长效抗菌金属表面及其制备方法.pdf

上传人:62****3 文档编号:4043374 上传时间:2018-08-12 格式:PDF 页数:22 大小:3.32MB
返回 下载 相关 举报
摘要
申请专利号:

CN201380035659.4

申请日:

2013.07.02

公开号:

CN104583446A

公开日:

2015.04.29

当前法律状态:

驳回

有效性:

无权

法律详情:

发明专利申请公布后的驳回IPC(主分类):C23C 4/00申请公布日:20150429|||实质审查的生效IPC(主分类):C23C 4/00申请日:20130702|||公开

IPC分类号:

C23C4/00; C23C8/00; C23C14/00; B22F3/11; C23C12/02

主分类号:

C23C4/00

申请人:

伯明翰大学

发明人:

董汉山; 李晓英; 董阳春; 田林海

地址:

英国西米德兰兹郡

优先权:

1211976.4 2012.07.05 GB

专利代理机构:

北京三高永信知识产权代理有限责任公司11138

代理人:

滕一斌

PDF下载: PDF下载
内容摘要

一种改性不锈钢或钴-铬(Co-Cr)基合金制品的表面特征的方法,包括同时使用空隙间的和取代的合金元素,在温度为300-600℃的范围内、压力为100-1500Pa、包含含N、含C或含N/C气体的气氛中,使该制品进行等离子表面共合金化1-50小时(例如通过活性屏等离子表面共合金化)。

权利要求书

权利要求书
1.  一种改性不锈钢或钴-铬(Co-Cr)基合金制品的表面特征的方法,包括:同时使用空隙间的和取代的合金元素,在300-600℃的温度范围内、压力为100-1500Pa、在包括含N、含C或含N/C气体的气氛中,对所述制品进行等离子表面共合金化1-50小时(例如通过活性屏等离子表面共合金化)。

2.  根据权利要求1所述的方法,其中,所述空隙间的合金元素为用于形成坚硬的和耐磨/蚀S-相的N、C或N和C,所述取代的合金元素为用于提供抗菌功效的Ag、Cu或Ag和Cu。

3.  根据权利要求1所述的方法,其中,所述需要改性的表面特性为硬度、耐磨性、耐蚀性、疲劳强度和抗菌性能中的一种或多种。

4.  根据权利要求1所述的方法,其中,所述活性屏等离子单元包含复合或混合金属屏,例如整个屏或屏的一部分,包括混有浓度范围为10-70wt%的Ag、Cu或Ag和Cu的不锈钢网或Co-Cr合金网。

5.  根据权利要求4所述的方法,其中,所述复合或混合金属屏通过不锈钢或Co-Cr微粉与Ag/Cu纳米粉在温度为700-1000℃、压力为60-120MPa下热等静压(HIPping)1-5小时制成。

6.  根据权利要求4所述的方法,其中,所述复合或混合金属屏通过编织奥氏体不锈钢或Co-Cr合金与Ag/Cu带制成,或通过接线奥氏体不锈钢或Co-Cr合金网与Ag/Cu带制成。

7.  根据权利要求1所述的方法,其中,引入包括Ag、Cu或Ag/Cu的加偏压目标源作为附加源阴极,通过调整作用于附加源阴极的偏压实现Ag、Cu或Ag/Cu百分数的变化。

8.  根据权利要求1、2或3所述的方法,其中,所述表面特性需要改性的制品为医疗植入物,例如关节或膝关节假体。

9.  根据权利要求8所述的方法,其中,所述等离子处理在温度范围为350-550℃下进行。

10.  根据权利要求9所述的方法,其中,所述等离子处理在温度范围为400-500℃下进行。

11.  根据权利要求1、2或3所述的方法,其中,表面特征需要改性的所述制品为医疗工具(例如手术或牙科工具)或食品加工组件和医院设施。

12.  根据权利要求11所述的方法,其中,所述等离子处理在温度范围为400-650℃下进行。

13.  根据权利要求12所述的方法,其中,所述等离子处理在温度范围为450-550℃下进行。

14.  根据前述任一项权利要求所述的方法,其中,所述处理压力为在400-600Pa的范围内。

15.  根据前述任一项权利要求所述的方法,其中,所述处理的持续时间为在1-50小时的范围内。

16.  根据权利要求15所述的方法,其中,所述处理的持续时间为在5-30小时的范围内。

17.  根据前述任一项权利要求所述的方法,其中,所述等离子处理在存在至少一种选自氢气、氦气、氩气或其它稀有气体的非反应性气体时进行。

18.  根据前述任一项权利要求所述的方法,其中,所述等离子处理在存在至少一种反应性气体时进行。

19.  根据权利要求18所述的方法,其中,所述反应性气体为含氮气体。

20.  根据权利要求18所述的方法,其中,所述反应性气体为含碳气体。

21.  根据权利要求18所述的方法,其中,所述等离子处理在300-500℃的温度范围内起作用。

22.  根据权利要求18-21任一项所述的方法,其中,所述反应性气体占总气氛体积的0.5-30%。

23.  根据权利要求17所述的方法,其中,所述非反应性气体为氢气或氢气与氩气的混合物;所述含碳气体为甲烷。

24.  根据前述任一项权利要求所述的方法,其中,所述或每一种含碳气体占气氛总体积的0.5-20%。

25.  一种通过权利要求1-24任一项所述方法得到的表面硬化的不锈钢或Co-Cr合金基制品,所述制品的特征在于,表面区包括:
(i)由Ag、Cu或Ag/Cu嵌入的薄S-相表面层;和
(ii)厚的表面下的S-相外壳。

26.  根据权利要求26所述的制品,其中,所述表面区包括由Ag、Cu或Ag/Cu嵌入的表面S-相层,以及厚度范围为1-50μm的表面下的S-相外壳。

27.  一种用于根据权利要求1所述的活性屏等离子共合金化的复合或混合金属屏,通过不锈钢或Co-Cr微粉与Ag/Cu纳米粉在温度为700-1000℃、压力为60-120MPa下热等静压1-5小时得到。

28.  一种用于根据权利要求1所述的活性屏等离子共合金化的复合或混合金属屏,通过编织奥氏体不锈钢或Co-Cr合金与Ag/Cu带制成,或通过接线奥氏体不锈钢或Co-Cr合金网与Ag/Cu带得到。

29.  一种含有根据权利要求27和28所述的复合或混合屏的活性屏等离子装置。

说明书

说明书长效抗菌金属表面及其制备方法
技术领域
本发明涉及一种长效抗菌金属表面,尤其涉及一种含有银和/或铜掺杂的超硬S-相的长效抗菌金属表面,以及制备该长效抗菌金属表面的方法。
背景技术
银(Ag)及其化合物是最强杀菌剂的一种,因为生物活性银离子可通过与细菌蛋白质及酶中的硫醇基相互作用而使细菌失活[1]。首次记载银作为抗菌剂使用可追溯至1881年,当时硝酸银用于预防淋菌性新生儿眼炎[2]。银由此被研究,并发现一些应用,例如含Ag的PMMA骨水泥,含Ag留置尿管、绷带和不锈钢固定装置[3,4]。同样地,铜(Cu)也已经历史性地作为卫生材料在世界范围内使用,因为Cu也具有抗菌功效[5]。
目前,有两种在金属材料上形成含银或铜抗菌表面的方法:(1)用银与本体材料表面合金化和(2)用含Ag或Cu复合薄膜层涂覆基底。第一种方法中,通过离子植入用Ag或Cu掺杂金属表面[6]。但是,植入的表面层一般<0.5μm,因此由于使用中不可避免的磨损和剪切,所以其耐用度很差。另外,离子植入是一个视线处理过程,因此,即使不是不可能的,也很难均匀地处理具有复杂3-D形状的部件。
第二种方法,含Ag涂层,是研究最多的方法,并且一些工业化生产过程,例如AgIONTM,可用于涂覆不锈钢表面。但是,AgIONTM基本上是掺杂Ag的聚合物涂层,因此,它是专为无摩擦的应用设计的,耐用性差[7]。一些研究人员试图生产Ag或Cu-陶瓷复合涂层以增强耐磨性,例如PACVD沉积的薄Ag-DLC复合涂层[8]或热喷涂的Ag-TiO2复合涂层[9]。但是,这些薄涂层的抗菌功效不能持续很久,主要是由于其低承载能力及预计的短耐用期;喷涂涂层抗菌功效的耐用期受限于其多孔性和与基底的非常低的结合性。这些涂层的失败将导致Ag或Cu离子快速浸出并造成有害的毒性作用。
本发明的一个目的是开发新的表面工程技术,其能够消除或减轻上述缺陷, 产生高效、持久和最小浸出的抗菌金属表面。其实现方式是,通过等离子表面共合金化(例如通过活性屏等离子共合金化),与空隙间的元素(例如N、C或N/C)形成硬的和耐磨的S-相,并且与取代的元素(例如Ag、Cu或Ag/Cu)形成缓慢持续释放Ag、Cu或Ag和Cu两者以实现长期抗菌功效的抗菌剂储层。
发明内容
广义而言,本发明提供一种新型等离子表面工程技术,其基于不锈钢和Co-Cr合金与取代的合金元素(例如Ag、Cu等)和空隙间的合金元素(例如N、C等)同时表面共合金化,以生产具有高硬度、高耐磨性、良好耐蚀性以及长效和高抗菌功效的新型多功能表面。该新型长效抗菌不锈钢表面可用于医疗器械(例如医学器具和移植物)以预防术后感染,用于医院设备以避免医院感染,和用于食品加工设备以减少食物中毒以及用于厨房用具以改善卫生。
使用等离子表面合金以增强铁质材料的表面性质已经超过20年。近来,已经表明,奥氏体不锈钢和Co-Cr合金与这些空隙间的合金元素如氮和碳的低温等离子表面合金化,通过形成空隙间的高度过饱和展开的奥氏体,即S-相[10],实现了腐蚀、磨损和疲劳综合性能的改善。S-相层非常硬(800-1200HV),且耐磨,可在磨损条件下产生高的耐久性。因此,S-相层可能是长效抗菌表面的理想基底。但是,使用传统的DC或RF等离子表面合金与Ag和/或Cu几乎是不可能产生有效抗菌表面层的,因为在温度小于450℃时不可能形成稳定的Ag/Cu等离子体,而且取代的Ag/Cu元素在低温下的扩散非常低。
可利用的是一种先进的活性屏等离子(ASP)技术(图1),其实质上是全部的工作负载基本上被金属屏包围,其上施加高压阴极电位,形成等离子体(由此使用术语“活性屏”)。将需要处理的零件置于悬浮电位,或施加相对低的偏压。在屏上形成的等离子体含有金属离子、电子和其它活性物质的混合物,其随后通过特别设计的气流和/或电场(如果使用偏压)被激发而流经屏及工作负载。发明人最近研究发现“溅射和再沉积”是一种主要的传质机构[11]。例如,在使用钢网屏进行活性屏等离子氮化工艺中,加速从屏附近的等离子体释放的N+离子,撞击阴极金属屏表面,由此分离或喷出铁原子至等离子体内形成FeN粒子,然后FeN粒子沉积在零件表面。随后,沉积的FeN被分解为Fe2-3N和Fe4N,由此释放的活性氮原子扩散至不锈钢中或Co-Cr合金表面,形成N或C S-相, 前提是使用低温。
根据本发明,提供了一种不锈钢或Co-Cr合金表面共合金化方法,同时与(i)N、C或C/N形成坚硬和耐磨/腐蚀的S相,与(ii)空隙间的和取代的合金元素通常是与Ag、Cu或Ag/Cu来提供抗菌功效,例如方法是利用改性等离子表面技术例如ASP技术,用专门设计的、包括混有Ag、Cu或Ag/Cu的不锈钢或Co-Cr合金的复合或混合金属屏,在温度为300-600℃的范围内、压力为100-1500Pa、含N、含C或含C/N的气氛中,进行1-50小时。
不锈钢以质量计通常具有至少11wt%的铬。铬通常形成氧化铬钝化膜,其可阻止腐蚀扩散到金属内部结构。通常使用至少13%,或最高26%的铬。
不锈钢可以是铁素体或马氏体,但通常是奥氏体。可加入镍来稳定钢中铁的奥氏体结构。不锈钢中也可加入锰。也可使用含有奥氏体和铁素体混合微结构的双相不锈钢。
这些不锈钢通常是本领域已知的。
钴-铬合金通常具有高强度,可用于燃气轮机、牙种植体和矫形外科移植物。通常,它们含有钴和27-30wt%的铬,5-7wt%的钼,小于1%的铁,小于0.75%的镍和其它限制元素,如锰、硅、碳、氮、钨、磷、硫和硼。产业标准是ASTM-F75或ASTM-F799。
需要通过本发明的方法改性的表面特征可以是硬度、耐磨性、耐蚀性、疲劳强度和高抗菌功效中的一种或多种。
优选地,所述复合或混合金属屏,整个屏或部分屏,包含不锈钢(用于不锈钢制品的表面处理)或Co-Cr合金(用于Co-Cr制品的表面处理)以及10-70wt%的Ag、Cu或Ag和Cu,通过不锈钢或Co-Cr微粉与Ag/Cu纳米粉在温度为700-1000℃、压力为60-120MPa下热等静压(HIPing)1-5小时制得,如果需要,随后可以进行机械加工。
或者,所述包含不锈钢(用于不锈钢制品的表面处理)或Co-Cr合金(用于Co-Cr制品的表面处理)以及10-70wt%的Ag、Cu或Ag和Cu的复合或混合金属屏,可通过编制奥氏体不锈钢或Co-Cr合金与Ag/Cu带或通过接线奥氏体不锈钢或Co-Cr合金网与Ag/Cu带制得。
或者,包含Ag、Cu或Ag/Cu的加偏压目标源可作为附加源阴极被引入一般的活性屏等离子装置(图2)。来自于屏(由基材制成)和源(Ag、Cu或Ag/Cu) 的取代的元素将被喷射出来并沉积到零件的表面上;同时,空隙间的元素(N、C或N/C)扩散至沉积的纳米复合材料和基底中。因此,具有不同百分比的Ag、Cu或Ag/Cu的长效抗菌不锈钢或Co-Cr合金表面可通过调整施加到附加源阴极的偏压制造。
优选地,所述制品为医疗植入物,例如关节或膝关节假体,在这种情况下,所述等离子处理优选在温度为350-550℃的范围内进行,更优选在400-500℃进行。这些温度下,该方法通常可产生抗菌功效,增强耐磨性以及提高耐蚀性。
或者,所述制品为医疗工具(例如手术或牙科工具)或食品加工组件和医院设施,在这种情况下,所述等离子处理一般在温度为350-550℃的范围内进行,更优选在400-500℃进行。这些温度下,该方法通常可产生高抗菌功效,显著增强耐磨性,但不一定会提高耐蚀性。
通常,所述处理压力的范围为400-600Pa,更优选的是约500Pa;所述处理时间为1-50小时,更通常的是5-30小时。
通常,等离子处理在至少存在一种例如选自氢气、氦气、氩气或其它稀有气体的非反应性气体时进行。这里所用的“非反应性”是指一种不会以任何显著程度结合进入制品的气体。
通常,等离子处理在至少存在一种反应性气体时进行,例如含氮气体(如氮气或氨气)或含碳气体(如CO或CH4)。这里所用的“反应性”是指一种可在一定程度上结合进入制品中的气体(或部分气体)。当使用含氮气体时,等离子处理步骤通常在350-450℃的温度范围内起作用。
特别优选的气体混合物是用于碳化处理的氢气和甲烷混合气,用于氮化处理的氮气和氢气混合气,以及用于氮碳化处理的甲烷、氮气和氢气混合气。
通常,所述或每种含碳气体占总气体体积的0.5-20%。通常,所述反应性气体(存在时)占总气体体积的0.5-10%。
通常,所述或每种含氮气体占总气体体积的10-40%。优选地,所述含氮气体(存在时)占总气体体积的20-30%。通常,含氮或含碳气体的浓度在整个腔室中基本上是均匀的。
通常,所述或每种含碳气体占总气体体积的0.5-10%。优选地,所述含碳气体(存在时)占总气体体积的1-5%。
本发明还在于一种可由本发明所述方法生产或获得的表面合金化的不锈钢 或钴-铬基制品;所述制品的特征在于其表面区包括:(i)由Ag、Cu或Ag/Cu嵌入的薄S-相层和(ii)较厚S-相外壳。优选地,所述表面区的厚度为1-50μm。
还公开了本发明使用的复合或混合屏以及包括所述屏的ASP装置。
附图说明
本发明的具体实施方式仅通过实施例的方式进行描述,参照以下相应的附图和具体实施例。
图1是具有复合或混合金属屏的活性屏等离子单元的示意图,其中,以下述描述的优选的实施方式来进行共合金化。
图2是具有附加源阴极的活性屏等离子单元的示意图,其中,以下述描述的优选的实施方式来进行共合金化。
图3示出了根据本发明与Ag和氮气共合金化的316L试样的横截面微结构的SEM显微照片。
图4示出了(a)Ag和(b)N随处理温度函数在15-h活性屏Ag和N共合金化的(硝基镀银的)316L试样的深度分布。
图5是(A)TEM显微照片和(B)SAD图,显示嵌入AS等离子硝基镀银的316LVM表面中S-相层的纳米Ag粒子;TEM显微照片(C)显示嵌入AS等离子硝基镀铜的316LVM表面中S-相层的纳米Cu粒子。
图6-8示出了未处理试样以及根据本发明而硬化的试样表面的硬度和耐磨性:
图6:处理参数对LTASDP硝基镀银的316LVM表面的显微硬度的影响。
图7:LTASP内镀银316LVM表面的磨痕的磨损率和磨痕深度。
图8:与未处理的不锈钢相比,LTASP硝基镀银的(CuNSS)316、316LVM和高氮316表面的磨损率。
图9-11示出了未处理的试样和根据本发明而表面硬化的试样的抗菌性能图。
图9:由以下产生的大肠杆菌涂布板:
(a)单S-相层(NSS)对照,(b)AgNSS 400400/15,和(c)AgNSS 450/15。
图10:LTASP硝基镀铜CuNSS、LTASP氮化NSS和对照(盖玻片)上大肠杆菌和表皮葡萄球菌的减少率。
图11:循环清洗的钢材上细菌的减少百分比。
具体实施方式
表1总结了易受本发明方法影响的合适的不锈钢和Co-Cr基合金的典型实施例。含有不锈钢和Co-Cr基合金的制品在用本发明的方法处理前,可通过锻造、铸造或PM/HIP形式制成。
表1可使用的不锈钢和Co-Cr基合金的实施例

为了显示本发明的优点,根据本发明,采用图1所示的活性屏等离子装置,将316、316LVM和高氮的三种奥氏体不锈钢与氮气和Ag(硝基镀银)或Cu(硝基镀铜)共合金化。该装置包括密封容器(阳极),具有旋转泵的真空系统(未 示出),直流电源,供气系统,温度测量系统(未示出),以银或铜为复合阴极屏(活性屏)的不锈钢网筛,和用于支撑待处理制品、处于浮动电位(即零偏压)的工作台。
表2总结了处理参数和样品代码。为了生产对照样品,具有不锈钢网筒的传统活性屏等离子装置也用于没有任何抗菌剂的奥氏体不锈钢表面的低温等离子渗氮(LTPN)(参见表2中NSS)。然后将该制品通过SEM和TEM分析进行金相分析和相鉴定,通过辉光放电光谱法(GDS)分析进行化学组成测定、表面硬度测量、磨损试验和抗菌试验。
图3的横截面显微照片示出了从表面到通过活性屏等离子(ASP)共合金化制成的基底之间层的典型外观。可以看出,当钢制品在450℃下处理15小时,其表面显著改变,即在奥氏体基底上形成了双层。该双层表面包括表面处厚度为0.8-1.0μm的白层,白层和基底之间的厚度为10μm厚区(图3a)。该区显示平滑且无特征的形态,且其层内不含可视晶界。如图3b所示,可以看出,该双层结构均匀覆盖整个样品表面。对在400℃和500℃下处理15小时以及在450℃下处理20小时的钢进行横截,并在显微镜下检查。不管温度上升,表面白层是均匀的(~1μm)。
表2处理参数和样品代码的实施例

注意:*为316,316LVN或高氮
图4示出Ag和N的典型的GDOES元素深度分布,以及处理温度对Ag和N穿过多层的元素分布的影响。可以看出,N深度分布表现出具有陡峭前缘的高原型形状,而Ag深度分布表现出相似的形状,但具有较小的厚度。尽管温度上升,然而富Ag层的厚度在1μm处是恒定的;而处理条件可显著影响N,即当在400℃下处理钢时,N的扩散深度很小(<5μm)。但是,当温度升高至450℃时,通过GDOES测定,氮扩散深度从小于5μm增加至15μm。当温度进一步升高至500℃时,氮扩散深度又从15μm降低至约12μm,N浓度比在450℃下处理钢时下降更迅速。
XRD分析显示,Ag和S-相从ASP硝基镀银316LVM表面达到峰值,Cu和S-相从ASP硝基镀铜316LVM表面达到峰值。TEM研究证实,由低温ASP硝基镀银和硝基镀铜制造的多层结构分别由嵌入S-相的纳米晶银(图5A)和铜(图5C)组成。
图6描绘了处理条件对表面微硬度形态的影响。很明显,450℃的ASP硝基镀银试样产生高达800-1000 HV0.025的有效硬化。在400℃下处理的不锈钢表现出低硬度,其硬度值为220 HV0.025,与未处理的钢的硬度值非常接近。450℃的ASP硝基镀铜CuNSS_25和CuNSS_75的表面硬度为约1200 HV0.025。
图7比较了在400℃、450℃和500℃下处理的ASP硝基镀银不锈钢的磨损性能。与未处理的SS样品相比,AgNSS 450/15的耐磨性提高了两个以上数量级。从磨痕深度判断,磨损测试结束后,富Ag层不大可能被完全磨掉。通过ASP硝基镀铜,三个医疗级ASS也实现了类似的提高(图8)。
评估了与Ag和N(硝基镀银)或Cu和N(硝基镀铜)共合金化的不锈钢表面的体外抗菌作用。用盖玻片作为对照,用NSS作为不含Ag或不含Cu的对照(即只有S-相)。图9(a)和9(b)示出了覆盖有大肠杆菌的两个单独培养皿的两个半部。图9(a)来自于只有S-相(NSS)的样品,图9(b)来自于AgNSS450/15样品。这两个都是与AgNSS 450/15(c)比较时的对照。可以看出,培养皿(a)几乎完全被菌落覆盖,而(b)和(c)上的菌落很少。(b)和(c)上的菌落较大,是因为存在细菌较少时,对营养的竞争小。
ASP硝基镀铜CuNSS表面可非常有效地抑制多种细菌谱,快速且彻底。图 10示出了CuNSS上革兰氏阴性大肠杆菌和革兰氏阳性表皮葡萄球菌的减少率。不含Cu的NSS和盖玻片对照比较,存在很大差异。180分钟(3小时)后,发现NSS和对照表面上细菌数量增长了三倍以上,但CuNSS上未检测到活细胞(致死率100%)。值得注意的是,CuNSS表面上大肠杆菌和表皮葡萄球菌的减少率之间存在差异:在60分钟和90分钟后,大肠杆菌分别减少了75%和98%,表皮葡萄球菌细胞分别减少了60%和90%。
为了评估合金化表面抗菌活性的体外耐用期,使用符合医院常规清洗的系统清洗和灭菌进行动态敏感性观察,周期性地进行涂布平板测试以评估变化度。图11示出了进行3、10、30、50、80和120次测试清洗循环后表面的抗菌性。在前10个周期内,两组样品保持了高抗菌活性,大肠杆菌细菌的减少量维持在92%。约50个循环后,AgNSS 400/15的银活性未得到保持,大肠杆菌和表皮葡萄球菌的致死率分别降至70%和50%。相反地,在10、50、80个周期后,AgNSS450/15分别保持在92%、92%和95%,在最后一个循环后,大肠杆菌和表皮葡萄球菌细胞的平均减少率分别保持在96%和94%。
参考文献
1.Q.L.Feng et al.,Journal Biomaterials Research,52(2000),662-668.
2.C.Credé,Die Verhütung der Augenentzundung der Neugeborenen,Archiv für Gynaekologie,17(1881),50-53.
3.D.W.Brett,A discussion of silver as an antimicrobial agent,Ostomy Wound Management,52(2006),34-41.
4.M.Bosetti,A.Masse,E.Tobin and M.Cannas,Silver coated materials for external fixation devices,in vitro biocompatibility and genotoxicity,Biomaterials,23(2002),887-892.
5.R.Duguid,Copper-inhibition of the growth of oral streptococci and actinomyces Biomaterials,4(1983),225–7.
6.Y.Z.Wan,S.Raman,F.He and Y.Huang,Surface modification of medical metals by ion implantation of silver and copper,Vacuum,81(2007),1114–8.
7.MM Cowan et al.,Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel,Journal of Indutrial Microbiology and Biotechnology,30(2003),102-106.
8.F.R.Marciano et al.,Antibacterial activity of DLC and Ag-DLC films produced by PECVD technique,Diamond and Diamond Related Materials,18(2009),1010-1014.
9.B.Li et al.,Preparation and anti-bacterial properties of plasma sprayed nano-titania/silver coatings, Materials Chemistry and Physics,////
10.H.Dong,S-phase engineering of Fe-Cr,Co-Cr and Ni-Cr alloys,International Materials Review,55(2010),65-98.
11.S.Corujeira Gallo,H.Dong,Vacuum,84(2010),321–325.

长效抗菌金属表面及其制备方法.pdf_第1页
第1页 / 共22页
长效抗菌金属表面及其制备方法.pdf_第2页
第2页 / 共22页
长效抗菌金属表面及其制备方法.pdf_第3页
第3页 / 共22页
点击查看更多>>
资源描述

《长效抗菌金属表面及其制备方法.pdf》由会员分享,可在线阅读,更多相关《长效抗菌金属表面及其制备方法.pdf(22页珍藏版)》请在专利查询网上搜索。

一种改性不锈钢或钴-铬(Co-Cr)基合金制品的表面特征的方法,包括同时使用空隙间的和取代的合金元素,在温度为300-600的范围内、压力为100-1500Pa、包含含N、含C或含N/C气体的气氛中,使该制品进行等离子表面共合金化1-50小时(例如通过活性屏等离子表面共合金化)。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 化学;冶金 > 对金属材料的镀覆;用金属材料对材料的镀覆;表面化学处理;金属材料的扩散处理;真空蒸发法、溅射法、离子注入法或化学气相沉积法的一般镀覆;金属材料腐蚀或积垢的一般抑制〔2〕


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1