遥信数据设备故障判断与分类系统及方法.pdf

上传人:li****8 文档编号:4042862 上传时间:2018-08-12 格式:PDF 页数:8 大小:443.76KB
返回 下载 相关 举报
摘要
申请专利号:

CN201410721313.6

申请日:

2014.12.03

公开号:

CN104536970A

公开日:

2015.04.22

当前法律状态:

授权

有效性:

有权

法律详情:

授权|||著录事项变更IPC(主分类):G06F 17/30变更事项:发明人变更前:郭劲松 黄建杨 冉进文 俞苗杰 俞晓松变更后:黄春光 郭劲松 黄建杨 冉进文 俞苗杰 俞晓松|||实质审查的生效IPC(主分类):G06F 17/30申请日:20141203|||公开

IPC分类号:

G06F17/30; G06K9/62

主分类号:

G06F17/30

申请人:

国家电网公司; 国网浙江省电力公司; 国网浙江省电力公司绍兴供电公司; 国网浙江诸暨市供电公司

发明人:

郭劲松; 黄建杨; 冉进文; 俞苗杰; 俞晓松

地址:

100031北京市西城区西长安街86号

优先权:

专利代理机构:

绍兴市越兴专利事务所33220

代理人:

蒋卫东

PDF下载: PDF下载
内容摘要

本发明公开一种基于BP神经网络的遥信数据设备故障判断与分类系统及方法,所述遥信数据设备故障判断与分类系统包括故障信息展示模块、神经网络训练模块、故障分类器模块、电网数据库交互模块。通过本发明所述的基于BP神经网络的遥信数据设备故障判断与分类系统和方法可以迅速地根据一系列遥信信号判断出某个设备是否存在故障,并给出一个相对合理的故障类型。

权利要求书

权利要求书
1.  一种遥信数据设备故障判断与分类系统,其特征在于:包括布局计算子系统和人机交互子系统,其中,所述布局计算子系统具体包括:
电网数据库交互模块:用于和电网数据库进行交互,从电网数据库获得电网拓扑数据信息;
神经网络训练模块:通过从电网数据库交互模块得到的遥信历史数据,对神经网络进行训练的模块;
故障分类器模块:根据遥信信号,对存在故障的设备进行初步的故障分类的模块;
故障信息展示模块:将最终结果以消息的形式显示出来的模块。

2.  一种遥信数据设备故障判断与分类方法,其特征在于具体包括以下步骤:
1)神经网络训练步骤:

1.  1)从电网数据库取出n组设备故障数据,记做N,以及对应的n个真实的设备状态,记做M;

1.  2)初始化神经网络连接权值w、节点阈值θ;

1.  3)设置循环计数器i=0,进行循环,对神经网络进行训练:

1.  3.1)判断,当i小于n时转到步骤1.3.2),否则转到步骤1.4);

1.  3.2)取一个样本作为输入,根据式(1)计算各层的输出情况,公式(1)为:

其中,x1~xn是从其他神经元传来的输入信号,wij表示从神经元j到神经元i的连接权值,θ表示一个阈值;

1.  3.3)计算隐层输出;

1.  3.4)计算输出层输出;

1.  3.5)计算误差d并更新权值和节点阈值;

1.  3.6)更新i,i增加1,返回步骤1.3.1);

1.  4)判断步骤1.3.5)误差d是否小于误差下限,若是,转到步骤1.3)继续训练,反之,神经网络训练完成;
2)故障信号判断过程:

2.  1)判断,设备I遥测信号显示出现故障;

2.  2)将设备I加入待判定列表;

2.  3)从数据库获取设备I最新的n个信号量,记为N;

2.  4)将信号数据传入神经网络,判断当前设备是否存在故障,若是,则将设备加入故障设备 列表,否则,将设备移出待判定列表;
3)故障设备故障类型判定与输出:

3.  1)从数据库获取设备I最新的n个信号量,记为N;

3.  2)将N输入到故障分类器进行判断;

3.  3)将故障结果输出给监控人员。

说明书

说明书遥信数据设备故障判断与分类系统及方法
技术领域
本发明涉及一种遥信数据设备故障判断与分类系统及方法,尤其是涉及一种基于BP神经网络的遥信数据设备故障判断与分类系统及方法。
背景技术
随着电网自动化的进程,大量原先需要人工检测和统计的数据现已经使用遥测和遥信来完成,但由于传感器精度等问题,通信数据并不能保证一定准确。在大量数据实验之后,发现遥信数据存在误报现象,在检测对象正常的情况下,遥信信号显示设备故障。这种现象的存在大大增加了电力检测和监控人员的工作量,浪费人力资源。由于以上情况的存在,如何在一系列的遥信信号中,准确的定位出真正的故障设备,成为了一项必须解决的问题。
对于遥信信号存在误报的问题,以往的解决方案是通过大量的数据校验,以及检测人员的经验排除一部分显然是误报的信号,并对最有可能出现故障的设备进行逐一检查来完成的。这样的方法有以下优势:
1、工作人员可以据经验忽略一部分明显误报的信号;
2、通过逐一检查,更换遥信传感器,可以在很长一段时间内杜绝该设备的误报情况。
然而,随着电网规模的扩大,人力资源开始变得紧张,使用人力过滤成千上万条遥信信号成为不可能。电网更加需要一种自动检测和过滤遥信信号的方法,
BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。
发明内容
当前电网系统中,存在遥信信号不准确的情况,增加了电力检测盒监控人员的工作量,造成不必要的浪费。针对这种情况,本发明的在于提供一种基于BP神经网络的遥信数据设备故障判断与分类系统及方法,通过所述系统和方法可以迅速地根据一系列遥信信号判断出某个设备是否存在故障,并给出一个相对合理的故障类型。
为了实现上述目的,本发明的解决方案是:
一种遥信数据设备故障判断与分类系统,包括布局计算子系统和人机交互子系统,其中, 所述布局计算子系统具体包括:
电网数据库交互模块:用于和电网数据库进行交互,从电网数据库获得电网拓扑数据信息;
神经网络训练模块:通过从电网数据库交互模块得到的遥信历史数据,对神经网络进行训练的模块;
故障分类器模块:根据遥信信号,对存在故障的设备进行初步的故障分类的模块;
故障信息展示模块:将最终结果以消息的形式显示出来的模块。
一种基于BP神经网络的遥信数据设备故障判断与分类方法,具体包括以下步骤:
1)神经网络训练步骤:
1.1)从电网数据库取出n组设备故障数据,记做N,以及对应的n个真实的设备状态,记做M;
1.2)初始化神经网络连接权值w、节点阈值θ;
1.3)设置循环计数器i=0,进行循环,对神经网络进行训练:
1.3.1)判断,当i小于n时转到步骤1.3.2),否则转到步骤1.4);
1.3.2)取一个样本作为输入,根据式(1)计算各层的输出情况,公式(1)为:
net i = Σ j = 1 n w ij x j - θ - - - ( 1 ) ]]>
其中,x1~xn是从其他神经元传来的输入信号,wij表示从神经元j到神经元i的连接权值,θ表示一个阈值;
1.3.3)计算隐层输出;
1.3.4)计算输出层输出;
1.3.5)计算误差d并更新权值和节点阈值;
1.3.6)更新i,i增加1,返回步骤1.3.1);
1.4)判断步骤1.3.5)误差d是否小于误差下限,若是,转到步骤1.3)继续训练,反之,神经网络训练完成;
2)故障信号判断过程:
2.1)判断,设备I遥测信号显示出现故障;
2.2)将设备I加入待判定列表;
2.3)从数据库获取设备I最新的n个信号量,记为N;
2.4)将信号数据传入神经网络,判断当前设备是否存在故障,若是,则将设备加入故障 设备列表,否则,将设备移出待判定列表;
3)故障设备故障类型判定与输出:
3.1)从数据库获取设备I最新的n个信号量,记为N;
3.2)将N输入到故障分类器进行判断;
3.3)将故障结果输出给监控人员。
本发明的工作原理是:为了增加告警信息的准确性,使监控人员对于故障设备的情况有更清晰、更具目的性的掌握,结合电网原有告警系统的功能特点,提出采用BP神经网络,对告警历史数据进行学习,从而判断当前告警的真实性,并使用分类器对告警设备的故障类型进行初步的分类,提高告警系统的实用性,具有增加告警准确性、智能故障类型识别、快速自动检测等优点。
以下结合附图及具体实施例对本发明做进一步详细描述。
附图说明
图1是本实施例遥信数据设备故障判断与分类系统结构图;
图2是本实施例遥信数据设备故障判断神经网络训练流程图;
图3是本实施例遥信数据设备故障判断与分类主流程图。
具体实施方式
如图1所示,一种基于BP神经网络的遥信数据设备故障判断与分类系统,主要包括布局计算子系统和人机交互子系统,其中,所述布局计算子系统包括:
(1)电网数据库交互模块:用于和电网数据库进行交互,从电网数据库获得电网拓扑数据信息;
(2)神经网络训练模块:通过从电网数据库交互模块得到的遥信历史数据,对神经网络进行训练的模块;
(3)故障分类器模块:根据遥信信号,对存在故障的设备进行初步的故障分类的模块;
(4)故障信息展示模块:将最终结果以消息的形式显示出来的模块。
如图2-3所示,一种基于BP神经网络的遥信数据设备故障判断与分类方法,具体包括如下步骤:
第一步:通过电网数据库交互模块从电网数据库取出n组设备故障数据,记做N,以及对应的n个真实的设备状态,记做M;
第二步:初始化神经网络训练模块中的神经网络连接权值w,节点阈值θ;
第三步:设置循环计数器i=0;
第四步:判断,当i小于n时转到第五步,否则转到第十一步;
第五步:取一个样本作为输入,根据下述公式计算各层的输出情况,公式为:
net i = Σ j = 1 n w ij x j - θ ]]>
其中,x1~xn是从其他神经元传来的输入信号,wij表示从神经元j到神经元i的连接权值,θ表示一个阈值;
第六步:计算隐层输出;
第七步:计算隐层输出;
第八步:计算误差d并更新权值和节点阈值。
第九步:更新i,i增加1,回到第四步;
第十步:判断误差d是否小于误差下限,若是,转到第三步继续训练,反之,神经网络训练完成;
第十一步:判断,设备I遥测信号显示出现故障;
第十二步:将设备I加入待判定列表;
第十三步:从数据库获取设备I最新的n个信号量,记为N;
第十四步:将信号数据传入神经网络,判断当前设备存在故障,若是,则将设备加入故障设备列表,否则,将设备移出待判定列表;
第十五步:将N输入到故障分类模块中的分类器进行判断;
第十六步:通过故障信息展示模块将故障结果输出给监控人员。
上述实施例和图式并非限定本发明的产品形态和式样,任何所属技术领域的普通技术人员对其所做的适当变化或修饰,皆应视为不脱离本发明的专利范畴。

遥信数据设备故障判断与分类系统及方法.pdf_第1页
第1页 / 共8页
遥信数据设备故障判断与分类系统及方法.pdf_第2页
第2页 / 共8页
遥信数据设备故障判断与分类系统及方法.pdf_第3页
第3页 / 共8页
点击查看更多>>
资源描述

《遥信数据设备故障判断与分类系统及方法.pdf》由会员分享,可在线阅读,更多相关《遥信数据设备故障判断与分类系统及方法.pdf(8页珍藏版)》请在专利查询网上搜索。

本发明公开一种基于BP神经网络的遥信数据设备故障判断与分类系统及方法,所述遥信数据设备故障判断与分类系统包括故障信息展示模块、神经网络训练模块、故障分类器模块、电网数据库交互模块。通过本发明所述的基于BP神经网络的遥信数据设备故障判断与分类系统和方法可以迅速地根据一系列遥信信号判断出某个设备是否存在故障,并给出一个相对合理的故障类型。。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 物理 > 计算;推算;计数


copyright@ 2017-2020 zhuanlichaxun.net网站版权所有
经营许可证编号:粤ICP备2021068784号-1