对泥石流灾害危险性进
行评价。首先,收集泥石流发生的历史数据和相关的地形、地质、水文、降
雨、植被覆盖等数据;第二,利用遥感和GIS等技术手段和评价指标提取方
法,计算出灾害危险性评价指标;第三,选择部分已知泥石流发生情况的地
方,构建训练数据集;第四,采用机器学习的理论和技术,用训练数据集对
人工智能模型进行训练;最后,利用训练好的模型对未知区域进行评价。通
常用于泥石流灾害危险性评价的人工智能模型有:人工神经网络、支持向量
机、决策树等。但是,一般的人工智能评价方法有如下缺点:不能同时把不
同领域的知识整合到一个统一的系统进行灾害评价;也不能解决灾害评价中
的不确定性问题。因此,现有的人工智能评价方法对泥石流灾害的危险性评
价结果同样不够准确。
随着科技的发展,要求泥石流灾害的危险性评价结果的准取度越来越高,
本申请的发明人通过仔细分析研究后发现,将贝叶斯网络模型应用到泥石流
灾害的危险性评价领域,并结合待评价区域内发生泥石流灾害的历史数据以
及评价单元的泥石流灾害评价参数构建新的贝叶斯网络模型,采用该新的贝
叶斯网络模型对泥石流的危险性进行评价,能够极大地提高泥石流灾害危险
性评价结果的准确度。
贝叶斯网络是一种概率网络,它是基于概率推理的图形化网络,贝叶斯
理论是这个概率网络的基础。贝叶斯网络是基于概率推理的数学模型,所谓
概率推理就是通过一些变量的信息来获取其他的概率信息的过程;贝叶斯网
络用条件概率表达各个信息要素之间的相关关系,能在有限的、不完整的、
不确定的信息条件下进行学习和推理。
本发明实施例基于贝叶斯网络模型的泥石流灾害危险性评价方法,采用
评价单元内泥石流灾害发生的历史数据以及该评价单元的泥石流灾害评价指
标作为信息要素,并在这些信息要素相互关系的基础上建立贝叶斯网络模型,
最后采用该贝叶斯网络模型对待评价区域的泥石流灾害的危险性进行评价。
本发明实施例提供一种基于贝叶斯网模型的泥石流灾害危险性评价方
法,其流程图如图1所示,包括以下步骤:
步骤S101:确定评价单元。
评价单元是指作为泥石流灾害危险性评价的最小单元,在对大的区域范
围(甚至国家范围)进行泥石流灾害危险性进行评价时,流域提取计算比较
复杂,对计算机性能比较高,此时可以先根据大的流域划分,对评价范围进
行划分,然后在此基础上,基于流域边界提取算法,利用数字高程模型(Digital
Elevation Model,DEM)数据,提取出小流域。具体地,该DEM数据可以是
90m分辨率。
步骤S102:对评价单元的泥石流灾害评价参数进行处理得到评价单元的
泥石流灾害评价指标。
泥石流灾害的评价参数包括降雨数据(年连续三天最大降雨值和年降雨
量大于25mm的天数)、植被覆盖度指数、断裂带长度、坡度大于25度的面
积百分比、流域最大高程差以及流域形状系数等参数,还可以包括其他参数。
需要说明的是,鉴于上述泥石流灾害的评价参数的单位不同,因此首先
可以对其进行归一化处理、然后进行离散化和整数化处理,以便在后续步骤
中使用。
步骤S103:依据评价单元内泥石流灾害发生的历史数据以及评价指标构
建训练样本集,历史数据表示评价单元内是否发生过泥石流灾害。
由于泥石流灾害的发生一般具有反复性,所以,评价单元内泥石流灾害
发生的历史数据对该评价单元内今后该地区会否发生泥石流灾害有重要的参
考价值。
具体地,在本发明实施例中,根据评价单元内泥石流灾害发生的历史数
据,把曾有泥石流灾害发生的评价单元定义为有灾害危险评价单元,把没有
泥石流灾害发生的评价单元定义为无灾害危险评价单元,挑选出部分有灾害
危险评价单元和部分无灾害危险评价单元,作为训练样本集,即训练样本集
是若干个评价单元的评价指标和是否有灾害危险的类别指标组成的数据集。
在本发明的一个实施例中,尽量均匀地挑选出部分有灾害危险评价单元和部
分无灾害危险评价单元作为训练样本集,以提高模型训练的准确性。
步骤S104:依据训练样本集构建贝叶斯网络模型。
具体地,可以结合专家的先验知识利用训练集构建贝叶斯网络模型;与
只由先验知识断定的专家打分法、只由评价单元的地质水文等参数确定的统
计分析方法和人工智能方法相比,本发明实施例将训练集和先验知识相结合
构建贝叶斯网络模型,采用该贝叶斯网络模型对泥石流灾害的危险性进行评
价,可以提高评价的准确度。
步骤S105:采用贝叶斯网络模型对待评价区域内的泥石流灾害的危险性
进行评价。
具体地,可以将该待评价区域内的泥石流灾害评价指标输入贝叶斯网络
模型,从而推导出该区域发生泥石流灾害的概率,然后根据发生概率的高低,
对其发生泥石流灾害的危险性进行分级。
本发明实施例提供的泥石流灾害的危险性评价方法,结合评价单元内泥
石流灾害发生的历史数据以及评价单元的泥石流灾害评价参数等构建贝叶斯
网络模型,并采用该贝叶斯网络模型对待评价区域内泥石流灾害的危险性进
行评价;与现有技术中的其他泥石流灾害的评价方法相比,该方法通过评价
单元内泥石流灾害发生的历史数据以及评价单元的泥石流灾害评价参数的结
合建立贝叶斯网络模型,采用该模型对待评价区域内的泥石流灾害的危险性
进行评价,极大地提高了泥石流灾害评价结果的准确度,采用该评价方法,
能够对待评价区域内的泥石流灾害的危险性做出较为准确的评价。
实施例一
本发明实施例一提供一种基于贝叶斯网络模型的泥石流灾害危险性评价
方法,其流程图如图2所示,该方法包括以下步骤:
步骤S201:把大流域分割成若干个小流域,将小流域确定为评价单元。
具体地,在本发明实施例中,如果评价范围较大,则首先把大流域边界
分割成小块,基于小流域提取算法,提取出这些小块的小流域,将这些小流
域确定为评价单元。
步骤S202:对评价单元的泥石流灾害评价参数进行预处理。
具体地,在本发明实施例中,可以采用如下方式对评价单元的泥石流灾
害评价参数进行预处理:
对于年连续最大降雨值:可以首先对评价范围内的各个气象站点的降雨
数据进行统计,得到各个站点的年连续三天最大降雨值,然后利用气象站点
的年连续三天最大降雨值对整个评价单元进行空间插值,得到年连续三天最
大降雨值的空间化栅格数据,然后与评价单元的流域边界做栅格统计,计算
出该评价单元的年连续三天最大降雨值的平均值。在本发明实施例中,具体
可以采用ArcMap中的Zonal Statistics功能集合评价单元边界数据做栅格统
计,计算出评价单元的年连续三天最大降雨值。
对于年降雨量大于25mm的天数:首先对评价范围内的各个气象站点的
降雨数据进行统计,得到各个站点的年降雨量大于25mm的天数,然后利用
气象站点的年降雨量大于25mm的天数对整个评价范围进行空间插值,得到
年降雨量大于25mm的天数的空间化栅格数据,然后与评价单元的流域边界
做栅格统计,计算出该评价单元的年降雨量大于25mm的天数的平均值。在
本发明实施例中,具体也可以采用ArcMap中的Zonal Statistics功能集合评价
单元边界数据做栅格统计,计算出评价单元的年连续三天最大降雨值。
对于植被覆盖度:可以利用植被覆盖度指数计算公式(1),对评价单元内
的土地利用数据进行处理,计算得到植被覆盖度指数的栅格数据:
I vc = A vcg × ( Σ i = 1 5 W i × ( Σ j = 1 n SW j × S j ) ) / S a - - - ( 1 ) ]]>
其中,Ivc代表植被覆盖度指数值,Avcg为归一化系数,由具体模型参数
决定,Wi为土地利用第一大类的权重,SWj为土地利用类型子类的权重,Sj为
土地利用类型子类的面积,Sa为评价单元的总面积。
对于断裂带长度:可以首先评价单元内的断裂带分布数据和流域边界数
据做Intersect处理,然后统计处流域内断裂带的总长度。
对于评价单元内坡度大于25度的面积百分比:鉴于坡度大于25度的土
地面积百分比对泥石流灾害发生的可能性的大小有重要影响,因此,本发明
实施例中将评价单元内坡度大于25度的面积百分比作为泥石流灾害危险性评
价的一个重要参数。具体地,根据所利用的DEM数据的分辨率不同,可以把
评价单元分成若干个小的评价区域,首先利用DEM数据计算出评价单元内每
个评价区域的坡度值,由于坡度大于25度的评价区域对泥石流灾害的危险性
评价影响较大,而坡度小于或等于25度的评价区域对泥石流灾害的危险性评
价影响较小,所以把坡度大于25度的评价区域赋值为1,把坡度小于或等于
25度的评价区域赋值为0;然后用评价单元内赋值为1的区域的面积除以评
价单元的总面积,得到评价单元内坡度大于25度的土地的面积百分比。
对于评价单元内的最大高程差:评价单元的最大高程差是指评价单元内
海拔最高点和海拔最低点之间的高度差;具体地,可以利用评价单元边界和
DEM数据进行栅格统计,计算出评价单元内的最大高程差。
对于流域形状数据:具体地,可以采用公式(2)计算评价单元内的流域
形状数据:
K g = P / 2 πA = 0.28 P / A - - - ( 2 ) ]]>
其中:Kg为流域形状系数,P是流域的边界长度,A是流域的面积。
需要说明的是,上述这些泥石流灾害评价参数并不是孤立存在的,而是
相互影响相互依存,例如,植被覆盖度指数受降雨数据的影响,坡度大于25
度的面积百分比在一定程度上决定流域最大高程差。
步骤S203:对经过预处理的泥石流灾害评价参数进行归一化、离散化以
及整数化处理得到评价单元的泥石流灾害评价指标。
由于经过步骤S202进行预处理的泥石流灾害评价参数是一些有量纲的
量,但是在后续训练样本集构建过程中需要的是无量纲的量,因此可以对经
过预处理的泥石流灾害评价参数做进一步的处理。
具体地,可以对经过预处理的泥石流灾害评价参数进行归一化处理,具
体可以采用以下方式:
X i ′ = X i - X min X max - X min , ( i = 1,2 , . . . , n ) - - - ( 3 ) ]]>
其中:X′i为归一化后的值,Xi为第i个评价单元对应的评价指标的值,Xmin
为对应的评价指标的最小值,Xmax为对应的评价指标的最大值。
需要说明的是,归一化处理是对各种泥石流灾害评价参数分别进行归一
化处理;针对上述七组泥石流灾害评价参数,归一化处理后可以得到对应的
七组数据。
经过归一化处理后的泥石流危险性评价参数是一组组连续的无量纲的
量,且数值大小在0~1之间。
需要说明的是,还可以对归一化处理后的泥石流灾害评价参数进行离散
化处理;具体地,可以采用如下方式进行离散化处理:对连续的泥石流灾害
评价参数进行分段处理。
对归一化离散化处理之后的泥石流灾害评价参数进行整数化处理得到评
价指标,具体地,可以将分段的泥石流灾害评价参数整数化得到评价指标,
以便于评价指标在后续步骤的应用。
步骤S204:依据评价单元内泥石流灾害发生的历史数据以及评价指标构
建训练样本集,历史数据表示该评价单元内是否发生过泥石流灾害。
具体地,在本发明实施例中,根据评价单元内泥石流灾害发生的历史数
据,把曾有泥石流灾害发生的评价单元定义为有灾害危险评价单元,把没有
泥石流灾害发生的评价单元定义为无灾害危险评价单元,挑选出部分有灾害
危险评价单元和部分无灾害危险评价单元,作为训练样本集。在本发明的一
个实施例中,尽量均匀地挑选出部分有灾害危险评价单元和部分无灾害危险
评价单元作为训练样本集,以使训练后的贝叶斯网络模型尽量准确。
步骤S205:依据训练样本集构建贝叶斯网络模型。
具体地,可以结合专家的先验知识利用训练集构建贝叶斯网络模型;与
只由先验知识断定的专家打分法、只由评价单元的地质水文等参数确定的统
计分析方法和人工智能方法相比,本发明实施例将训练集和先验知识相结合
构建贝叶斯网络模型,采用该贝叶斯网络模型对泥石流灾害的危险性进行评
价,可以提高评价的准确度。
具体地,依据训练样本集构建贝叶斯网络模型可以包括以下步骤:
首先,利用数据集对贝叶斯网络模型进行训练;
在本发明的一个实施例中,可以采用如下方式对贝叶斯网络模型进行训
练:首先采用K2算法,在训练样本集上进行无监督的机器学习,得到贝叶斯
网初始网络结构。然后利用专家知识对机器学习得到的网络结构进行微调,
最后得到符合要求的贝叶斯网络模型。
如图3所示为机器学习得到的贝叶斯网络的结构。其中,C为目标变量,
X1为年连续三天最大降雨值;X2为年降雨值大于25mm的天数;X3为植被
覆盖指数;X4为断裂带长度;X5为坡度大于25度面积百分比;X6为流域
最大高程差;X7为流域形状系数。在本发明的一个实施例中,泥石流灾害的
评价指标可以具有如下关系:植被覆盖度指数受降雨数据的影响,坡度大于
25度的面积百分比在一定程度上决定流域最大高程差,泥石流灾害的发生是
各评价指标综合作用的结果。根据已有的研究成果,泥石流灾害的发生与该
区域的植被覆盖度状况有一定的关系,因此在本发明实施例中添加了从目标
变量C到植被覆盖指数的边,同时去掉了从降雨值大于25mm的天数到植被
覆盖指数的边,调整后的贝叶斯网络的结构如图4所示。
本发明实施例采用贝叶斯网络模型考虑了这些评价参数之间的依存和影
响关系,一方面,使得评价结果更为准确;另一方面,某些情况下评价参数
不够完整时,可以通过已知的评价参数和它们之间的相互关系推导出该未知
参数,进而采用贝叶斯网络模型对待评价区域内的泥石流灾害的危险性进行
评价。
然后,对贝叶斯网络模型进行参数学习;
确定每个节点的参数,利用训练模型对模型进行训练,确定模型的每个
节点的参数。具体地,可以通过对贝叶斯网络模型进行参数学习,可以确定
图4中所示的节点的参数,得到性能最佳的贝叶斯网络模型;并记录该最佳
模型对应的各节点的参数,以便采用这些参数确定贝叶斯网络模型,并采用
该贝叶斯网络模型对待评价区域的泥石流灾害的危险性进行评价。
步骤S206:判断贝叶斯网络模型是否满足预定要求,如果否,则执行依
据评价单元内泥石流灾害发生的历史数据以及评价指标构建训练样本集的步
骤。
具体地,每次把训练样本集分成两部分,一部分作为训练集,一部分作
为测试集,用训练集对模型进行训练,然后把测试集输入训练好的模型,然
后统计模型的评价结果与测试集中评价单元的灾害危险性分类结果(有灾害
危险性或无灾害危险性)进行对比,当输出的概率值大于等于0.5,且类别为
有危险,或输出概率值小于0.5,且类别为无危险,则认为评价结果正确,否
则,评价结果不正确。反复循环进行以上操作,并记录统计结果,然后根据
统计结果,算出模型性能评价指标值。用模型性能评价指标值,对模型性能
进行评价,如果评价结果达到预定的要求,则该贝叶斯网络模型符合要求;
如果该评价结果的准确度达不到预定的要求,则返回步骤S205,重新调整训
练数据集或重新建立贝叶斯网络模型结构,然后对贝叶斯网络模型进行训练
并对模型评价性能进行检验,直至达到预定要求,然后保存训练数据和模型
用于对待评价区域进行评价。
步骤S207:采用贝叶斯网络模型对待评价区域内的泥石流灾害的危险性
进行评价;最后输出泥石流危险性等级分布图的栅格数据。
由于步骤S206中对贝叶斯网络模型评价结果的准确度进行了检验,保证
了贝叶斯网络模型的评价准确度。所以采用该贝叶斯网络模型对待评价区域
内的泥石流灾害的危险性进行评价得到的评价结果准确度较高。
本发明实施例是提供了一种基于贝叶斯网络模型对泥石流灾害的危险性
进行评价的方法。贝叶斯网络模型是一个进行知识表达和推理的有效工具,
它能充分利用训练数据集和专家知识构建模型结构;同时贝叶斯网模型也是
一个有效的概率推理工具,可以有效的解决泥石流灾害危险性评价中的不确
定性问题和准确度差的问题;此方法用小流域为评价单元,更符合泥石流发
生机理。
根据本发明实施例中,结合先验知识、泥石流灾害发生的历史数据以及
评价单元的评价参数等构建贝叶斯网络模型,采用训练数据集中的训练集对
贝叶斯网络模型进行训练,并采用训练数据集中的数据集对贝叶斯网络模型
进行结构学习及调整,保证了贝叶斯网络模型的精确度;最后采用精确度较
高的贝叶斯网络模型对待评价区域内泥石流灾害的危险性进行评价。该方法
通过先验知识、历史数据以及数据参数的结合,极大地提高了泥石流灾害评
价结果的准确度,采用该评价方法,能够对待评价区域内的泥石流灾害的危
险性做出较为准确的评价,为泥石流灾害危险性评价的业务化运行提供了技
术支持。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普
通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润
饰,这些改进和润饰也应视为本发明的保护范围。