锯条的锯齿形状及其成型方法 发明领域
本发明涉及锯条,特别是关于锯条的锯齿形状的独特设计,以及制造具有此种独特锯齿形状的锯条的方法。
发明背景
典型锯条具有的锯条刃口系由顺序排列而被称为锯齿的锋利尖部构成。这些锯齿切出一条锯沟或锯槽,以使锯条能自如进入而切割物料。锯条的切割作用发生于将被切物料横插入旋转锯条或沿作轴向运动的锯条,亦可将运动的锯条横插进入物料。由于锯条与物料被推插在一起,锯条的锯齿切入物料,并在反复高速作用下,不断地将物料的一部分屑末排出。通过这种重复动作,物料上的锯槽不断加深,直到被切断。这种将部分物料(锯屑)排除的切削作用,在本质上与只简单地将物料的纤维分离的“切开”是不同的。
图1给出了传统锯条10的一部分,用以表明其齿形12。锯齿12具有正前角14、齿角16,及齿背角18。其它用于表征锯齿特性的术语,还包括齿距或间距20,齿槽22,齿槽深24。锯条10的切割方向以箭头26表示。在用锯条切割物料过程中,在锯条与被锯表面或产生的锯槽两侧必须有足够的间隙,以消除锯条与被锯物料间的阻滞或摩擦。这种间隙可通过锯齿地磨锥或偏置来获取。磨锥处理示如图2A,它是磨去锯条两侧的部分材料,而使其刃尖成为锯条的最宽部分。偏置处理示如图2B,它是使锯齿向一侧弯曲或给锯齿置位,以使其刃尖成为锯条的最宽部分。上述两种方法,无论是磨锥或偏置,都能在锯条与物料锯槽侧面之间提供必要的间隙,以消除锯条在锯槽中的阻滞作用。
对图1所示传统锯齿齿形的各种改进已被提出。图3A及图3B表示锯条30切入物料31的情形。锯条30具有多个带正前角33的锯齿32,而前角33与“锯齿夹角的磨削”或在多个锯齿32间每个齿槽34的交替偏斜相互配合。特别是,多个锯齿32,其各前齿面36与各后齿面38具有相反之偏斜。这是通过使每个锯齿32的前齿槽偏斜与每个锯齿32的后齿槽偏斜方向相反,并沿全锯条交替变换顺序而实现的。这种偏斜齿形造成了实质上是三角(棱锥形齿锋,它能使锯齿更好地完成排除料屑。在磨削每个齿槽34时,使其方向与相邻齿槽34相反,即可制成这种三角棱锥形齿形。磨削每个齿槽34时,还同时磨制了一个齿的前齿面36及邻齿的后齿面38。各齿槽34的磨削或偏斜通常都构成一个复合角,这种角度使两个锯齿32间的每个齿槽底部均同时向上和向后倾斜,这是因为每个齿的偏斜前齿面要与前一个齿的偏斜后齿面沿一斜线方向汇合。这种偏斜齿槽是为有助于从齿槽沟排除物料而设计的。但这种传统齿面夹角磨制锯条还是使其齿槽中填塞了料屑和粉尘。这种复合偏磨齿槽由于齿槽的一个齿面使料屑趋向锯条的一侧,而齿槽的另一个齿面则使料屑趋向锯条的另一侧,因而在齿槽底部产生了一个死区或中性区。这种死区或中性区招致在齿槽基部产生不希望有的料屑聚集。这一问题当被锯物料厚度大于或超过锯条冲程时尤为突出,锯条冲程典型值约在半英寸到1英寸之间。这种传统复合偏斜产生的锯齿切削刃39具有一个传统的负倾角40(图3B)。在锯条前进冲程中,负倾角提供一个工作锯齿并使传统偏磨齿形的最高点(相对于齿槽基部),其切削面之前尖总是先与工件接触,而切削面上的其余部分则以向下及向后角度脱离被切割面。这一点可由图3A及3B看出,图中最高点前尖42先接触工件,而其较低之尾尖将在切割冲程中最后接触到工件。
其它各种锯条齿形也已被提出。但大多数以往提出的这种设计都没有得到商业用途的推广,这是因为它们自身未能导向自动加工工艺,故生产成本过高。因而有必要继续开发新锯齿齿形,并有必要改进现有的加工工艺,并以具有成本效益的方式来规模生产改进型锯齿齿形。
发明概要
本发明提出了一种锯条技术,这种锯条将多个具有独特齿形的锯齿排列于锯条的一边,而显示了改善强度。每个锯齿的前齿面及尾齿面均由弧状斜齿槽形成。尾面齿槽与前面齿槽的偏斜方向相反。这种齿槽反向偏斜,沿锯条长是交替反向的。切削刃形成于每个锯齿前面与一个台面的交汇点上,此台面通常平行于各齿尾面的斜齿槽。本发明的这种锯齿的独特齿形使锯齿具有一个正倾角,它在切削面下获有大量锯条材料。这大量材料极大地增加了锯条强度,大为加强了锯条的稳定性,并延长了锯条寿命和增加了锋利持久性。
除了独特的锯齿齿形,本发明还提出了独特的加工工艺,用以制造出符合于本发明的齿形。
本领域技术人员,可以从以下详细说明,所附权利要求和附图中,清楚地了解本发明的其它优点和目的。
附图简述
附图表示了实现本发明的当前最好的设计构思:
图1为传统锯条齿形侧视图;
图2A为图1按2-2箭头方向剖视图,表明通过磨锥取得的锯条清理间隙;
图2B类似于图2A,但表明用锯齿偏置取得清理间隙;
图3A表明具有斜齿槽的传统齿面角磨削锯条的齿形;
图3B图3A所示锯条的锯齿的端视图;
图4为根据本发明,在加工齿形位置状态下锯条透视图;
图5为图4所示锯条的局部侧视图;
图6为图5所示锯条部分锯齿端视图;
图7为表明根据本发明锯齿齿形的放大透视图;
图7A为本发明锯条部分切入物料后的透视图;
图7B为图7A中沿7B-7B弧圈限定区的局部放大透视图;
图8为依加工本发明的齿形所用的磨削砂轮侧视图;
图9为图8中所示圈9区磨削砂轮的磨削曲面放大视图;
图10A至图10I示意表示制作本发明齿形所需的加工工艺过程步骤;
图11示意表示制作本发明齿形时,实现坯料与磨削砂轮间所需相对运动的另一方法;
图12为本发明的另一种实施方案,即将具有本发明齿形的多个碳化合金齿嵌装于圆形锯片的侧视图。
优选实施例的详细说明
现参照附图,在所有附图中,同样的标号均指同一部件。在图4至7B各图中所表示的根据本发明齿形制成的锯条均指定用数码100表示。锯条100由具有多个锯齿104的基片102及两个侧面106及108组成。作为示例于图4中表示的基片,系一线锯条。可以理解,本发明的齿形及其加工方法可以用于任何类型的直锯条及任何类型的圆锯片。如图5及图6所示,锯条100通过沿箭头109方向运动而进行切割。每个锯齿104都是由两个连续的齿槽110形成,而每个齿槽110在沿基片102轴线112方向上,是分居锯齿104相反的两侧。每个齿槽110对于图4所示的三个轴形成一个复合角;并包含一个弧形斜曲面114,它是“向后”(离开切削方向)斜向锯条100的侧方(斜向106或108两个侧面之一),并且对锯条100是“向下”(向非切削刃一边103)偏斜(图5)。锯齿104的“前齿面”或“前面”116与其“后齿面”或“尾面”118两者反向偏斜;前导面116齿槽的偏斜与尾面118齿槽的偏斜对称而反向,并沿锯条100全长交换顺序。
锯齿104的切削刃曲面120是由前齿面116之斜齿槽与后齿面118上大体上呈梯形台面122交汇而成,如图5所示。两个附加切削刃124及126则是由斜曲面114与锯条的两个相对侧面106及108交汇而成。面122之角度,在优选实施方案中通常是平行于直接处于它下方或离开切割方向的斜齿槽。这就形成了一种齿形:其前齿面116斜向一个方向,而其每个后齿面118及面112则斜向对称而相反的方向。因而,如图5,6,7,7A及7B所示,切削刃曲面120对切割方向构成一定角度,或者说它具有一个正倾角128(图6)。此外,如图5所示,切削刃曲面120包含一个前导部分130,它在线129下方构成一个斜角,线129与切割方向109垂直,此斜角被定义为负前角132;同时切削刃120的尾部134在线129之上方构成一个斜角,此角被定义为正前角136。由负前角132转变为正前角136发生于沿切削刃120长度的某一点上。相邻锯齿104具有其多个偏斜面,正倾角和复合前角,它们都以交变而相反的方向构成斜角。这些正倾角和复合前角在各齿104的切削刃120下方造成了大量锯条材料聚集,因而极大地增强了稳定性,增加了寿命及锋利持久度。
如图5至7B所示,这种非传统锯齿104齿形具有一个更高、更向后的尾尖138,它起着切削尖端作用并与工件先接触;而较低、较靠前的前尖139则处于最后接触工件之位置。这种独特的构造也产生于锯齿104的正倾角及其各复合前角的协同作用。锯齿104独特齿形的切割作用可由图7A及7B看清楚。锯齿104的切割作用将与进锯量或锯条100进入被锯物料111之锯入深度结合在一起讨论。当锯条100在沿切割方向109(或对物料111而言是纵向)运动时,锯入深度113被定义为锯条100在垂直于其长轴112方向的移动量。当锯条100沿其长轴方向运动时,这一垂直移动或锯齿104进入物料111的进锯量,通过排除少量物料碎屑而发生有效的切割作用,随着锯条100锯入物料111的进锯量增加,锯齿104的切削刃120以及接触物料111的切割长度也增加。当切削刃120接触物料111时,它开始铲除或削去工件111的部分材料。与物料111发生接触的切削刃120的长度与锯条100进入物料111的锯入量成正比。
切割作用开始于尾尖138触及物料111。随着锯条100被送入物料111,与切削刃120的接触点移向其前尖139。又随着物料111与切削刃的接触点移到切削刃120的负前角部分130,就产生一个矢量力141,此力以和锯入方向113相反的方向作用于锯条100。此矢量力的强度由多个参数确定,其中包括在锯入方向113上不受限制地加于锯条100的力,以及被切物料的硬度。在正常操作中,顺锯入方向113施加于锯条100的力超过此矢量力,于是才得以继续切割物料111。在本发明中,由正倾角及复合前角产生的矢量力141,如当遇到异物如钉子时,它也可使锯条100偏离工件。当锯条100触及钉子时,此矢量力强度将显著增加,这在很大程度上是由于钉子的硬度。矢量力141强度的增加将趋使锯条100从钉子上被推离开。这与图3A所示的传统齿形有实质上的不同,在图3A中当锯条30被进一步锯入物料时,其较高的前尖42被迫力图消除大量的物料。锯条30的负前角产生的矢量力41示如图3A,此力使锯条30实质上是自身更进入物料,它可能造成卡锯以及/或者使锯条30破碎。这一增加的负载导致降低稳定性,降低寿命及锋利持久度。再有,当图3A所示传统锯条遇到钉子时,锯条30由于矢量力41的作用,而被向下压入钉子,而不会象本发明那样由于矢量力141的作用使它离开钉子。
本发明齿形的正倾角、复合前角是用独特方法制造的。参阅图8及9,磨削轮140具有多个磨削曲面142,并与多个磨削斜面144相接。如图9所示,每个磨削斜面144均与相应圆柱磨削面121的垂直轴146以一定角度148倾斜。角148虽可根据要求在40°至65°范围内任意选取,但推荐值为约55°。磨削面142与144的定位及相互关系形成了如上所述各锯齿104的齿形。磨削面142磨出齿槽110的弧状斜曲面形状114,而磨削面144则磨成平面122。磨削面142的半径将等于弧状斜曲面114的半径,其值可在齿距25%至40%间任选。多个磨削面142及144系沿纵向排列于磨削轮140的外表面,但与磨削轮140轴线152有一定角度150。对于不同齿距锯条100的推荐参数列如下表,单位为毫米及度。齿距 斜曲面半径 齿槽角 复合斜角
(标号114) (标号150) (标号113)2.0 .78 20.0 39.02.5 .78 20.0 50.03.0 .87 20.0 51.74.0 1.25 20.0 55.0
现参阅图5及10A-10I,如图所示,用磨削轮140制造锯条100需分为两个单独的操作过程。由于基片102的各锯齿104,是在向下及向一侧两个方向上交替反向偏斜,故每隔一个齿槽110及相应的台面122要通过磨削轮140的一遍磨削成型,此时基片102与磨削轮140具有第一定位关系。完成第一遍磨削后,前一半齿槽110及台面122成型;而基片102与磨削轮重新定位于第二位置关系,同时基片102要沿轴向移动一个齿距长度。对磨削轮140的第二位置与第一位置关系对称而反向。第二遍磨削成形其余齿槽110及台面122。因而,可以看出,磨削轮140上两个相邻水平中心线147之间的距离,如图9所示将等于锯条100齿距的2倍乘以对X轴夹角余弦,再乘以对Y轴夹角的余弦。
制作过程示如图10A至10I。首先将一个或多个坯料160置于夹具162中,如图10A所示。可用于制作锯条100的典型材料有高碳钢,如SAE 1070,SAE1095或D6A等单一规范的材料;其中D6A为推荐材料。制作过程包括将坯料160绕X轴旋转构成滚磨角,对Y轴旋转构成偏磨角,绕Z轴旋转构成齿距角。X轴被定义为与图10A,10B及10F纸平面垂直的轴线;Y轴被定义为在纸面内而与坯料160长轴垂直的轴线;最后Z轴被定义为处于纸面内,而与坯料160长轴平行的轴线。夹具162调整成使坯料160沿图10B所示箭头164方向绕X轴旋转,以形成一个滚磨角,其值通常等于磨削轮140上的角150。如图所示,推荐的滚磨角约为20°,如需要此值可在0°至30°范围内任选。这一方位使坯料160长轴通常平行于磨削轮140上的多个磨削面142及144。夹具162进一步使坯料160绕Y轴旋转,以形成对磨削轮140的偏磨角,如图10C箭头166所示。如图10C所示,绕Y轴旋转的效果是使坯料160绕图10C纸面的垂直轴离开纸面。此偏磨角与磨削轮140关系,使齿槽110及台面122两者都产生一个向下偏斜角度的分量。在推荐方案中,此偏磨角约为30°,如需要此值可在0°-60°范围内任选。夹具162下一步使坯料160绕Z轴,或坯料160长轴旋转,以产生对磨削轮140的齿距角如图10D中箭头168所示。齿距角与磨削轮140间的关系,使齿槽110及台面122两者都产生一个向侧向偏斜的角度分量。在优选方案中,此齿距角约为30°,如需要此值可在0°-40°范围内任选。应注意到上述三轴旋转定向属于举例性质,并无意限制制作过程。
坯料160即以“爬行给进”过程移向磨削轮140,在本例中移动方向通常是垂直于纸面。这一移动使磨削轮140通过一遍磨削使每隔一个或者说使半数齿槽110及相邻的台面122成型。在某些情况下,使磨削轮140移过坯料160,而不是使坯料160移过磨削轮140,以使每隔一个或者说使半数齿槽110成型更为有利。当使磨削轮140移过坯料160时,同样采取“爬行给进”过程。如希望采用传统齿面磨削技术来制作本发明锯条,在磨削轮140与坯料160间进行多遍磨削将是可取的。
在完成第一遍磨削后,半成品坯料160要按图10F所示重新对磨削轮140定位。在第一与第二遍磨削坯料160期间,其对X轴的滚磨角保持恒定。夹具162使坯料160沿图10F箭头172所示方向移动一个齿的长度(一个齿距),以在第一遍磨削成型的各齿槽110之间,磨成其余的齿槽110。坯料160对各轴的定向旋转与前述相似。坯料160按图10G箭头174方向绕Y轴旋转,以形成对磨削轮140的偏磨角。如图10G所示,绕Y轴旋转具有使坯料160相对于纸面垂直轴旋转的效果。在本方案中,图10G所示的偏磨角与图10C所示的偏磨角数值相同,但方向相反。如前所述,偏磨角与磨削轮140间的关系,对齿槽110及台面122两者产生一个向下的角度分量,但在图10G中,此方向与图10C所示的原先的偏磨角造成的偏斜方向相反。夹具162的最后一个定位参数是使坯料160绕Z轴或坯料160的长轴旋转,以形成对磨削轮140的齿距角,如图10H箭头176所示。在本方案中,图10H所示的齿距角与图10D所示的齿距角数值相同,但方向相反。如前所述,齿距角与磨削轮140间的关系产生了复合角偏斜分量,它使齿槽110及台面122两者均向侧向偏斜一定角度。然而,图10H中偏斜方向与图10D所示原先的齿距角产生的偏斜方向相反。
坯料160又一次向磨削轮140移动,或者在本例中,是又一次沿通常是垂直于纸面方向移动。这一移动,即在坯料160移过磨削轮140的一遍磨削过程中,就使磨削轮140成型其余的齿槽110及相邻台面122。同样,在某些情况下,使磨削轮140移过坯料160,而不是使坯料160移过磨削轮140,可能更为有利。类似于图10E所示的第一遍磨削过程,坯料160与磨削轮140间的运动,由于坯料160绕各个轴线的旋转,同样也使锯齿104形成复合角。
虽然作为举例,坯料160相对于磨削轮140的相对运动于此详细描述为坯料160移过磨削轮140或磨削轮140移过坯料160;但将坯料160垂直定位于磨削轮140(如图11所示),然后再将坯料160对磨削轮140进行必要的定向,最后再按图11箭头179所示将坯料垂直移向磨削轮140,这也属于本发明的范围。
另外,为了举例,坯料160一直被描述为用磨削轮140成型或磨削。但用铣刀或其它类型的技术上已知的成型磨削轮来加工成型坯料160,也都属于本发明范围之内。
采用双金属材料制作锯条100可能更为有利,换言之,就是使用由两种不同规范的材料。锯齿104的齿尖可用高碳/高速钢制造,以获取锯齿104的高硬度,而锯条100之基片102则可用低碳钢制造以限制基片102的硬度而保留其韧性。如图5之虚线所示,如锯条100是由两种不同规范材料制成,则将有焊缝175。推荐双金属焊缝175处于齿槽110基底之上但切削刃120之下。如图5所示,齿槽110弧状曲面114的底部延伸到基片102的低硬度材料中以使锯齿104具有韧性;而锯齿104的齿尖则由高硬度材料制造以保持切削刃120的锋利度。典型可用于制造双金属锯条100的材料,包括高速钢,如M2,M42或类似材料,用于齿尖(M42为推荐材料);合金钢如SAE6150,D6A或类似材料,用于基片(D6A为推荐材料)。
图12给出本发明之另一实施方案,它是具有多个锯齿182的圆盘锯片的一部分。每个锯齿182均含碳化物或其它硬质材料的镶齿184。镶齿184可用普通方法如铜焊或其它本技术领域已知的方法嵌入圆锯180中。每个镶齿184均含本发明的切削齿形,换言之均含有斜曲面114并与其前面116及台面122相配合。对于本方案的碳化硬质合金镶齿,其台面122的角度相对于斜曲面104对称而反向,类似于图5-7A所述的方案。每个镶齿184均与相邻镶齿184有相反的偏斜方向,并沿全锯180交替变换。每个镶齿184均在其尾面上包含一个台面122。每个镶齿184的齿尖的曲线切削刃120即由斜曲面114与横向台面122构成。因而,与前述方案相似,每个镶齿184均具有对箭头109所示切割方向偏斜一定角度的曲面切削刃120,此角被定义为正倾角。邻齿184的斜齿面114及其正倾角具有交替而相反方向的角度。可用作镶齿184的典型材料有C2及C4渗碳钢材料,C4为推荐材料。
镶齿184系用普通烧结操作先粗成型。然后再将这些粗成型镶齿用铜焊或用此技术领域中熟知的其它方法装于锯片180上。每个镶齿的侧面再用普通锥形磨削方法造成切削刃124及126,为锯180提供清理间隙。完成上述锥形磨削操作后再对镶齿顶面进行磨削以合适的角度成型面122。相邻镶齿的面122沿全锯180均以交替顺序反向磨制。
上述详细的说明书描述了本发明的优选实施例,但也应理解,本发明易于修改,变形或变换形式,但这些都不超出本后附权利要求的范围。